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Affine Kac-Moody symmetric spaces associated with untwisted Kac-Moody algebras
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In this paper we have computed all the affine Kac-Moody symmetric spaces which are tame
Fréchet manifolds starting from the Vogan diagrams related to the affine untwisted Kac-Moody
algebras. The detail computation of affine Kac-Moody symmetric spaces associated with Agl) and
Aél) are shown algebraically to corroborate our method.

PACS numbers:
I. INTRODUCTION

Finite dimensional symmetric spaces [20, [25] are rather well understood mathematical objects which have recently
gained much importance in both mathematics and physics due to their intimate connections with random matrix
theories, Reimannian geometries and their applications to many integrable systems, quantum transport phenomena
(disordered system etc) [4, |, 19, 22]. A compact irreducible symmetric space is either a compact simple Lie group G
or a quotient G/K of a compact simple Lie group by the fixed point set of an involution p (or an open subgroup of
it) and g = t @ p is the decomposition of the Lie algebra g of group G into +1 and -1 eigenvalue spaces of p then
K acts on g by adjoint representation leaving the decomposition invariant. The restriction of this action to p can
be identified with the isotropy representation of G/K and we know that the isotropy representation of a symmetric
space is polar.

With the advent of Kac-Moody algebras [15, [16, [21] which can be considered as the generalization of finite di-
mensional Lie algebras, naturally a search of infinite dimensional version of symmetric spaces began, the closest
generalization being the affine Kac-Moody symmetric spaces. An affine Kac-Moody symmetric space is by definition
either an affine Kac-Moody group G(group type) or a quotient G / G? of G by the fixed point set of an involution of
the second kind. In fact if § = {4+ p in the splitting of the Lie algebra of G into the +1 eigen spaces of p. Then
the metric of G/K is the left invariant metric obtained from the restriction of the inner product of § to p. In finite
dimension, the isotropy representation is polar itself while in infinite dimension it leaves invariant a co-dimension-2
sub-manifold which can be identified with a (pre-)Hilbert space and the induced action on this space is a polar action
by affine isometries.

The study on affine Kac-Moody symmetric spaces began with C.L.Terng [26] who conjectured the existence of
infinite dimensional symmetric spaces. Important progresses towards their constructions and geometries are achieved
by B. Popescu 23], W. Freyn [10], Heintze |13, [14], et al. Now it has been shown that affine Kac-Moody symmetric
spaces are tame Fréchet manifolds. In particular let G be the simply connected Lie group with Lie algebra g and
denote o be the automorphism of G corresponding to o € Aut(g). Then the loop group

LG,o)={9g:R—=>G|geC>®,g(t+2n) =0(g(t)) Vt} (1)

with point wise multiplication is a Fréchet Lie group with Lie algebra L(g, o). The affine Kac-Moody group fL(G, o)
will be a 7% = S' x S* bundle over L(G, o). By construction L(G, o) is a Fréchet group and it is a Lorentz manifold.
It is also well known that L(G,0)/L(G,o)? for any involution p of L(G, o) and L(G,0)/L(G,o)? for any involution
p are tame Fréchet.

The classification of affine Kac-Moody symmetric spaces is essentially equivalent to the classification of involutions
of affine Kac-Moody algebras upto conjugation. This has been achieved by a long series of papers by various au-
thors Batra [1], Levstein [19], Kobayashi [17], Rousseau and Messaoud [24]. There is a one-to-one correspondence
between real forms of Kac-Moody algebras, involutions. The diagramatic representation of real forms are the Vogan
diagrams (to each real form there is a unique Vogan diagram) which are Dynkin diagrams together with some extra
pieces of informations. We have collected/construted the Vogan diagrams related with untwisted classical algebras
Ag), Br(Ll), Cr(Ll), D,(ll) explicitly. From the Vogan diagrams we have obtained the fixed point set as well as the real
forms of the algebras and then we have constructed affine Kac-Moody symmetric spaces.

In chapter-2 we have given a brief introduction to affine untwisted Kac-Moody algebras with their involutions, real
forms and Vogan diagrams.

In chapter-3 we have explicitly calculated the affine Kac-Moody symmetric spaces with two elementary untwisted

Kac-Moody algebras Agl) and Aél) relating them with their Vogan diagrams to corroborate our technique to construct
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affine Kac-Moody symmetric spaces. Towards the end of the chapter we have given exhaustive list of all the affine
Kac-Moody symmetric spaces together with their real forms and fixed algebras. Chapter-4 contains appendix.

II. PRELIMINARIES
A. Kac-Moody Lie algebras
Let I =[1,n+1],n € N, be an interval in N. A matrix A = (a;;); jer with integer coefficients is called a generalized
Cartan matrix if it satisfies the following conditions:
l.aj;=2fori=1,--- ,n+1.
2. a;; <0 for i #j.
3. Qi = 0 iff aj; = 0.

A realization of A is a triple (b, 7, 7), where § is a finite-dimensional complex vector space and m = {«; }ier C h* and
7 = {a;}ier C b are indexed subsets in h* and h respectively, and they satisfy

1. both 7,7 are linearly independent.
2. < 0&1,02] >= a’j’h fOI‘ Z,] = 17 , M.
3. rank (A) = 2n - dim b.

For any n x n matrix A there exits a unique(upto isomorphism) realization.

Given two matrices A and A’ and their realizations (h,,7) and (§’, 7', %), we obtain a realization of the direct
sum of two matrices (h ® b, 7 @ {0} U {0} @ ', 7 ® {0} U {0} ® ') which is called direct sum of the realizations.

A matrix A is called decomposable if after reordering of indices A decomposes into a non-trivial direct sum.
Otherwise A is called indecomposable.

Let A = (a;;) be a generalized Cartan matrix and let (h, 7, 7) be a realization of A. Let g(A) be a complex Lie
algebra with generators e;, f; for i = 1---n and h and the following defining relations:

lei, fi] = 0ijai;
[h,h'] = 0
[h,ei] = <ai,h>e;
[h, fi] = —<ai,h>f;
and the Serre relations
(ad e;)' " %e; =0, (ad fi)' "% f; =0; Vi#j, (2)

The Lie algebra g = g(A) is called a Kac-Moody algebra. The subalgebra b of g is called the Cartan subalgebra.
The matrix A is the Cartan matrix of g which is of rank n. The elements e;, f; for i = 1---n, are called Chevalley
generators and they generates the subalgebra ¢’ = [g,9] and g = ¢’ + b.

B. Affine Kac-Moody Algebras
Consider the generalized Cartan matrix A. It is called a Cartan matrix of affine type if

e A is an indecomposable matrix, i.e. after the indices are reordered A cannot be written in the form (/(1)1 /(1) > .
2
e There exits a vector (a;)71), with a; all positive such that A(a;) ' = 0.

Then, the algebra g associated with A is called an affine Kac-Moody algebra. Affine Kac-Moody algebras are of two
types untwisted and twisted. In this paper we have confined ourselves to untwisted case only.



C. A realization of non-twisted affine Kac-Moody Lie algebra

Let L = C[t,t7!] be the algebra of Laurent polynomials in #. The residue of the Laurent polynomial P =
diez cjt’ (where all but finite number of ¢; are zero) is ResP = c_;.

