
Intermediate Mode Scheduling in Computational Grid

Sanjaya Kumar Panda1, Pratik Agrawal2 and Durga Prasad Mohapatra3
1,3 Department of Computer Science and Engineering

1 Indian School of Mines Dhanbad, India, 2IBM Bangalore, India, 3 National Institute of Technology Rourkela, India
1 sanjayauce@gmail.com, 2 pratikag99@gmail.com, 3 durga@nitrkl.ac.in

Abstract—Mode of Scheduling plays the key role in Grid
Scheduling. It is of two types, immediate and batch mode.
Immediate mode takes one by one task in a sequence. But the
batch mode takes in a random sequence. So, task assignment is
mainly based on the mode selection. The task may be assigned to
the resource as soon as arrive or in a batch. In this paper, we
have introduced a new mode of heuristic called as intermediate
mode (or Multi-ζ batch mode). This mode considers the random
arrival of task in a multi-batch sequence. Alternatively, arrivals
of tasks are unknown in this mode. Here, we have taken a range
of task arrival for simplicity. This mode is introduced to be a part
of the real life aspects. The two existing batch mode heuristics:
Min-Min and Max-Min are experimented with intermediate
mode scheduling. We have taken two performance measures,
makespan and resource utilization to evaluate the performance.

Keywords—Immediate Mode; Batch Mode; Intermediate Mode;
Min-Min; Max-Min; Scheduling; Benchmark Data Set

I. INTRODUCTION
A grid is an emerged area to share resources, aggregate

resources or solve large scale complex problems [1]. It is
decentralized, heterogeneous and distributed in nature.
Resources are distributed geographically and it may be owned,
processed and organized by different domains [2] [3]. So, it
may join or leave at any point of time. So, Grid Referral
Service (GRS) keeps track of all information about resources
[2].

Jobs are submitted from different grid user to Grid
Resource Broker (GRB). A user may have a different set of
characteristics like types of jobs, modes of computation e.g.
preemptive or non-preemptive, minimization strategy e.g. cost,
time, or resource utilization [2]. While resource may have
characteristics like number of processors, mode of processing
e.g. immediate or batch mode, speed of processing, load
balancing factor e.g. overload factor or under load factor and
the cost of processing [2]. Jobs are divided into a number of
smaller units called tasks. Then, Tasks are processed by one or
more domains. Finally, the results are combined together to
form a single unit. But the user does not have any record that in
which resources the tasks are completed. This whole scenario
looks like a single system. So, it is referred as a Single System
Image (SSI). It hides the heterogeneous and distributed nature
of the entire system [4].

Task scheduling in heterogeneous environment and
mapping the best task-resource pair is a NP-Complete problem
[5-6]. It is not possible to get a polynomial time complexity

heuristic. So many heuristics are proposed in the last decades.
These heuristics are giving results based on different
constraints. It may be based on QoS parameter, bandwidth,
priority, threshold, fault tolerance or trust [7-12].

Mode of scheduling manages the computation sequence of
the tasks. However, GRB is responsible to map the tasks and
the resources. It asks to GRS about resource availability as well
as all information about a resource. It assigns a task to a
resource based on the availability. Also it schedules the task as
soon as arrive or in a batch. In this paper, we assume that the
tasks are independent of each other. So, tasks can be scheduled
to the any available resources at any point of time.

Mode of scheduling is of two types, immediate and batch
mode. Immediate mode serves the request as soon as arrive in
First Come First Serve (FCFS) basis. But the batch mode
serves the request after the arrival of a set of tasks in a random
sequence. Based on these modes, we have introduced
intermediate mode scheduling (or Multi-ζ batch mode). In this
mode, task arrivals are processed in a random sequence. In
other words, it supports online arrival of task. The GRB has no
idea about how many job computed per batch. We have applied
the existing batch mode heuristics e.g. Min - Min and Max -
Min scheduling into the proposed mode of scheduling.

