ON GENERALIZED NONLINEAR COMPLEMENTARITY PROBLEM

A. BEHERA AND G. K. PANDA

Department of Mathematics, Regional Engineering College, Rourkela 769 008

(Received 11 October 1994; accepted 23 March 1995)

A generalized version of the existence theorem for a generalized nonlinear complementarity problem is established.

1. INTRODUCTION

Let R denote the set of real numbers and R^n the n-dimensional Euclidean space with the usual norm and inner-product. Let K be a closed convex cone in R^n with $0 \in K$ and K^* be the polar cone of K. The following existence theorem on a generalized nonlinear complementarity problem is proved by Mishra and Nanda².

Theorem 1.1 — Let $T: K \to \mathbb{R}^n$ be a continuous map and $g: K \to \mathbb{R}^n$ be a continuous map such that

$$x \in K$$
, $(g(x), x) \le 0 \Rightarrow x = 0$.

If G(x) = T(x) - T(0) satisfies

$$(G(tx), x) \ge c(t) (g(x), x)$$

for some mapping $c: R^+ \to R$ with $c(t) \to +\infty$ as $t \to +\infty$, then there exists $x_0 \in R^n$ such that

$$x_0 \in K$$
, $T(x_0) \in K^*$, $(Tx_0, x_0) = 0$ (1)

The purpose of this note is to obtain a generalization of Theorem 1.1.

2. MAIN RESULT

We generalize Theorem 1.1 as follows.

Theorem 2.1 — Let K be a closed convex cone in \mathbb{R}^n with $0 \in K$. Let $T : K \to \mathbb{R}^n$, $g : K \to \mathbb{R}^n$ and $\theta : K \times K \to \mathbb{R}^n$ be continuous maps such that

- (i) $(Ty, \theta(y, y)) = 0$ for all $y \in K$,
- (ii) for each fixed $y \in K$, the function

$$(Ty, \theta(-, y)) : K \rightarrow R$$
 is convex,

(iii)
$$x \in K$$
, $(g(x), \theta(y, x)) \le 0 \implies x = 0$ for all $y \in K$ (2)

If G(x) = T(x) - T(0) satisfies

$$(G(tx), x) \ge c(t) (g(x), x) \qquad \dots (3)$$

for some mapping $c: R^+ \to R$ with $c(t) \to +\infty$ as $t \to +\infty$, then there exists $x_0 \in R^n$ such that

$$x_0 \in K$$
, $Tx_0 \in K^*$, $(Tx_0, \theta(y, x_0)) = 0$ (4)

Remark 2.2 : If $\theta(y, x_0) = y - x_0$ and $y = 2x_0$, then (4) reduces to (1).

3. AUXILIARY RESULTS

We need the following result to prove Theorem 2.1.

Theorem 3.1 — Let $T: K \to \mathbb{R}^n$ and $\theta: K \times K \to \mathbb{R}^n$ be continuous maps and for each fixed $y \in K$ the function $(Ty, \theta(-, y)): K \to \mathbb{R}$ be convex. If (4) has no solution, then there exists a sequence $\{a_i\}$ of positive real numbers and a convergent sequence $\{u_i\} \subset K$ such that

- (i) $\lim u_i = u, u \neq 0, u \in K$
- (ii) $(T(a_i u_i), \theta(y, u_i)) < 0$ for all i.

The following result will be used in proving Theorem 3.1.

Theorem 3.2 — (Behera and Panda¹, Theorem 2.2) — Let K be a compact convex set in a reflexive real Banach space X, with $0 \in K$, and let X^* denote the dual of X. Let $T: K \to X^*$ and $\theta: K \times K \to X$ be two continuous maps such that

- (i) $(Ty, \theta(y, y)) = 0$ for all $y \in K$,
- (ii) for each fixed $y \in K$, the function

$$(Ty, \theta(-, y)) : K \rightarrow R$$
 is convex.