Let g be a finite-dimensional simple Lie algebra over C of type X,,, then L(§) = L ® ¢ is an infinite-dimensional
Lie algebra with the bracket

POX,QeY]=PQ®ry PQeLX)Y ey (3)

Fix a non-degenerate, invariant, symmetric bilinear form (.,.) in ¢ and extend this form to an L valued form (.,.); on
L(g) by

(Poxz,Qey)=PQx,y) PQELwzycg. (4)
The derivation #/(d/dt) of L extends to L(g) by

d dP
! —(PRX)=t — X PelL: X €q. 5
dt( ® X) 7 &% eL;Xeyg (5)

Therefore ¢(a,b) = Res(92,b); for a,b € L(§) defines a two-cocycle on L(g).
Now we denote by L(§) the central extension of the Lie algebra L(§) associated to the cocycle v. Explicitly
L(g) = L(g) ® Cc with the bracket

[a+ Ae,b+ pc] = [a,b] +¥(a,b)e a,b e L(g); A\, pu € C. (6)

Finally, denote by L(§) is the Lie algebra which is obtained by adjoining to L(§) a derivation d which acts on L(§) as
¢4 and kills c. Explicitly we have L(§) = L(§) ® Cc @ Cd with the bracket defined by

[t* @z + X+ pd, ! @y + Mc+ pd) =t @ [, y] + pit! @y — mkt* @ x + kd; _i(x,y)c, (7)

where x,y € §; A\, 1, A\, 1 € C; 5,k € Z. This ﬁ(g) is a non- twisted affine Kac-Moody Lie algebra associated to the
affine matrix A of type X,(ll).

D. Automorphisms and Real forms of non-twisted affine Kac-Moody algebras

Define a group G acting on the algebra g through adjoint representation Ad : G — Aut(g). It is generated by the
subgroup U, for a € £ and Ad(U,) = exp(ad(g.)).

A maximal ad,-diagonalizable subalgebra of g is called a Cartan subalgebra. Every Cartan subalgebra of g is
Ad(G)-conjugate to the standard Cartan subalgebra h. A Borel subalgebra of g is maximal completely solvable
subalgebra. It is conjugated by Ad(G) to b* and b~ where bt = b & @P,. (g0 and b~ =h® P, go- However b*
and b~ are not conjugated under Ad(G). So there are two conjugacy classes of Borel subalgebra the positive and
negative subalgebras.

A real form of g is a algebra gr over R such that there exists an isomorphism from g to gr ® C. If we replace C by
R in definition of g then we obtain a real form of gg which is called split real form.

An automorphism o of g is called an involution if 2 = Id. The involution is called semi-linear if o(\z) = Ao (x)
for A € C and = € ¢g. A real form of g correspondences to a semi-linear involution of g. A linear or semi-linear
automorphism o of g is said to be of first kind if o(b™) is Ad(G)- conjugate to b and it is of second kind if o(b™) is
Ad(G)-conjugate to b_. Any automorphism of g is either an automorphism of first kind (type 1) or an automorphism
of second kind (type 2).

Let gr be a real form of g. Fix an isomorphism from ¢ to gg ® C. Then the Galois group I' = Gal(C/R) acts on
¢ and the corresponding group G. Then gr can be identified with the fixed point set g'. If T' consists of first kind
automorphism then we say gg is almost split, otherwise if the non-trivial element of I" is of second kind automorphism
then we say ggr is almost compact(non-compact). Denote the group of C-linear or semilinear automorphisms of g as
Autg(g). The group Aut(g) is normal in Autr(g) and of index 2. A semilinear automorphism of order 2 of g is called
a semiinvolution of g.

Definition II.1. Let ¢’ be a semi-involution of g of second kind and let g = g"/ be the corresponding almost
compact real form. A Cartan semi-involution w’ which commutes with ¢’ is called a Cartan semi-involution for ¢’ or
gr. The involution o = ¢’w’ is called a Cartan involution of ¢’ and also the restriction wgrs of o to ggr is called Cartan
involution for gg.



The algebra of fixed points t, = gg is called a maximal compact subalgebra of gr. Now we have the Cartan
decomposition gr = to B po and t; = t, ip, where p, is the eigenspace of wg for eigen value —1. Let ¢y be a maximal
abelian subspace of t,. Then h, = Z,, (to) is a o-stable Cartan subalgebra of the almost compact real form gg of the
form ho = tg B ag with ag C po.

Definition II.2. A o-stable Cartan subalgebra h, = to @ ag with g C t, and a9 C p, of an almost compact real
form gg is maximally compact if the dimension of ¢ is as large as possible and it is maximally non-compact if the
dimension of ag is as large as possible.

A maximally compact Cartan subalgebra fh, of an almost compact real form gg has the property that all the roots
are real on ag and imaginary on ¢y3. One says that a root is real if it takes real value on hg = tg ® ag, i.e. vanishes on
to. It is imaginary if it takes imaginary value on b, i.e. vanishes on ag and complex otherwise.

E. Classification of Real forms

Under Aut(g) there is a one-one correspondence between the conjugacy classes of involutions(linear) of second kind
of g and the conjugacy classes of almost split real forms of g. Again there is a bijection between the conjugacy classes
under Aut(g) of semi-involution of second kind and conjugacy classes of involution of first kind. Thus one obtain under
Aut(g) a one-to-one correspondence between conjugacy classes of linear involutions of first kind(including identity)
and the the conjugacy classes of almost compact real forms of g. The compact real form is unique and corresponds
to the identity.

Let b, be a o-stable Cartan subalgebra of gg.Then there are no real roots iff §, is maximally compact.

Let gr be almost compact real form of g corresponding to the semi-involution of the second kind ¢’ of g. Let o
be the Cartan involution of gg and let gg = t, ® p, be the corresponding Cartan decomposition|3, [12, 28]. Let ¢y be
maximal abelian subspace of t,. Then h, = Zg (¢o) is a o-stable Cartan subalgebra of gr of the form hy = to & ao
with ag C po. This b, is a maximally Cartan subalgebra of ggr because ty is as large as possible.

For any root a, o(a) is the root ca(H) = a(c~1H). If a is imaginary then o(a) = a and « vanishes on ag. Thus
Jo 1s o-stable and we have g, = (9o Nt) B (9o NP). Again dim(g,) =1, 80 go C t or g, C p. An imaginary root « is
called compact if g, C t and is non-compact if g, C p.

Theorem I1.3. (Theorem 45 [10]) Let g be an complex affine Kac-Moody algebra and C be a real form of it which is
compact type. The conjugacy classes of real forms of non compact type of g are in bijection with the conjugacy classes
of involutions on C. The correspondence is given by C = K & P — K @ iP where K and P are the x-eigen spaces for
the involution.

However every real form is either of compact type or of non-compact type, a mixed type is not possible.

Lemma I1.4. (Lemma 47 [10]) Let gr be a real form of non-compact type. Let gg = K @ P be Cartan decomposition.
The Cartan Killing form is negative definite on K and positive definite on P.

F. Vogan diagrams

For classification of real forms of affine Kac-Moody algebra there are two main approaches: One focuses the maximal
non-compact Cartan subalgebra that leads to Satake diagrams [27]. The other one is on maximal compact Cartan
subalgebra that leads to Vogan diagrams |2, 6, [1§].

Let almost compact real form gg of g and o be the Cartan involution on gr leading to the Cartan decomposition
gr = to @ po. Let h, be the maximally compact o-stable Cartan subalgebra of gr with complexification h = t @ «a.
Let us denote A = A(g, h) be the set of roots of g with respect to h. This set doesn’t contain any real root as b, is
assumed to be maximally compact. From A we choose a positive system A™ that takes itg before a. since o is +1 on
to and —1 on ag and since there are no real roots o(AT) = AT, Therefore o permutes the simple roots. It fixes the
simple roots that are imaginary and permutes in 2-cycles the simple roots that are complex.