The remainder of this paper is organized as follows. In
section II, we explain related works. In section III, we have a
brief introduction about various modes of scheduling.
Subsequently, we introduce the new mode of scheduling in
section IV. Experimental results are shown in section V.
Finally, we conclude this paper in section VI.

II. RELATED WORK
Many scheduling heuristics are proposed in last two

decades. The heuristics are fall into either immediate or batch
mode types. In this section, we will discuss some related works
which closely focused on our work.

Maheswaran et al. have presented two immediate mode and
one batch mode heuristics [5]. The immediate mode heuristics
are Switching Algorithm (SA) and K-Percent Best (KPB).
These heuristics are compared with the two well-known
existing heuristics Minimum Execution Time (MET) and
Minimum Completion Time (MCT). The batch mode heuristic
is called sufferage heuristic. It is compared with two existing
heuristics, Min - Min and Max - Min.

Ali et al. have focused on the characteristics of the matrices
[6]. Here, Coefficient-of-Variation-Based (CVB) method has
been proposed.

Braun et al. have compared the eleven static heuristics [13].
It is shown that Min - Min heuristic outperforms than other
heuristics like Opportunistic Load Balancing (OLB), MET,
MCT, Max - Min, duplex, Genetic Algorithm (GA), simulated
annealing, tabu and A*.

Xhafa et al. [14] have implemented and compared the five
immediate mode heuristic using the benchmark data set
proposed by Braun et al. [13]. Again, Xhafa et al. [15] have
implemented five batch mode heuristic. The relative cost and
Longest Job to Fastest Resource – Shortest Job to Fastest
Resource (LJFR-SJFR) has added in addition to Braun et al.
[13].

Chaturvedi et al. have presented a new heuristic which
consist of two stages [16]. First, MET is applied to the
instance. Second, the overloaded resource transfer tasks to the
under load resource. It manages the load imbalance problem.
Mostly, this heuristic outperforms in consistency type of
instances.

Abuelenin et al. have presented three batch mode
scheduling in the context of trust [17]. It shows that the trust
model has minimized the makespan as well as maximized the
resource utilization.

Panda et al. and Etminani et al. have proposed a new
selective heuristic based on Semi-Interquartile (SI) and
standard deviation respectively [18-20]. Both heuristic chooses
either Min-Min or Max-Min heuristic in iteration.

III. PRELIMINARIES
In this section, we have discussed the existing mode of

heuristic along with merits and demerits. Before that notations
and their definitions are presented.

A. Notations Used and Their Definitions
Notation Definition
α Number of tasks
β Number of resources
τ Range of number of tasks arrival
ζ Number of tasks arrival
TQ Task Queue
ETC Expected Time to Compute
RU Resource Utilization

B. Heuristics
In the grid, heuristics are categorized into two types:

immediate mode and batch mode.

1) Immediate Mode
In immediate mode, the tasks are computed one after

another. Alternatively, the task arrives first in TQ, will be
computed first. MET and MCT are the heuristics for
immediate mode scheduling. Normally, this mode takes ζ
value as one. Even if, ζ > 1, it computes one task at a time.
Performance of immediate mode may be enhanced when ζ >
1because it has more than one task. When ζ > 1, it selects the

first arrived task rather than the best task available in the
instance. It leads to increase the makespan. We present the
pseudo code of immediate mode as follows.

Immediate mode adds the tasks to the TQ in iteration.
Then, it removes one task from the head of the queue and
assigns the task to the resource based on the immediate mode
heuristic. It iterates until all the tasks are successfully mapped
(i.e. TQ is empty).

2) Batch Mode
In batch mode, all tasks are arriving at a time. One task is

selected from the batch of the tasks. Alternatively, the task
arrives first in TQ, may/may not be computed first. Min-Min
and Max-Min are the heuristics for batch mode scheduling.
This mode of heuristic takes ζ value as size of tasks in a batch.
If ζ = 1, batch mode heuristic acts like immediate mode
heuristic. In real life, batch of tasks may not be arrived at a
time. Note that, it always finds the best task from the batch of
tasks. We present the pseudo code of batch mode as follows.

