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Abstract. In this article, two reliable techniques, Haar wavelet method and optimal homotopy asymptotic
method (OHAM) are presented. Haar wavelet method is an efficient numerical method for the numerical
solution of fractional order partial differential equation like Fisher type. The approximate solutions of the
fractional Fisher type equation are compared with the optimal homotopy asymptotic method as well as with
the exact solutions. Comparisons between the obtained solutions with the exact solutions exhibit that both
the featured methods are effective and efficient in solving nonlinear problems. However, the results indicate
that OHAM provides more accurate value than Haar wavelet method.

1. Introduction
Fractional calculus is a field of applied mathematics which deals with derivatives and integrals of ar-
bitrary orders [1, 2]. In the last few decades, fractional calculus has been extensively investigated due
to their broad applications in mathematics, physics and engineering such as viscoelasticity, diffusion of
biological population, signal processing, electromagnetism, fluid mechanics, electrochemistry and so on.
For this we need a reliable and efficient technique for the solution of fractional differential equations.

Wavelet theory is a relatively new and an emerging area in mathematical research. Approximation by
orthogonal wavelets bases are becoming more popular for numerical solutions of fractional differential
equations due to their excellent properties such as ability to detect singularities, orthogonality, flexibility
to represent a function at different level of resolution and compact support. One of the pretty feature
of wavelets is its ability to convert the given differential and integral equations to a system of linear or
nonlinear differential equations, which can be solved by numerical methods.
The generalized time-fractional Fisher’s biological population diffusion equation is given by

∂ αu
∂ tα

=
∂ 2u
∂x2 +F (u) , u(x,0) = φ (x) (1.1)

where u(x, t) denotes the population density and t > 0, x ∈ R, F(u) is a continuous nonlinear function
satisfying the following conditions F (0) = F (1) = 0, F ′ (0)> 0 > F ′ (1). The derivative in eq. (1.1) is
the Caputo derivative of order α .
Definition: The fractional derivative introduced by Caputo [1], in the late sixties, is called Caputo



Fractional derivative. The Caputo fractional derivative 0Dα
t of a function f (t) is defined as [1]

0Dα
t f (t) =

1
Γ(n−α)

∫ t

0

f n (τ)

(t− τ)α−n+1 dτ, (n−1 < α ≤ n, n ∈ N) (1.2)

The notion of L2 error in Haar wavelet method as well as in case of OHAM, the fine tuning of
convergence region by using optimal values of convergence control parameters justify that both the
methods are reliable. Our aim in the present work is to implement Haar wavelet method and optimal
homotopy asymptotic method (OHAM) in order to demonstrate the capability of these methods in
handling nonlinear equations of arbitrary order, so that one can apply it to various types of nonlinearity.

2. Function Approximation
Any function y(t) ∈ L2([0,1)) can be expanded into Haar wavelets by [3–5]

y(t) = c0h0(t)+ c1h1(t)+ c2h2(t)+ ... (2.1)

where c j =
∫ 1

0 y(t)h j(t)dt.
If y(t) is approximated as piecewise constant in each subinterval, the sum in eq. (2.1) may be terminated
after m terms and consequently we can write discrete version in the matrix form as

Y≈
m−1

∑
i=0

cihi (tl) =CT
m.Hm, (2.2)

where Y and CT
m are the m-dimensional row vectors.

Here H is the Haar wavelet matrix of order m defined by H = [h0,h1, ...,hm−1]
T , h0,h1, ...,hm−1 are the

discrete form of the Haar wavelet bases.
The collocation points are given by tl = A+(l−0.5)∆t, l = 1,2, ...,m.

3. Operational matrix of the general order integration
The integration of Hm (t) = [h0 (t) ,h1 (t) , ...,hm−1 (t)]T can be approximated by [5]∫ t

0
Hm (τ)dτ ∼= QHm (t) , (3.1)

where Q is called the Haar wavelet operational matrix of integration which is a square matrix of
m−dimension.
The Haar wavelet operational matrix Qα for integration of the general order α is given by

QαHm (t) = JαHm (t) = [Jαh0 (t) ,Jαh1 (t) , ...,Jαhm−1 (t)]
T = [Qh0 (t) ,Qh1 (t) , ...,Qhm−1 (t)]

T (3.2)

where

Qh0(t) =

{
tα

Γ(1+α) , t ∈ [A,B]

0, elsewhere,
and Qhi(t) =


0, A≤ t < ζ1(i)
φ1, ζ1(i)≤ t < ζ2(i)
φ2, ζ2(i)≤ t < ζ3(i)
φ3, ζ3(i)≤ t < B,

(3.3)

where

φ1 =
(t−ζ1 (i))

α

Γ(α +1)
, φ2 =

(t−ζ1 (i))
α

Γ(α +1)
−2

(t−ζ2 (i))
α

Γ(α +1)
, φ3 =

(t−ζ1 (i))
α

Γ(α +1)
−2

(t−ζ2 (i))
α

Γ(α +1)
+

(t−ζ3 (i))
α

Γ(α +1)

for i = 1,2, ...,m, m = 2J and J is a positive integer, called the maximum level of resolution. Here j and
k represent the integer decomposition of the index i. i.e. i = k+2 j−1 and 1≤ k < 2 j +1.