Definition I1.5. By Vogan diagram of the triple (gg,bo, AT) we mean the Dynkin diagram of AT with the 2-
element orbits under o labelled an arrow and with the 1-element orbit painted or not depending upon whether the
corresponding imaginary simple root is non-compact or compact.

Every Vogan diagram represents an almost compact(non-compact) real form of some affine Kac-Moody Lie algebra.
Two diagrams may represent isomorphic algebras and in that case the diagrams are equivalent. So the classification
of Vogan diagram gives rise to the classification of almost compact real form of affine Kac-Moody Lie algebra.

The equivalence of Vogan diagram is defined as the equivalence relation generated by the following two operations:



1. Applications of an automorphism of the Dynkin diagram.

2. Change in the positive system by reflection in a simple, non-compact root, i.e. by a vertex which is colored in
the Vogan diagram.

As a consequence of reflection by a simple non-compact root «, the rules for single and triple lines is that we have
a colored and its immediate neighbour is changed to the opposite color. The rule for double line is that if a is the
smaller root, then there is no change in the color of immediate neighbour, but we leave a colored. If « is a bigger
root, then we leave a colored and the immediate neighbour is changed to the opposite color.

If two Vogan diagrams aren’t equivalent to each other, then they are called non-equivalent.

Definition I1.6. An abstract Vogan diagram is an irreducible abstract Dynkin diagram of non-twisted affine Kac-
Moody Lie algebra with two additional piece of structure as follows:

1. One is an automorphism of order 1 or 2 of the diagram, which is indicated by labelling the 2-element orbits.

2. Second one is a subset of 1-element orbits which is to be indicated by pointing the vertices corresponding to the
members of the subset.

Every Vogan diagram is an abstract Vogan diagram. It is always convenient to represent equivalence class of Vogan
diagrams with minimum number of vertices painted. We have Borel Seibenthal theorem for affine Kac-Moody algebras
[7] which states that

Theorem II.7. Every equivalence class of Vogan diagram has a representative with atmost two vertices painted.
Some more important results:

Theorem I1.8. If an abstract Vogan diagram for an non-twisted affine Kac-Moody Lie algebra is given, then there
exits an almost compact real form of a non-twisted affine Kac-Moody Lie algebra such that the given diagram is the
Vogan diagram of this almost compact real form.

Theorem I1.9. If two almost compact real forms of a non-twisted affine Kac-Moody Lie algebra g have equivalent
Vogan diagram then they are isomorphic.

III. AFFINE KAC-MOODY SYMMETRIC SPACE

In this chapter we briefly review with the definition and geometry of the affine Kac-Moody symmetric spaces
[10, 13, 23] with explicit determination of affine Kac-Moody symmetric spaces associated with Agl) and Aél).

Definition III.1. A tame Fréchet manifold M with a weak metric having a Levi-civita connection is called a
symmettric space, iff Vp € M there is an involution isometry p,, such that p is an isolated fixed point of p,.

Definition ITI.2. An(affine) Kac-Moody symmetric space M is a tame Fréchet Lorentz symmetric space such that
its isometry group I(M) contains a transitive subgroup isomorphic to an affine geometric Kac-Moody group H and
the intersection of the isotropy group of a point with H is a loop group of compact type.

Theorem II1.3. (Affine Kac-Moody symmetric spaces of compact type)

Both the Kac-Moody group ]\//[E]; equipped with its Ad-invariant metric, and the quotient space X = ]/W\GY];/FZ:E(p*)
equipped with its Ad(Fix(p.«))-invariant metric are tame Fréchet symmetric spaces of the compact type with respect
to their Ad-invariant metric. Their curvatures satisfy <R(X, )X, Y> > 0.

Theorem II1.4. (Affine Kac-Moody symmetric spaces of non-compact type)

Both quotient spaces X = MG(;/MG]; and X = H/Fix(p.) where H is a non-compact real form of MG(;
with their Ad-invariant metric are tame Fréchet symmetric spaces of non-compact type. Their curvatures satisfy
<R(X, Y)X, Y> < 0. Furthermore Kac-Moody symmetric spaces of the non compact type are diffeomorphic to vector
space.

Theorem IIL.5. (Duality)
Affine Kac-Moody symmetric spaces of compact type are dual to the Affine Kac-Moody symmetric spaces of non-
compact type and vice versa.



We can summarize all the results we have discussed so far as follows:

There is an one-one correspondence between the conjugacy classes of involution of second kind of affine Kac-Moody
algebra g and almost split real form and also between the conjugacy classes of involution of first kind and almost
compact real form of g. Again to each real form there is a unique Vogan diagram. On the other hand all real forms are
of two types: compact, non-compact and the conjugacy classes of real forms of non-compact type of g are in bijection
with the conjugacy classes of involution on the compact real form (C). So the affine Kac-Moody symmetric spaces
can be classified using compact real form and involution of second kind. Now we can conclude that classification
affine Kac-Moody symmetric spaces are intimately linked with classification of Vogan diagram. Starting with the
compact real form C we can construct all the various non-compact real forms by applying involutive automorphisms
to C followed by Weyl unitary trick.

A. Affine Kac-Moody symmetric spaces associated with A;l)

The chevelley generators for Agl) are given by:

-1
o= (8= =(0) == (1) == (31 ) == ) }

The Cartan involution of Agl) is the following
thers —t"f  itters it " f
t"f— —t e " f it e
t"h— —t™"h  it"h—it™"h
crH— —c ic— ic
d— —d id — id

As a result the compact form is generated by: {(t"e — t™"f),i(t"e + ¢ "f),(t"f — t~™e),i(t"f + t "e), (t"h —

t="h),i(t"h +t"h)|n € Z} ® Ric & Rid. Explicitly the compact real form is given by C(t) = > [agn) (t"e—t7"f) +
neL

iagn) (t"e+t "f)+ aén) t"f—t""e)+ iai")(t"f +t ") + aén) (t"h—t""h)+ iaé")(t"h +t7"h)] ® Ric ® Rid which is
equal to the following matrix

c(t) = § (s ) i ) e i) e a i) (1 0)@Rid (1 O)
17 (ot +iag") + 17 (af"” +iaf") o (- 7) —dag (7 4477 01 01

this is a skew hermitian matrix with trace zero, which is identified as su(*)(2). The Vogan diagram associated with
this real form is given by the following:

O&———————=>0

a@Q o]

Now the general form [g] of an involutive automorphism associated with a affine Kac-Moody algebra is given as: for
type 1(a) automorphism

o(C(t)) = U)C(ut)U(t)! + %Res{tr (U(t)lTC(u(t))> }c. (8)

and for type 1(b) automorphism

- 1 dUu (t 5
a(Ct)) =U#)(~C(ut)U(t)~ + ;Res{tr (U(t)l%(—C(ut)o }c. 9)
But the conjugacy class of type 1(b) automorphisms with v = 1 and u = —1 correspond to some automorphisms
of type 1(a) with w = 1 and u = —1 respectively. Also we shall like to mention that type 2(a) and type 2(b)

automorphisms are obtained by composing type 1(a) and 1(b) with Cartan involution respectively. Action of o on ¢
is o(c) = pe, however for 1(a) automorphism = 1. Now o(d) = p®(U(t)) + &c + pd where ®(U(t)) is the dr x dr



matrix that depends upon U(¢) as below,
B du (t) 1 du (t) 1
B(U(t)) = { U <t i OR N

and for our cases o(d) = d except the case-1IT of Agl) where
_(t?/2 0
Case-I: If

Ut)y=U(t)""' = ((1) _01> au=1, £€=0, (10)

then under the automorphism (8) with (I0) a general matrix with block matrices A, B, C, D transforms as