Batch mode adds the tasks to the TQ after |ߙ| tasks are
successfully mapped. It removes one task from the queue and
assigns the task to the resource based on the batch mode
heuristic. It iterates until all the tasks are successfully mapped
(i.e. TQ is empty).

IV. INTERMEDIATE MODE
By considering the merits and demerits of immediate mode

and batch mode, we have proposed intermediate mode heuristic
in this paper.

1. begin
2. Add |ζ| to TQ
3. if |ζ| = NULL
4. TQ = NULL
5. else
6. Remove task T1 from TQ

 // T1 = Task in the head of the queue
7. Assign task T1 to resource Rj

 // Rj = Assign jth resource as per heuristic.
8. end if
9. end

1. begin
2. Add |ߙ| to TQ
3. if |ߙ| = NULL
4. TQ = NULL
5. else
6. for 1 to |ߙ|
7. Find task Ti from TQ
8. // Ti = ith task as per heuristic, 1 < i < |ߙ|
9. Assign task Ti to resource Rj
10. // Rj = Assign jth resource as per heuristic
11. Remove task Ti from TQ
12. end for
13. end if
14. end

A. Description
Intermediate mode heuristic is a variation of batch mode

heuristic. The value of ζ varies from 2 to α-1. If ζ = 1,
intermediate mode heuristic acts like immediate mode
heuristic. If ζ = α, it acts like batch mode heuristic. Equation 1
shows the selection of heuristic based on different value of ζ.
Note that, α is unknown in intermediate mode.

Intermediate Mode if 1<
Immediate Mode if ζ = 1

Heuristic ζ <
Batch Mode if ζ =





 



 (1)

B. Proposed Mode
In this mode, we have taken a random function to

determine the ζ value. In each iteration, ζ value is determined.
Based on ζ value, numbers of tasks are computed. The ζ values
of each instance are shown in Table I. For 512 × 16 instances,
the values of ζ are 58, 46, 62, 38, 40, 36, 36, 60, 51, 50 and 35.
It means 58 tasks are going to be executed in the first iteration,
46 tasks are going to be executed in second iteration and so on.
The range of intermediate mode scheduling is shown in
Equation 2.

2

 





 


 
  
  
  
  


 

 = 2 


 


   
   

   
 (2)

Let us consider α = 512 and β = 16. So, the range of
intermediate mode is shown in Equation 3.

512 512
1616
2

 
 
 
 

 
        
  

 = 2 51 Χ 51
1

22
16 6

    
    

 = 3 2 6 4  (3)

In this paper, we have taken τ value as 32 to 64 for
simplicity. In real life situation, it may vary.

TABLE I. TASK ARRIVALS PER INSTANCES.

Size of instances Value of ζ

512 × 16 58, 46, 62, 38, 40, 36, 36, 60, 51, 50, 35

1024 × 32
58, 46, 62, 38, 40, 36, 36, 60, 51, 50, 36,

60, 52, 43, 48, 45, 34, 39, 36, 38, 39, 45, 32

2048 × 64

58, 46, 62, 38, 40, 36, 36, 60, 51, 50, 36,
60, 52, 43, 48, 45, 34, 39, 36, 38, 39, 45, 33,
61, 63, 48, 48, 43, 61, 44, 35, 57, 44, 39, 45,

35, 36, 63, 63, 50, 33, 39, 43, 59, 14

We have taken 512 × 16 instances from Braun et al. [13].
So, we have assumed that α = 512 and β = 16. As we have
considered this data set, the upper limit is known to us. But in
real life (or intermediate mode), there is no such limit. We
present the pseudo code of intermediate mode as follows.

Intermediate mode finds the |ζ| value from the range of tau.
It adds the tasks to the TQ after |ζ| tasks are successfully
mapped. It removes one task from the queue and assigns the
task to the resource based on the heuristic. It iterates until all
the tasks are successfully mapped (i.e. TQ is empty). The value
of |ζ| varies from iteration to iteration. It is our main
contribution in this paper.

