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A generalized version of the existence theorem on nonlinear complementarity problem
of mathematical programming in a reflexive real Banach space for arbitrary closed
convex cone is proved. Furthermore, in the already known version of the existence
theorem of the same problem, the solution is shown to be unique under different
assumptions.

1. INTRODUCTION

Let X be a reflexive real Banach space and let X* be its dual. Let the value of
f e X*at x € X be denoted by (f, x). Let C be a closed convex cone in X with the
vertex at 0. The ‘polar’ of C is the cone C* defined by
C* = {fe X*: (f, x) = 0 for each x ¢ C}.

A mapping T : C — X* is said to be ‘monotone’ if (7x - Ty, x - y) =0 for
all x, y € C and ‘strictly monotone’ if strict inequality holds whenever x # y. Tis
said to be ‘coercive’ on C if

(Tx, x)
lxl

T is called ‘hemicontinuous’ on Cif for all x, y € C, the map ¢t —~ T(ty + (1 - t)x)
of [0, 1] to X* is continuous, when X* is endowed with the weak* topology”.

— o as fIxll — oo, for x € C.

We will use the following result of Browder! (see also Mosco?) to prove our
results.

Proposition A — Let T be a monotone and hemicontinuous map of a closed
convex set K in X, with 0 € X, into X*, and if K is not bounded, let T be coercive
on K. Then there is an xy € K such that

(Txg, y - xp) = O forall y € K. (D
The inequalities of the form (1) are called ‘variational inequalities’>.

Using the above Proposition A the following theorem on nonlinear complementq-
rity problem of mathematical programming in a reflexive real Banach space for
arbitrary closed convex cone is proved by Nanda®.
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Theorem B — Let T : C — X* be hemicontinuous, monotone and coercive on
C. Then there exists x; such that

xp € C, Txp € C* and (Txp, x5) = O. ...(2)

First we prove a generalized version of Theorem B. Next we show that x; in (2)
is unique if 7 is assumed to be strictly monotone instead of being monotone. Also
we give an example to show that x; in (2) is not unique if T is not strictly monotone.

2. A GeneravLizep CoMPLEMENTARITY PROBLEM

We generalize Theorem B in the following sense, that is, there exist x; and a
nontrivial closed convex subcone C of C such that x, € C, Txy; € C* and (Tx,, y)
= ( for all ¥y in C. Theorem B is a particular case of the theorem given below.

Theorem — Let T : C — X* be hemicontinuous, monotone and coercive on
C. Then there exist x; and a nontrivial closed convex subcone C of C such that

xo € C, Txy € C* and (Tx,, y) = Oforall y € C.

Proor : If C = {0] then the theorem becomes trivial. Since C is a closed convex
cone in the Banach space X, there exists a maximal linearly independent set of vectors
in C, say, {x; . i € L} such that each x € C can be written as

X = E aixixa,'ZO.
iel
By Proposition A, there exists x, € C such that
(Txg, y - xg) = Oforally e C. ...(3)
Let
Xy = Z b,'x,', b,' = 0.
ieL
If x, = 0, then b; = 0 for each i € L. If x; # 0, then there exists b, > 0 for some
i€ L. Let

L' ={i€L:b,~>0inx0= E b,-xi,xo;:fOECL.
i€l

Now for any j € L’ taking y = xo + byx; € C, from (3) we get (Txy, bx;) = 0 for
J € L’. Now taking

y = xo-bx; = E b, € C
kel -{j}
again from (3), we get (Txo, bpx;) < 0, for j € L’. Therefore (Tx, bx;) = 0 for
alljeL’. Since j € L’ (i.e., b; > 0) we get (Txy, x;) = OforalljeL’. Let

C‘={ E ckxk:ckzﬂzcc.

kel’
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C is a nontrivial closed convex subcone of C. If y € C, then

y = E CeXys C = 0
kel
and

(Txo, y) = E i (Txg, x¢) = 0.
kel
We note that x, € C for if Xy # 0, then
Xy = E bx; = E bx; € C
i€L ieL’

since b; = 0 fori € L - L'. Clearly Tx, € C*. o

3. UNIQUENESS

Now we prove that if T: C — X* of Theorem B is strictly monotone instead
of being monotone, then the solution xy of (2) of Theorem B is unique.

Proposition — Let T : C — X* be hemicontinuous, strictly monotone and
coercive on C. Then there exists a unique X, such that

xy € C, Txy € C* and (Txy, xp) = 0.

Proor : Suppose that y, also satisfies the condition of the above proposition.
By Proposition A, (Txy, yg - Xg) = 0and (Tyy xo - o) = 0; and these two imply
(Txg ¥o) = 0 and (Tyy x) = 0. Thus (Txy, ¥y) + (7¥y Xg) = 0. On the other
hand since T is strictly monotone we have (Txg - Ty, xg ~ Vo) = 0 (equality holds
if x; = yy) ; on simplifying this and using (7xy, xg) = 0, (Typ, Vo) = 0, we get
(Txg, o) + (Tyo, Xp) = 0. Thus (Txg, yo) + (Tye, X) = 0. Since each term is
nonnegative, we must have (7Tx,, vo) = 0and (Ty, xp) = 0 and hence (7x; - Ty,
Xg - Vo) = 0. Since T is strictly monotone we have x; - yo = 0. Ja]

4. ExampLE

The following example shows that the solution x; as obtained in the above
proposition is not unique if 7 is not strictly monotone.

Llet X =RandC = {xe€e X:x=0},sothat C = C*. Let T:C — R be
defined by
0 if0sx=<1
T(x): x-1
X

if x > 1.

T is clearly hemicontinuous, monotone and coercive. But any point of the interval
[0, 1] is a solution of (Txy x) = 0, e.g., (T V2, V2) = 0and (T 1, 1) = 0.
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