@5) = (%)

Hence the fixed subalgebra K of C(t) is given by

K § al™ (=t il (17 + 1) 0
— 0 al™ (@t — ) — il + )

and

p_ E 0 t”(agn) + iagn)) + tfn(—agn) + iain))
t‘"(—agn) + iagn)) + t"(agn) + iafln)) 0

E (n) (in _+—n . ((n) (in —n n(__ (n) . (n) —n(_; (n) _ (n)
ThuS K“FZP = a5 (t (’ﬂ) t ()’ﬂ;*— ZGG (t (n—)i_ t (21) t ( (Z? + Zal ) + t (n() za/a a4 ) Hence the non-
t7"(—day’ —ay ) +t"(lag —ay ) as/ (7" —t") —dag (" +t77).

compact real form is K + iP @ Ric ® Rid € sugl)(l, 1) and the corresponding Vogan diagram is given by

neZ

oe—————>e

ao ai

and the two affine Kac-Moody symmetric spaces are

SuM(1,1)/8M Wy x ), SUD A +1)/80 (U x Uy). (11)
Case II: Similarly if
1 10
Ut)y=U(t)""' = (O _1> . u=-1, £€=0 (12)

C D

(e5)~ (%)

We observe when n is an even integer it reduces to case I, giving same real form. But n is odd then we have

K— E 0 t”(agn) + iaén)) + t’”(—aén) + iain))
— tfn(—agn) + iagn)) + t"(agn) + iafln)) 0

then under the automorphism(®) with (I2]) the matrix <A B> trasforms as

and

P E al™ (= ) 4 ialM (17 + ) 0 '
0 = (=i +iaf”) + t"(af") + iaf”)



(M) n _ 4— (M) yn | 4—n n(,(m) (n) - (n) (n)
K +iP = g vas ((i) t (n)) 6 (t(n)_'—t ()) t (a(ln) +ia )+t (El) +iay) Hence the non-
t (- +iay”) +t"(ag" +iay") " =t") +ag (" + 7).

compact real form is K + iP @ Ric ® Rid € su&li(l, 1). The corresponding Vogan diagram is the given by
The affine Kac-Moody symmetric spaces are:

nez

s a,1)/8Yy x vy), SUD A +1)/8Y (U, x Uy). (13)
Case III: Now consider
0 1 _ 0 —t
o= (" ¢) =1 e=-1 v = (] ). (14)
. . . (A B
So now under the automorphism (8) with (I4]) a general matrix CD transform as,
A B D —cCt!
(c D) - (—Bt A > (15)
Then from a simple mathematical manipulation we observe that in this case
_(A+D B-Ct! _(A-D B+cCt!
K_<C—Bt D+A ) P_(CJrBt D-A (16)
Now putting the values of A, B, C and D in K we get
K =
0 t"(a (n)—l-la(n))—l—t n(— (")+Za("))
N E : =+ (g gn) mg")) (a () 4 m(n))tn 1
2 — t"(—a (n) + m(n)) +t"(a (n) + m("))
+tHl(—q (") Zaén)) + (a§ (") ("))t nt1 0
with K satisfies K* + K = 0 and hence K is identified as so(*)(2). So we have K +iP =
é")( )—i—za(n)(t"—i-t n) t"(a (")+za("))+t n(— (")+Za(”))+
1 t— (n+1)( g") zaén)) ( (n) + Za("))tn 1 ) 10
2 - (n) | . (n) (n) (n) ® Ric 01 ©
— t7"(—ay " +iay ) +t"(ay "’ +iay )+
tn+1(_a§") _,Laé”))_i_(aé”) : i"))t n+1 (")( tn—l—t n) ,Laé”)(tn_i_tfn)
Rid (O (1)> which is identified as sI* (2, R) and the Vogan diagram is
Hence the affine Kac-Moody symmetric spaces are
suM2)/s0M(2), SLW(2,R)/SOM(2). (17)

B. Affine Kac Moody symetric space associated with Aél)

010 000 1 00 000
The Chevelley generators of A are {612 000]|,f1 100],hi=(0—-10}),ea=(001],f>=
000 000 0 00 000
000 00 O 000 00 ¢! -100
000),he=101 0 J,e3=(000],f35=(00 0 Jhg=| 0 00 }TheCartanlnvolutlonofA
010 00 —1 t 00 00 O 0 01
is the following;:



t"ep — —tinfl
t"es —tinfz
t"eg — _t77lf3
tnfl — —t77L€1
tan — —t77L€2
tnf[; — —t77L€3
t"hi — —t "hy
t"ho — —t" "ho
t"hs — —t""hs
cr— —cC
d— —d

it"er — it™" f1
it"es > itinfz
it"es — itinfg
itnf1 — it "ep
itnfz — it "es
it" f3 — it "es
it"hy — it” " hy
it ho — 1it” "ho
it"hs — 1t "hs

iC > ic

id — id

Hence the Compact form is generated by {eit™ — fit™",i(e1t™ + fit™™), hit™ — hit™ ™, i(ht™ + hit™"), eat™ —
fgtin, i(GQtn + fgtin), hat™ — hgtin, ’L(hgtn + h,Qtin), est™ — fgtin, i(egt” + fgtin), hgtn — hgtin, Z(hgtn + hgtin | n e

AR AR AR 100
Z} @ Ric @ Rid. So, the compact form C(t) is Aé’ll) Ag’;) Aég) @®Ric{0 1 0] ®Rid
AV AR
where
A = g (" — ") e (" ) = el (=7 —daly ()
AD = (@ + i
A = gD gl
A5 = (—af™ +iag)e
() _ () _yn =m0 gn | mny () gm =y () gn | —n
Ay’ = ag (—t"+t7") —day (" ) +ay (T —tT") +dag (" 4+t
AL = (@ +ia)r
A5y = (ial) +ag)ert!
Ay = (—ag” +iag”)e
A7 = (=" ) =g+ ) el (1 — ) ey (" )

This matrix is in the form:

(e, &),

100
010
001

which is a skew hermitian matrix with trace zero it is identified as su()(3). The Vogan diagram is

ao

al

a2

Now proceeding similarly as Agl) case and taking different cases we have,

Case I:

Under the automorphism () with (I9) the matrix transforms as

(5 &)= (& <)

(0¢) »=(57)

Here

K

(19)
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The decomposition of K as in (??) shows that is isomorphic to sugl)(Q) X ¢o X sugl)(l) where ¢g is the center of K.