4. Application of Haar wavelet to Fractional Fisher type Equation
Consider the nonlinear diffusion equation of the fractional Fisher type [6, 7]

∂ αu
∂ tα

=
∂ 2u
∂x2 +u(1−u)(u−a) , 0 < α ≤ 1, 0≤ x≤ 1, 0 < a < 1 (4.1)

with the initial condition
u(x,0) =

1

1+ exp
(
−x√

2

) (4.2)

When α = 1, the exact solution of eq. (4.1) is given by [8, 9]

u(x, t) =
1

1+ exp
[
−
(

x+ct√
2

)] ; c =
√

2
(

1
2
−a
)

(4.3)

Let us divide both space and time interval [0,1] into m equal subintervals; each of width ∆ = 1
m .

Haar wavelet solution of u(x, t) is sought by assuming that ∂ 2u(x,t)
∂x2 can be expanded in terms of Haar

wavelets as
∂ 2u(x, t)

∂x2 =
m

∑
i=1

m

∑
j=1

ci jhi(x)h j(t) (4.4)

Integrating eq. (4.4) twice w.r.t. x from 0 to x we get

u(x, t) =
m

∑
i=1

m

∑
j=1

ci jQ2hi(x)h j(t)+q(t)+ xp(t) (4.5)

Again q(t)+ xp(t) can be approximated using Haar wavelet function as

q(t)+ xp(t) =
m

∑
i=1

m

∑
j=1

ri jhi(x)h j(t) (4.6)

Substituting eq. (4.6) in eq. (4.5) we get

u(x, t) =
m

∑
i=1

m

∑
j=1

ci jQ2hi(x)h j(t)+
m

∑
i=1

m

∑
j=1

ri jhi(x)h j(t) (4.7)

The nonlinear term presented in eq. (4.1) can be approximated using Haar wavelet function as

u(1−u)(u−a) =
m

∑
i=1

m

∑
j=1

di jhi(x)h j(t) (4.8)

Therefore,(
m

∑
i=1

m

∑
j=1

ci jQ2hi(x)h j(t)+
m

∑
i=1

m

∑
j=1

ri jhi(x)h j(t)

)(
1−

m

∑
i=1

m

∑
j=1

ci jQ2hi(x)h j(t)+
m

∑
i=1

m

∑
j=1

ri jhi(x)h j(t)

)
(

m

∑
i=1

m

∑
j=1

ci jQ2hi(x)h j(t)+
m

∑
i=1

m

∑
j=1

ri jhi(x)h j(t)−a

)
=

m

∑
i=1

m

∑
j=1

di jhi(x)h j(t) (4.9)

Substituting eqs. (4.4) and (4.8) in eq. (4.1) and applying Jα to both sides, we will have

u(x, t)−u(x,0) = Jα
t

[
m

∑
i=1

m

∑
j=1

ci jhi(x)h j(t)

]
+ Jα

t

[
m

∑
i=1

m

∑
j=1

di jhi(x)h j(t)

]
(4.10)



Substituting eqs. (4.2) and (4.7) in eq. (4.9) we get

m

∑
i=1

m

∑
j=1

ci jQ2hi(x)h j(t)+
m

∑
i=1

m

∑
j=1

ri jhi(x)h j(t)−
1

1+ exp
(
−x√

2

) =
m

∑
i=1

m

∑
j=1

ci jhi(x)Qα
t h j(t)

+
m

∑
i=1

m

∑
j=1

di jhi(x)Qα
t h j(t) (4.11)

Now substituting the collocation points xl =
l−0.5

m and tk = k−0.5
m for l, k = 1,2, ...,m in eqs. (4.6), (4.9)

and (4.11), we have 3m2 equations in 3m2 unknowns in ci j, ri j and di j. By solving these system of
equations using mathematical software, the Haar wavelet coefficients ci j, ri j and di j can be obtained.