Let |ζ1| be the total number of tasks computed in the first
iteration, |ζ2| be the total number of tasks computed in the
second iteration and |ζn| be the total number of tasks computed
in nth iteration. Then the value of ߙ is the sum of the tasks
computed in all iterations. It is shown in Equation 4.

 | |
1

n
i

i



 (4)

V. EXPERIMENTAL RESULTS
In this section, we present the experimental results of the

intermediate mode scheduling. We have taken Braun et al. [13]
data set (or instances) to evaluate the proposed mode
scheduling.

A. Data Set
The instances of Braun et al. are categorized into 3 sub-

types. They are consistent, inconsistent and semi-consistent.
The general forms of these instances are u_t_jjrr where u
indicates the uniform distribution. The t indicates the type of
consistency, jj shows the task heterogeneity and rr shows the
resource heterogeneity. The value of jj and rr is either hi or lo.
Each type of consistency having following combinations, hihi,
hilo, lohi and lolo. So, we have 12 different types of ETC

1. begin

2. Calculate 2 
 


   

   
   

3. Choose ζ from the range of ߬
4. Add |ζ| to TQ
5. if |ζ| = NULL
6. TQ = NULL
7. else
8. for 1 to |ζ|
9. Find task Ti from TQ.

 // Ti = ith task as per heuristic, 1 < i < |ζ|
10. Assign task Ti to resource Rj

// Rj = Assign jth resource as per
heuristic.

11. Remove task Ti from TQ.
12. end for
13. end if
14. end

instances. Figure 1 shows the categorization Braun et al.
instances.

A matrix is said to be consistent if a resource βi takes less
time for task αi, in compare to the resource βj, then for all
tasks, resource βi takes least time than resource βj. In
inconsistent metrics, task αi may take least time in resource βi
while other tasks may take least time in other resources. It
means tasks are not taking least time in a particular resource.
Semi-consistent matrix holds a consistent subset matrix.

Figure 1. Categorization of Braun et al. instances.

B. Cases
We have considered three cases, 512 × 16, 1024 × 32 and

2048 × 64. In each case, row indicates the number of tasks and
column indicates the number of resources. Here, each case
consists of 12 different types of matrices.

C. Illustrations
Let us consider an example consists of 512 tasks and 16

resources. Assume that, u_c_hihi instance is taken. It means
uniform distribution with consistent matrix. It has high task
heterogeneity and high resource heterogeneity. Note that, total
numbers of tasks are unknown in intermediate scheduling. We
have assumed that the range of task arrival (τ) is 32 to 64
(both inclusive). So, we use a random function to determine
the task arrival (ζ). According to the random function, we get
58, 46, 62, 38, 40, 36, 60, 51, 50 and 35 respectively. If we run
the random function again, we may not get the above
sequence. So, it is taken in a time instant. First, 58 tasks are
computed in intermediate mode scheduling. This mode of
heuristic has no knowledge of the sequence given after 58.
Second, 46 tasks are computed and so on. Finally, we get the
makespan value as 1.0166 × 107.
 In each instance, we have considered the same random
function sequence. In this paper, we have applied intermediate
mode scheduling over two existing batch mode heuristics such
as Min-Min and Max-Min. We can apply intermediate mode
in immediate mode heuristics. But it gives the same result as
immediate mode because the tasks are computed one after
another.

D. Results
We have simulated the heuristics using MATLAB R2010b

version 7.11.0.584. Makespan and Resource Utilization (RU)
of min-min heuristic in intermediate mode are shown in Table
II and Table III respectively. Makespan and RU of max-min
heuristic in intermediate mode are shown in Table IV and
Table V respectively. Each heuristic is tested under 512 × 16

(Case 1), 1024 × 32 (Case 2) and 2048 × 64 (Case 3) data sets.
Graphical representation of makespan value (Min-min) is
shown in Figure 2. Graphical representation of makespan
value (Max-min) is shown in Figure 3.