Now K + P is
(Z1)2x2 (Z2)2x1
((ZS)IM (Z3)1><1) (22)

with Zs = iB is a 2 X 2 matrix, Z; = A is a 2 x 2 skew hermitian matrix and Z3 = C'is a 1 x 1 skew hermitian matrix

and also satisfies T'rZ; +1T'rZs = 0. Hence the non-compact real form is K +¢P @ Ric @ Rid € sugl) (2,1). The Vogan
diagram is

Thus the corresponding symmetric spaces are:

SUM 2,1/ (U, x Uy),  SUD (24 1)/50 (U, x Uy). (23)
Case II:
10 0
Uty=Ut)"'=(01 0|, u=-1, &£=0. (24)
00 -1
Under the automorphism (8) with (24) the matrix transforms as
A B —-A B
(—B* c) - (—B* —C)' (25)
Here
0 B A0
K_(_B* O), P—(o O) (26)
Thus K + 4¢P is
(Z1)ax2  (Z2)2x1
2
((—Z§)1x2 (Z3)1x1 (27)

with Zy = iBis a 2 x 1 matrix, Z; = A is a 2 x 2 skew hermitian matrix and Z3 = C'is a 1 x 1 skew hermitian matrix

and also satisfies T'rZ; +TrZs = 0. Hence the non-compact real form is K +iP @& Ric® Rid € su(_li (2,1). The Vogan
diagram is

@0

Thus the corresponding symmetric spaces are:

SUN(2,1)/80 (W, x U1), SUD (2 +1)/8Y (U, x U7). (28)
Case III:
001 0 0 —1
U(f) =1010]), u=1, &£=0, U(t)_l = 0o —-1 0 . (29)
100 10 0

Under the automorphism (B) with (29) the matrix transforms as

404 Y S (4
A21 A22 A23 — A23 A22 A21 : (30)

=\l al) 5\l Al Al
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K=
1 Z A§?§+A§,’§; A%Z’T)AL%Z) A§’§§+A§,’I; 12 AE";M 4§Z§)+ (Aé’ézh
3 AjY + Ajs Ay Ay +AY | =32 A7) (A)+ (Ajs))+
-~ ASD + AT A + AR AL + AT nel \ (AN (A)+ (AS)4
and P =
Z A§?§ AE; Ay — A% AE? A%’f; Z 42’{?7 (A7) 4§; - N
) AjY — A2§ 0 Azg . (A3 - 0 (A;; )— |- Thus K +iP is
ez \ASY — A Al — AT Al — A ez \(AS))- (A))- (A)-
. (AD) +i(A) - (A +i(A5G)- (A4 +i(A)-
5253 (AG)s +i(A50)- (AR (AR)s +i(AS)- (31)
e \(AS) 4 +i(ASD) - (A)) 4 +i(A5)- (AS) 1 +i(A%) -

such that trace of this matrix is zero. Hence the non-compact real form is K + iP @ Ric @ Rid € slgl)(?),]R). Here
K= sogl)(?)). The Vogan diagram is

ag
oy
Thus the corresponding symmetric spaces are
SL{V(3,R)/SO(3),  SUM(3)/S01V(3). (32)
Case IV:
001 0O 0 -1
Uty=(010], u=-1, ¢=0, Uty '=[(0 -1 0 (33)
100 -1 0 O
Under the automorphism () with (B3] the matrix transforms as
A A A “A A A
G de e | T e A oY
neZ \Ayz’ Az Az neZ \—Ajy —Ap —Ap
Hee K= ) a4 400 4000 4 N T N
) A%l) - A?3) Al — Ay A%s) - A?l) ) (4%1))— (Aig’)- (4%3))—
> A 00 AR T T (o) O )
nel \Ay’ — Ay Ay — Ay Asy’ — A ne€Z \(Az7)- (Az0))- (A337)-
and P = (n) (n)  4(n) (n)  4(n) (n) 1(n) 1(n) 1(n)
1 AR A AR AR AR AR A2y (AR (A,
2 A{ll) +A%§) ( )142721 - A{?ﬁ) +A%71l) =32 (4%711))-% (4{23% (4{;))—% Thus K +iP is
ne€l \Ay +Ajy Asy +Ajy Ay + Ay n€Z \(Az1 )+ (Azg')+ (A337)+
. (Ai"i -+ z@gf; N (A“”)j ;<2az>>+ @;’six - i<A§§§>+
B} (A1) + 2(42711 )+ i(Agy )A (4%2 v (35)
' (Azy Ass

such that trace of this matrix is zero. Hence the non-compact real form is K + iP @ Ric @ Rid € sl(jl) (3,R). The
Vogan diagram is
Here K = so(_lf (3). Thus the corresponding symmetric spaces are

SLM3,R)/s0M (3), SUM(3)/50N (3). (36)
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ao

Thus we have completed the explicit (algebraically) calculation of affine Kac-Moody symmetric spaces associated
with Agl) and Aél) and relating them with the Vogan diagrams which classify their real forms also. The next tables
contain the real forms, Vogan diagrams, fixed algebras associated with the automorphism, related compact and non-
compact affine kac-Moody symmetric spaces. In order to have a clear idea about the computation of fixed algebras
and affine Kac-Moody symmetric spaces we have provided an appendix which contains all the necessary ingredients
to understand the method of our calculations.



TABLE I: Affine Kac-Moody symmetric spaces associated with A;Qi1

Dynkin Diagram

Real Forms

Vogan Diagram

Fixed Algebra

Compact affine Kac-
Moody  Symmetric
spaces

Non-compact
Kac-Moody
metric spaces

affine
Sym-

su® (2n) 5u<1)(2n)

@ SUD (p+q) SU(jl) (p,a)
su_y(p,q), su(2n) ST “SU@En)
Pt+g=2n

(1) SUD (ptq) suM (p,qg)
sty (p,9), su(p) & su(q) ST@BSU(Q) SUG®ESU(@
ptqg=2n

1) (1) sUM (2n) SLY (n,H)
sls (’I'L, H) sp (2n) SP)(2n) SP1)(2n)

Don. R @) (9 su (2n) sL) (2n,R)
sl (2n, R), sut(2n) SU®@ (2n) SU® (2n)
n>3

(n M SUD (2n) st enm)
2[1> (42”’ R), 50t (2n) SO (2n) 55<1)(2n)

1) 1) sUM (2n) SL) (n,m)
sl (n, H) sut(n) ST () SUM ()

(1) (2) su® (2n) 5L (n,H)
Sl (n, H) 50 (277,) S0 (2n) S0 (2n)

el



TABLE II: Affine Kac-Moody symmetric spaces associated with ASB

Dynkin Diagram

Real Forms

Vogan Diagram

Fixed Algebra

Compact  affine
Kac-Moody Sym-
metric spaces

Non-compact
affine Kac-Moody
Symmetric spaces

Q2n

suV(2n +1) su™(2n + 1)

1 SUM (pt su) (pg)
su)(p,q), su(2n+1) SU(21(1P+1(§) aeTEsY
p+qg=2n+1

(1) SUD (p+q) suiV (p,q)
sui” (p,q), su(p) ®su(a) | sogresu SUPBSU@)
p+qg=2n+1

) ) sUM (2n41) sL™ (2n+1,R)
s (2n + 1, R) su?@n+1) | Gmens ST

(1) (1) SU(I)(27L+1) SL(l)(2n+1,R)
507 (2n+, R), 50" (2n) “50M (2n) 7530(1)(%)