Then there exists $x_0 \in K$ such that

$$(Ty, \theta(y, x_0) \ge 0$$

for all $y \in K$.

4. PROOFS OF THEOREM 3.1 AND 2.1

Proof of Theorem 3.1 — The sets

$$K_a = \{y \in K : (y, z) \le a \text{ for all } z \in K\}$$

are nonempty, compact and convex for $0 < a < \infty$. Hence it follows from Theorem 3.2 that there exists $x_a \in K_a$ with

$$(Tx_a, \theta(y, x_a)) \ge 0$$

for all $y \in K_a$. Since $0 \in K$, the Slater condition for the feasible domain K_a (cf. Sposito and David⁴) is satisfied and applying the duality theory of linear programming over convex cone domain⁴ we get a scalar $s_a \in R$ such that

$$Tx_a + s_a z \in K^*, \quad x_a \in K, \qquad \dots (5)$$

$$(Tx_a + s_a z, \ \theta(y, x_a)) = 0,$$
 ... (6)

$$(a - (z, \theta(y, x_a))) s_a = 0,$$

$$(z, \theta(y, x_a)) \le a, s_a \ge 0.$$

$$(7)$$

Now if $s_a = 0$ for some a, then it is clear from (5) and (6) that x_a is a solution to (4). Therefore, we conclude that if (4) has no solution then $s_a > 0$ for all a, $0 < a < \infty$. Now by (7), $(z, \theta(y, x_a)) = a$ for all a. Let

$$u_a = \frac{\Theta(y, x_a)}{a}$$

and thus $u_a \in K$ and $(z, u_a) = 1$. Since the points u_a , $0 < a < \infty$, lie in the compact set

$$C = \{x \in K : (z, x) = 1\}$$

there is a sequence $\{a_i\}$ such that $\{u_i\} = \{u_{a_i}\}$ converges to a vector $u \in K$ satisfying (z, u) = 1. From (5) and (6), we get

$$0 < s_a = -\frac{1}{a} (Tx_a, \ \theta(y, x_a))$$

$$Tx_a + s_a z \in K^*$$
 for all $a \in \{a_i\}$.

Now substituting $x_a = au_a$ in the above relations, we obtain (ii). This completes the proof of Theorem 3.1.

Proof of Theorem 2.1 — Suppose that (4) has no solution. Then by Theorem 3.1, we get a sequence $\{a_i\}$ of positive real numbers and a convergent sequence $\{u_i\} \subset K$ such that

$$\lim u_i = u, u \neq 0, u \in K$$

$$(T(a_i, u_i), \theta(y, u_i)) < 0$$
 for all i.

Now by (3) we obtain

$$0 > (T(a_{i}u_{i}), \ \theta(y, u_{i}))$$

$$= (G(a_{i}u_{i}) + T(0), \ \theta(y, u_{i}))$$

$$= (G(a_{i}u_{i}), \ \theta(y, u_{i})) + (T(0), \ \theta(y, u_{i}))$$

$$\geq c(a_{i}) (g(u_{i}), \ \theta(y, u_{i})) + (T(0), \ \theta(y, u_{i}))$$

for all i. It now follows that

$$(g(u), \theta(y, u)) \le 0 \text{ for } 0 \ne u \in K.$$

Thus we get a contradiction to assumption (2). Hence we conclude that (4) has a solution and this completes the proof of Theorem 2.1.

REFERENCES

- 1. A. Behera and G. K. Panda, Bull. Inst. Math. Academia Sinica, Repub. China 21 (2) (1993), 183-86.
- 2. M. S. Mishra and S. Nanda, Proc. Natn. Acad. Sci. India 62(A)II (1992), 249-51.
- 3. S. Nanda, Indian J. pure appl. Math. 18(3) (1987), 215-18.
- 4. V. A. Sposito and H. T. David, SIAM J. appl. Math. 22 (1972), 356-58.