5. Application of OHAM to Fractional Fisher type Equation
The OHAM was introduced and developed by Merinca et al. [10]. In OHAM, the control and adjustment
of the convergence region are provided in a convenient way.
We construct a homotopy ϕ(x, t; p) : Ω× [0,1]−→ R for eq. (4.1) which is given by

(1− p)
∂ αϕ(x, t; p)

∂ tα
= H(p)

[
∂ αϕ(x, t; p)

∂ tα
− ∂ 2ϕ(x, t; p)

∂x2 −ϕ(x, t; p) [1−ϕ(x, t; p)] [ϕ(x, t; p)−a]
]

(5.1)
where p∈ [0,1] is an embedding parameter, H(p) is a nonzero auxiliary function for p 6= 0 and H(0) = 0.
When p = 0 and p = 1, we have ϕ(x, t;0) = u0(x, t) and ϕ(x, t;1) = u(x, t), respectively.
Thus as p varies from 0 to 1, the solution ϕ(x, t; p) approaches from u0(x, t) to u(x, t).
Here

ϕ(x, t; p) = u0(x, t)+
∞

∑
i=1

ui(x, t)pi (5.2)

H(p) = pC1 + p2C2 + p3C3 + ... (5.3)

N (ϕ(x, t; p)) = N0 (u0(x, t))+
∞

∑
k=1

Nk (u0,u1, ...,uk) pk (5.4)

Substituting eqs. (5.2), (5.3) and (5.4) in eq. (5.1) and equating the coefficients of like powers of p
and again solving those equations, we obtain the second order approximate solution using the following
formula

u(x, t) = u0(x, t)+u1(x, t)+u2(x, t) (5.5)

The optimal values of the convergence control constants C1 and C2 can be obtained using collocation
method. Substituting in eq. (4.1), we get the following expression for the residual Rn (x, t;C1,C2,C3, ...).
If Rn (x, t;C1,C2,C3, ...) = 0, then ũ(x, t;C1,C2,C3, ...) is the exact solution. Generally such case does not
arise for nonlinear problems. The convergence of the n−th approximate solution depends upon unknown
constants C1,C2,C3, ....
When the convergence control constants C1,C2,C3, ... are known by the above mentioned methods then
the approximate solution of (4.1) is well determined.

6. Numerical results and discussion
The following Table 1 shows the comparison of the approximate solutions of fractional Fisher type
equation (4.1) obtained by using Haar wavelet method and OHAM at different values of x and t taking
α = 0.5. The following Table 2 exhibits the L2 and L∞ error norm for fractional Fisher type equation
at different values of t and α = 1. It can be easily observed from Table 2 that the solutions obtained by
OHAM are more accurate than that of Haar wavelet method.



Table 1. The approximate solutions of fractional Fisher type equation (4.1) using Haar wavelet method
and three terms for second order OHAM at various points of x and t taking α = 0.5

x t = 0.2 t = 0.4 t = 0.6 t = 0.8
uHaar uOHAM uHaar uOHAM uHaar uOHAM uHaar uOHAM

0.1 0.531396 0.55521 0.550389 0.570645 0.570167 0.582442 0.586081 0.592358
0.3 0.557098 0.589616 0.582811 0.604511 0.607055 0.615806 0.625465 0.625237
0.5 0.586931 0.623164 0.617982 0.637394 0.645433 0.648094 0.665485 0.656966
0.7 0.613502 0.655571 0.644668 0.669033 0.671439 0.679069 0.690761 0.68733
0.9 0.643461 0.686593 0.669891 0.699213 0.69255 0.708537 0.709084 0.68733

Table 2. L2 and L∞ error norm for Fisher type equation t.

Time(sec) HWM OHAM
L2 L∞ L2 L∞

0.2 0.0377811 0.0489923 1.50470E-5 2.47294E-5
0.4 0.00380168 0.00797543 5.05627E-5 8.90920E-5
0.6 0.020685 0.0293499 9.97048E-5 1.79900E-4
0.8 0.0281228 0.0394803 1.69576E-4 2.85670E-4

7. Conclusion
In this paper, the classical as well as fractional Fisher type equation has been solved by using Haar
wavelet method. The obtained results are then compared with exact solutions as well as with relatively
new optimal homotopy asymptotic method (OHAM). These results have been cited in the tables
demonstrated in order to justify the accuracy and efficiency of the proposed schemes. The Haar wavelet
technique provides quite satisfactory results for the fractional Fisher type equation (4.1). The main
advantages of this Haar wavelet method is they transfer the whole scheme into a system of algebraic
equations for which the computation is easy and simple. OHAM allows fine tuning of convergence region
and rate of convergence by suitably identifying convergence control parameters C1,C2,C3, .... The results
obtained by OHAM are more accurate as its convergence region can be easily adjusted and controlled.
The main advantages of these schemes are their simplicity, applicability and less computational errors.
Although the obtained results indicate that optimal homotopy asymptotic method provides more accurate
value than Haar wavelet method, however the accuracy of the wavelet method may be improved with the
increase of level of resolution. Comparison shows that these two methods are reliable, appropriate and
applicable for solving nonlinear fractional Fisher’s equation.
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