n>3

it



TABLE III: Affine Kac-Moody symmetric spaces associated with BY

Dynkin Diagram

Real Forms

Vogan Diagram

Fixed Algebra

Compact affine
Kac-Moody Sym-
metric spaces

Non-compact

affine Kac-Moody

Symmetric spaces

a@Q

Qg g ¥pUn—1

Qp

al

ag
50<1)(2n +1) N ag 3 Oaf' ........ 6%0&" 50(1)(271 +1)
g
W9 9m 1 as a3 _ap  ap_1 o 1 1 S0 (2n41) so™) (2,2n—1)
s0)(2,2n — 1) ny OO OFen o=—=0,, so(2n+1) 500t —So@EnT
[ )
ag
1 C\ asg asg Qp Xn—1 soM (2n+1) 50M (4,2n-3)
50( )(47 omn — 3) a(g/.—o ........... [N ()ﬁoan 50(4) () 50(271 - 3) 30(4)6330’22”*3) 30(4)6930(’;”*3)
ag
1 ag as ap Qn—1 1 soM (2n+1) s0M (6,2n—5)
50( )(67 M — 5) o @ s [@REnEN O:Oan 511( )(4) ) 50(2TL - 5) SU(])(4)@SO(2TL75) SU(])(4)@SO(2TL75)
ag
€h) o2 O3 Pt €] 50 (2n+1) SOW) (2p,2g+1)
50+ (2p,2¢ +1) o ¢ o 990 (2P) ©5020+ 1)\ 550 o ms0arD) | S0 @R @s0@eD
pTg=n
ag
1) asz asz ap An—1 (1) soM (2n+1) sO0M (2n,1)
50 (271, 1) o PO O ........... Oﬁ. an S0 (2n) W m
® o
1 ag ag ap Qp—1 SO (2n41 SO(1>(2,2n71)
Soi )(27 2n — 1) o o O O Lo - s0(2n — 1) 750(2(7#1)) 7510(%71)
[ )
ag
(1.2 2 A O O ) (9 soW@nin) s0W(1.2n)
50" (1,2n) oy (590 (21) S0®) (2n) SO0@ (2n)
ag
1 az as ap  An—t soM (2n+1) s0M (3,2n—2)
50( )(57 2n — 4) @.—O ........... [ORInn. Oﬁoan 5u(3) () 50(271 - 3) SU3)®S0(2n—3) SU(3)BS0(2n—3)
g
€)) o2 BRI S Gt 2 50 (2n+1) SOW) (2p+1,29)
i 2 o O==0, |507(2p) ©50(20+1)| s5m apiss06aD | 0@ Gpes0Re D
pTg=n
aQ
asz asz ap An—1 soM (2n+1 soM (2n—3,4
s0(M) (2n — 3,4) Q. o . o O—e,,, 50(2)(271) W(Q’IL)) SO((27)(27L))

a1



TABLE IV: Affine Kac-Moody symmetric spaces associated with ol

2n—1

Dynkin Diagram

Real Forms

Vogan Diagram

Fixed Algebra

Compact  affine
Kac-Moody Sym-
metric spaces

Non-compact
affine Kac-Moody
Symmetric spaces

X2n—2

a2n—1

sp® (20 — 1) sp(2n — 1)
sp™ (p, ) sp™ (p) @ sp(q) SPW (p+q) sPM (p,q)
pp+ P PP O sple SPUmesP@ | SPUmesPa)

1 sPMW (2n_1 sPU] (2n—1R)
5p<,i(2n -1LR) sp(2n —1) SP(2(n71) : SI;(anl)

1 sPM(2n—1 SP(l)(2n—1,]R)
5p§ )(2” -LR) su(2n —1) SU(2(n71) : ST(en=T)

1 2 spM) (2n—1) sPM (2n—1,R)
spt(2n — 1, R) sul®(2n — 1) STD 2noD) ST ano1)

91



TABLE V: Affine Kac-Moody symmetric spaces associated with Cé?

Dynkin Diagram

Real Forms

Vogan Diagram

Fixed Algebra

Compact  affine
Kac-Moody Sym-
metric spaces

Non-compact
affine Kac-
Moody Sym-
metric spaces

QX2n—1

Oégo ..... Qzloﬂo(()@o

Xn4+1 O2n

sp™) (2n) sp (2n)

;p-(:)q(i(gn p>1 5p<1) (p) @ sp(q) spsgi((lzj)(éng)(q) spilj((;;géq;(q)
sp'} (20, R) sp(2n) S o
op!) (20, R) su(2n) s S )
op1) (n, H) 5 (n) e e
sp(2n,R) n >3 su®(2n) % %)(f;})‘”

LT



TABLE VI: Affine Kac-Moody symmetric spaces associated with DY

for even n and n > 4

Real Forms

Vogan Diagram

Fixed Algebra

Compact affine Kac-

Non-compact affine

sp@ (2n — 2)

Moody Symmetric | Kac-Moody Symmet-
spaces ric spaces
50 (2n) soM) (2n)
(1) soW (2p+2¢q) so0M (2p,2q)
500(20) @) 5omamesos 500 (2) 350 (29)
50(29)
(1 so® (2n so*M
s0* (M (2n) su(n) W’EL)) Tn()")
[ ) (XTIV.
o ‘1
gy n—1 1)
(1) ag asg n—2 SO(I)(Qn) SO (2,2n—-2)
5071(27 2n_2) vy OO O .................. 50(277, — 2) m m
[ J Qn
(1) (1) n_
50&)(17271—1) 50 (2n) 508 (1,2n—1)

SP(2)(2n—2)

SP(2)(2n—2)

so(2n — 1)

(2) s0W (2n) sofY) (2p,2q+1)
50°7(2p) O se®apnasoED 50 (2p)&S0(2¢+1)
s50(2g+ 1)
(1) (o, M) 1 0p_
50&{1)(17271_1) so 2n) S05’(1,2n—-1)

SO (2n—1)

SO0 (2n—1)

(1) 50M) (2n) 5ol (2p+1,2¢+1
s (2p+1)® SOM) (2p4+1)®S0(29+1) | SOM) (2p+1)PSO(29+1)
s0(2¢ + 1)
() 2 s0M (2n so§V(1,2n—-1)
505/ (1,2n—1) sul )(n) 75[](2)((71)) SU® (n)
1 n (1)(2n) 50 (nt+1,n—1)
505 (n+1,n— 50D soteen HGeR

3T



TABLE VII: Affine Kac-Moody symmetric spaces associated with DY

for n odd and n > 4

Real Forms

Vogan Diagram

Fixed Algebra

Compact affine Kac-

Non-compact affine

Moody Symmetric | Kac-Moody Symmet-
spaces ric spaces
aq
«@ Q Gn—1
s0(D(2n) Z>Qz .............. O O s0(D(2n)
ag
wQ( (42mma) so®nt1m—1) s0(2p) @) S0Vt 50M (2p,29)
s0(1)(2,2n—2 5o (n—1,n+1) e0(20) D 50M (2p)®S0(2q) SO0M (2p)®S0(29)
ay
Xn—1
#(1) (2 ) g . ( ) SO(I)(2n) SO*(I)(TL)
50 n .................. ) ——————— G LELEEEEEEREERPRRRR Su n T(,’L) T(n/)
@0
& .Qn
(1) so® (2n) 5091)(2,%72)
50*1(2’ 2n_2) 50(277, - 2) SO(2n—2) SO(2n—2)
so® (2n) SO§,1U>(1,2n—1)

s0)(1,2n—1)

sp@(2n — 2)

SP(2)(2n—2)

SP(2)(2n—2)

s0iV(1,2n—1)

2) so® (2n) soM (2p,2q+1)
s0°(2p) @ 55 epesoET) |50 @n®s0EaTD
s0(2¢ + 1)

s0M (2n) so{M(1,2n-1)

so)(2n — 1)

SO (2n—1)

SO0 (2n—1)

1 s50M (2n) 50M (2p+1,2¢4+1)
50 (2p+1)® SOM (2p+1)®SO(2g+1) | SOD) (2p+1)BSO(2g+1)
s50(2g+ 1)
(1) _ D (1 op_
50((715)(17 2n—1) 502 (n -~ 1) SOs/(1,2n—1) 505/ (1,2n—1)

SO®@) (n—1)

SO() (n—1)

6T
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IV. APPENDIX
A. Classical Irreducible Reduced Root systems

In this subsection we have given the irreducible reduced root system of complex semi simple Lie algebras A,, for
n>1 B, forn > 2, C, forn > 3 and D,, for n > 4. In case of A, the under lying vector space V = {v €
R |< vye; + -+ + eyp1 >= 0} and for rest algebras V = R™.A denotes the root system which is a subspace of
some RF = Zle a;e;. Here {e;} is the standard orthonormal basis and a;’s are real. AT is the positive root system
and II is simple root system.