TABLE II. MAKESPAN VALUES OF INTERMEDIATE MODE SCHEDULING

(MIN-MIN).
Instance Makespan

(Case 1)
Makespan
(Case 2)

Makespan
(Case 3)

u_c_hihi 1.0166 × 107 2.8030 × 107 2.5465 × 107
u_c_hilo 1.7060 × 105 2.8572 × 106 2.4457 × 106

u_c_lohi 3.2393 × 105 2.7269 × 103 2.5476 × 103
u_c_lolo 5.8218 × 103 2.8531 × 102 2.4985 × 102
u_i_hihi 3.9365 × 106 7.0648 × 106 3.5620 × 106
u_i_hilo 8.5327 × 104 6.6892 × 105 3.9054 × 105
u_i_lohi 1.3295 × 105 7.2203 × 102 3.6930 × 102
u_i_lolo 2.9201 × 103 6.9890 × 101 4.0690 × 101
u_s_hihi 5.5299 × 106 1.7980 × 107 1.5191 × 107
u_s_hilo 1.1047 × 105 1.6746 × 106 1.3569 × 106
u_s_lohi 1.7105 × 105 1.7268 × 103 1.4208 × 103
u_s_lolo 4.0299 × 103 1.7670 × 102 1.5070 × 102

TABLE III. RESOURCE UTILISATION VALUES OF INTERMEDIATE MODE
SCHEDULING (MIN-MIN).

Instance RU (Case 1) RU (Case 2) RU (Case 3)
u_c_hihi 0.9256 0.9105 0.9150
u_c_hilo 0.9541 0.9200 0.9274
u_c_lohi 0.9324 0.9007 0.9155
u_c_lolo 0.9384 0.9130 0.9334
u_i_hihi 0.9114 0.9041 0.8763
u_i_hilo 0.9645 0.8993 0.8659
u_i_lohi 0.9222 0.8878 0.9203
u_i_lolo 0.9617 0.8914 0.8260
u_s_hihi 0.9309 0.8910 0.8634
u_s_hilo 0.9453 0.9003 0.8907
u_s_lohi 0.8860 0.8641 0.8707
u_s_lolo 0.9438 0.8492 0.8588

TABLE IV. MAKESPAN VALUES OF INTERMEDIATE MODE SCHEDULING
(MAX-MIN).

Instance Makespan
(Case 1)

Makespan
(Case 2)

Makespan
(Case 3)

u_c_hihi 1.2800 × 107 3.5985 × 107 3.1587 × 107

u_c_hilo 2.0339 × 105 3.6091 × 106 3.0689 × 106

u_c_lohi 4.1913 × 105 3.5161 × 103 3.2692 × 103

u_c_lolo 6.8891 × 103 3.7003 × 102 3.0880 × 102

u_i_hihi 5.5328 × 106 8.8184 × 106 4.0519 × 106

u_i_hilo 1.1861 × 105 8.1415 × 105 4.3581 × 105

u_i_lohi 1.8903 × 105 8.5709 × 102 4.1651 × 102

u_i_lolo 3.9876 × 103 8.3320 × 101 4.4050 × 101

u_s_hihi 8.1120 × 106 2.1557 × 107 1.7156 × 107

u_s_hilo 1.4574 × 105 1.9977 × 106 1.5633 × 106

u_s_lohi 2.3635 × 105 2.0091 × 103 1.6200 × 103

u_s_lolo 5.3405 × 103 2.2031 × 102 1.7633 × 102

TABLE V. RESOURCE UTILISATION VALUES OF INTERMEDIATE MODE
SCHEDULING (MAX-MIN).