TABLE VIII:

g A AT II Largest Root
An,=sln+1,C) |{e;—ej|i#j} {e: —ej|i<j} {e1 —e2, - ,en —€ny1} €1 — ent1
B, =s502n+ 1,C)[{£e;te;j i <jtU[{eixe; [i < jtU[{e1 —e2, - ,en—1—e€n,en}|e1 +e2

{£ei} {ei}
Crn = sp(n,C) {teite;|i<jlU|{eite; |t <jtU[{e1—e2, - ,en—1—e€n,2en}|2e1

{£2e;} {2e:}
D,, =s0(2n,C) {teitej|i<j} |{eite;j|i<y} {e1 — ez, ,en-1 —|erte2

€n,En-1 +6n}

B. Diagram Automorphism

The diagram automorphism for affine Lie algebra are as follows. For AS), the automorphism group of the Dynkin
diagram is the dihedral group D,, 11 which is generated by reflection s : i — n + 1 — i(mod n 4 1) and the rotation

r : 4+ i+ 1(mod n + 1) which is of order r + 1. For Dgl), the automorphism group is generated by the vector
automorphism o, the spinor automorphism o, and the conjugation 7. o, acts as 0 «— 1, r<—r —1and i — 3
else, and hence is of order 2. The map ~ acts as r <— r — 1 and ¢ — ¢ else. If r is even, o5 acts as ¢ —> 7 — 1@
is of order 2 while for odd r the prescription ¢ — r — 4 only holds for 2 < ¢ < r — 2 and is supplemented by
0——r+——1+—7—1+— 0. For the untwisted algebra g = Bﬁl), C’T(l) and for twisted algebra g = B§2), CT(2), there
is only a single non-trivial automorphism ~ which is a reflection [11].

C. Classical Non-compact real affine Kac-Moody Lie Algebras

Let gr be a real affine Kac-Moody Lie algebra and ty be the fixed subalgebra of a Cartan involution on gr. ¢, is
the center of ty, then simple roots of t, are obtained as follows. When the automorphism in the Vogan diagram is non
trivial, we know that t, is semisimple. The simple roots for t, then include the compact imaginary simple roots and
the average of the members of each 2-element orbit of simple roots. If the Vogan diagram has no painted imaginary
root, there is no other simple root for t,. Otherwise there is one other simple root for t,, obtained by taking a minimal
complex root containing the painted imaginary root in its expansion and averaging it over its 2-element orbit under
the automorphism. When the automorphism is trivial, either dim ¢, = 1, in this case the simple roots for t, are the
compact simple roots for g,, or else dim ¢, = 0, in this case the simple roots for t, are the compact imaginary simple
roots for g, and one other compact imaginary root. In latter case this other compact imaginary root is the unique
smallest root containing the non-compact simple root twice in its expansion. We have discussed below in detail, for
each real algebra separately.

o 5[V (n,H),n even > 2

Vogan diagram:
A, _1, non trivial automorphism,
no imaginary simple roots

to= 533(1)(”)

Simple roots for t,:
€2n — €1, €n — €pq1 and
all %(61 — €41 + eon_i — 62n+17i) for 1 S 7 S (n — 1)



o 5[(_1;(2n,R),n >3

Vogan diagram:

A, _1, non trivial automorphism,

unique imaginary simple root es, — €1
to = su®(2n)
Simple roots for t,:

%(en,1 + én — €nt1 — €py2) and
all %(61 —€it1 t+ €eap—i — e2n+1—i) for 1 <i< (n - 1)

e sl 2n+1,R),n >3

Vogan diagram:
A, _1, non trivial automorphism,
no imaginary simple roots

to = su®(2n + 1)

Simple roots for t,:
€ant1 — €1, 3(en — €nto) and
all %(61 — €41 + €o2n41—i — 62n+27i) for 1 S 7 S (n — 1)

o sl{V(2n,R),n >4
Vogan diagram:
A, _1, non trivial automorphism,
two imaginary simple roots ey, —e1,€e, — ept1
to = 500 (2n)
Simple roots for t,:
2(en—1+€n — €nt1 — €nt2), 5(e2n—1 + €2, — €1 — €2) and
all %(61 — €41 + €on41—i — 62n+27i) for 1 S 7 S (n — 1)

o 5[&1)(211 +1,R),n>4

Vogan diagram:

A, _1, non trivial automorphism,

one imaginary simple roots eg,4+1 — €
to = 501 (2n)
Simple roots for t,:

L(en — ent2), 2 (e2n + 2041 — €1 — €2) and
all 1(e; — €jt1 + €2nt1-i — €2n42—;) for 1 <i < (n—1)

o s (20, H),n > 4

Vogan diagram:

A, _1, non trivial automorphism,

no imaginary simple roots
to = su(l)(n)
Simple roots for t,:

%(en — ent1 + €2, — €1) and
all %(61 — €41 + Cn+i — €n+1,1‘) for 1 S 7 S (n — 1)

o sl (n,H),n >4

Vogan diagram:

A, _1, non trivial automorphism,

no imaginary simple roots
to = 502 (2n)
Simple roots for t,:

%(egn —e3), %(en — ent2) and
all %(eiJrl — €42 + eon_i — 62n+17i) for 1 S 7 S (n — 2)

e su)(p,q),p+q=2n

Vogan diagram:
Aoy 1, trivial automorphism,
unique imaginary simple root es, — €1

21



to = su(2n)
Simple roots for t,:
compact simple roots only

sul(p,q),p+q¢=2n

Vogan diagram:

Aoy 1, trivial automorphism,

two imaginary simple roots ez, — €1, €p — €pt1
to = su(p) ® su(q)
Simple roots for t,:

compact simple roots only

s01)(2,2n — 1)
Vogan diagram:
B,,, trivial automorphism,
one imaginary simple root e; — es
to = s0(2n + 3)
Simple roots for t,:
compact simple roots only

s0)(2p,2¢+1), p+q=n
Vogan diagram:

B,,, trivial automorphism,

one imaginary simple root e, — ep4+1
s0(4) & s0(2n — 3), ifp=2
suD(4) dso(2n —5), ifp=3
s01(2n) ifg=0
s0(1(2p) @ s0(2q), if else
Simple roots for t,:

compact simple roots and

ep—1+e, whenp >3
no other whenp =2

to =

s0()(1,2n)
Vogan diagram:
B,,, non-trivial automorphism,
no imaginary simple roots are painted
to = 502 (2n)
Simple roots for t,:
compact simple roots only and —es

s0i(2,2n — 1)
Vogan diagram:
B,,, trivial automorphism,

two imaginary simple roots are painted e; — e, —e; — €2

to=s0(2n+1)
Simple roots for t,:
compact simple roots only

50 (2p+1,29), p+q=n
Vogan diagram:
B,,, non-trivial automorphism,
one imaginary simple root e, — e,4+1
su(3) @ so(2n — 3), ifp=2
to = ¢ 502 (2n), ifg=2
50 (2p) @ s0(2¢ + 1), if else
Simple roots for t,:
compact simple roots and —es, e,
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e spM(p,g), prg=2norp+q=2n—1
Vogan diagram:
C,,, trivial automorphism,

pth simple root painted e, — ep41,
_ {511(1)(2) ©splg) ifp=1,Y

* s (p) ©sple) ifp>1,Yq
Simple roots for t,: compact simple roots and 2e,

5p (_1; (n,R)
Vogan diagram:

C,, trivial automorphism,
nth

simple root painted 2e,,
to = 5p(n)
Simple roots for t,: compact simple roots only

spi(n, R)
Vogan diagram:

C,,, trivial automorphism,
nth

and affine simple roots are painted 2e,, —2e;
to = su(n)
Simple roots for t,: compact simple roots only

e spD(2n — 1,R)

Vogan diagram:
C.,, non-trivial automorphism,
no imaginary simple root

to = 5u(2)(2n)

Simple roots for t,:
(ean—1 —e1) and
all %(61 —€i+1 + €eap—1—i — ezn_i) for1<i< (n — 1)

° 5p(1)(n, H)

Vogan diagram:
C.,, non-trivial automorphism,
no imaginary simple root

to = 5u(2)(2n)

Simple roots for t,:
(en — €ent1), (e2n —e1) and
all %(61 — €41 + eon_i — 62n+17i) for 1 S 7 S (n — 1)

e sp((2n, R)

Vogan diagram:
C,,, non-trivial automorphism,
unique imaginary simple root e, — e,4+1 painted

to = su®(2n)

Simple roots for t,:
%(en,1 +én — €nt1 — €py2) and
all %(61 — €41+ €eap—i — e2n+1—i) for 1 <i< (n - 1)

o s0(2p,29), p+q=n
Vogan diagram:
Dy, trivial automorphism,

pth simple root painted e, — ep41,

_suW @) @ so(2n—6), ifp=3
50 (2p) @ s0(2q), ifp>3
Simple roots for t,:

0
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compact simple roots and

ep—1+e, whenp > 2
no other whenp=1

e s0*(V(2n)
Vogan diagram:
D, trivial automorphism,
two imaginary simple roots (e; — e3), (e,—1 — €5,) painted
to = su(n)
Simple roots for t,: compact simple roots only

50 (2,2n — 2)
Vogan diagram:
D,,, trivial automorphism,
two imaginary simple roots (e; — e2), —(e; — e3) painted

to = su(2n — 2)
Simple roots for t,: compact simple roots only

so8 (1,2n — 1)
Vogan diagram:
D,,, nont-rivial automorphism,
no imaginary simple root painted
to = 502 (2n — 2)
Simple roots for t,: —es, e,—1 and all (e; — e;41) for 2 <i < (n—2)
o 505 (2p+1,2¢+1), ptg=n—1
Vogan diagram:

D,,, non-trivial automorphism,
pth

simple root painted e, — ep41,

~Jsu(3) ®so(2n —5), if p=2

] s50@(2p) ®s0M(2¢ + 1), ifp>3

Simple roots for t,:
—e2, ep—1, €p and
ei—eiprfor2<i<p—landp+1<i<n-—2

to

o 50V (1,2n— 1)
Vogan diagram:
D,,, non-trivial automorphism,
no imaginary simple root painted
to =50 (2n — 1)
Simple roots for t,:
(e1 —e2),—(e1 + e2), en—1 and
all (e; — e;j41) for 2 <i < (n —2)
° 50(71)(2p+1,2q+ 1), p+qg=n-1
Vogan diagram:
D,,, non-trivial automorphism,
pth simple root painted e, — epy1,
502 (2n), ifp=1
to = ¢ spM)(2) @ s0(2¢ + 1), if p=2
so)(2p+1) Dso(2g+1), ifp>3
Simple roots for t,:
Forp=1 e, —(e1+e2),en_1,
all (e; —ejp1) forp+1<i<(n—2)
Forp#1 (e1 —e2),—(e1 + e2), en—1, €p and
all (e; —ejp1) for2<i<(p—1)and p+1<i<(n-—2)
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. 50((715)(1, 2n —1),n even

Vogan diagram:

D,,, non-trivial automorphism,

no imaginary simple root painted
to = su®(n)
Simple roots for t,:

%(61 —esten_1—ep), %(—61 —ea+en_1+en), (e% — e%+1) and
all %(ei —eit1+eni—eny1—;) for2<i<(n—2)

) 50((713)(1, 2n —1),n even
Vogan diagram:
D,,, non-trivial automorphism,
unique imaginary simple root (eg — e%_H) painted
to = 500 (n)
Simple roots for t,:
s(e1—ex+en_1—e€n), 3(—€1 — €2+ en_1+en),
21 + en —enil — e%+2) and
all %(ei —eit1+eni—eny1—;) for 2<i<(n—2)

. 50((715)(1, 2n — 1), nodd
Vogan diagram:
D,,, non-trivial automorphism,
no imaginary simple root painted
to = 500 (n)
Simple roots for t,:
%(el —ex+en_1—e€n), %(—el —ey+e,_1+ey,), and
all %(ei —eit1+eni—eny1—q) for2<i<(n—2)

D. Notations used

e gl(n,C), (gl(n,R)): {all n x n complex (real matrices)}

e sl(n,C), (sl(n,R)): {all n x n complex (real matrices) of trace zero}
o si{V(n,R): sl(n,R) ® C[t,t~!] & Ric & Rid with u = 1

o si(n,R): sl(n,R) ® C[t,t"] & Ric & Rid with u = —1

e so(n): {X egln,R)| X +X* =0}

. sogl)(n): so(n) @ C[t,t™!] ® Ric & Rid with u = 1

. 509% n): so(n) ® C[t,t~1] @ Ric & Rid with u = —1

{Xegln,H) | X + X* =0}

{Xegln,C)| X+ X*=0and TrX =0}

D(n): {X € su(n) @ C[t,t | @ Ric®Rid | X + X* =0 and TrX = 0}

(
n):
) :

sp(
e su(n
sul

1
o su(n): Z Z t® su(n)](f) @ Ric & Rid where su(n)gf) and su(n)?) are the eigenspaces corresponding
p=0j mod 2=p
to eigenvalues 1 and e™ respectively. That is a € su(n)éz) if a € su(n) and ¥, (a) = €™ where¥, is the is the
outer automorphism of su(n).

w(p,q) ARA! | Z1, Z3 skew Hermitian of order p and ¢
P 77; Zs respectively, Zo is arbitrary
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7y Zo 7, skew Hermitian of order p
e su(p,q): { <—t > | Z3 skew Hermitian of order ¢ }
TrZ, +1TrZs =0, Zy is arbitrary

X:i=7Z;® (C[t,t_l]

) X1 Xo X skew Hermitian of order p
9 <_ ) | X3 skew Hermitian of order ¢
TrX;+ TrXs =0 Xy is arbitrary

Xi=2;® C[t,til]
X1 X X, skew Hermitian of order p
X, | X3 skew Hermitian of order ¢
TrX, +TrXs =0, X, is arbitrary

AR | Z1, 4o nXn comglex matrix
TrZ1+TrZ1 =0

s (’n (C) . gl Z | Z; m X n complex matrix
P Zy —Zy Zo, Zy are symmetric
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