Instance RU (Case 1) RU (Case 2) RU (Case 3)
u_c_hihi 0.9962 0.9736 0.9619
u_c_hilo 0.9941 0.9763 0.9630
u_c_lohi 0.9905 0.9560 0.9696
u_c_lolo 0.9900 0.9820 0.9772
u_i_hihi 0.9747 0.9523 0.8540
u_i_hilo 0.9956 0.9193 0.8977
u_i_lohi 0.9682 0.9551 0.9062
u_i_lolo 0.9788 0.9429 0.8610
u_s_hihi 0.9397 0.9684 0.9265
u_s_hilo 0.9848 0.9591 0.9403
u_s_lohi 0.9863 0.9598 0.9393
u_s_lolo 0.9799 0.9349 0.9141

VI. CONCLUSION
In this paper, we have presented a new mode of scheduling,

called as intermediate mode scheduling. The main goal of this
scheduling is to handle the real life tasks. It acts like batch
mode in each iteration. But in each iteration, numbers of tasks
are different. The two batch mode heuristics, min-min and
max-min have been applied to the new mode of scheduling by
using Braun et al. [13] benchmark data sets. The performances
of these heuristics are shown in terms of makespan and
resource utilization.
 In future, we can extend it to fault-tolerant scheduling,
security and predictive based scheduling. As resources are
distributed geographically, it may be leave in the mean time
because of numerous types of fault. However, the scheduler
may predict the types of task arriving, QoS parameters and
many more. So that prediction based scheduling can also be
introduced. We must focus on the above aspects, to propose a
new dynamic and robust scheduling.

REFERENCES
[1] I. Foster, C. Kesselman and S. Tuecke, “The Anatomy of the Grid:

Enabling Scalable Virtual Organizations”, International Journal of High
Performance Computing Applications, Vol. 15, No. 3, pp. 200-222,
2001.

[2] M. Murshed and R. Buyya, “Using the GridSim Toolkit for Enabling
Grid Computing Education”, International Conference on
Communication Networks and Distributed Systems Modeling and
Simulation, 2002.

[3] A. Abraham, R. Buyya and B. Nath, “Natures Heuristics for Scheduling
Jobs on Computational Grids”, Eighth IEEE International Conference on
Advanced Computing and Communications, 2000.

[4] R. Buyya, T. Cortes and H. Jin, “Single System Image (SSI)”, The
International Journal of High Performance Computing Applications,
Vol. 15, No. 2, pp. 124-135, 2001.

[5] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen and R. F. Freund,
“Dynamic Mapping of a Class of Independent Tasks onto

Heterogeneous Computing Systems”, Journal of Parallel and Distributed
Computing, Vol. 59, No. 2, 107-131, 1999.

[6] S. Ali, H. J. Siegel, M. Maheswaran, D. Hensgen and S. Ali, “Task
Execution Time Modeling for Heterogeneous Computing Systems”,
Heterogeneous Computing Workshop, pp. 185-199, 2000.

[7] H. Xiaoshan, X. H. Sun and G. V. Laszewski, “QoS Guided Min-Min
Heuristic for Grid Task Scheduling”, Journal of Computer Science and
Technology, Vol. 18, No. 4, pp. 442-451, 2003.

[8] S. Abuelenin, “Trust Based Grid Batch Mode Scheduling Algorithms”,
The 8th International Conference on INFOrmatics and Systems, pp. 46-
54, 2012.

[9] S. K. Panda and P. M. Khilar, “A Two-Step QoS Priority for Scheduling
in Grid”, Second IEEE International Conference on Parallel, Distributed
and Grid Computing, pp. 502-507, 2012.

[10] S. K. Panda, “TBS: A Threshold Based Scheduling in Grid
Environment.”, Proceedings of 3rd IEEE International Advance
Computing Conference, pp. 22-26, 2013.

[11] S. K. Panda, P. M. Khilar and D. P. Mohapatra, “FTM2: Fault Tolerant
Batch Mode Heuristics in Computational Grid”, 10th International
Conference on Distributed Computing and Internet Technology,
Springer, Vol. 8337, pp. 98-104, 2014.

[12] S. K. Panda, P. M. Khilar and D. P. Mohapatra, “FTMXT: Fault
Tolerant Immediate Mode Heuristics in Computational Grid”,
International Conference on Informatics and Communication
Technologies for Societal Development, Springer, 2014.

[13] T. D. Braun, H. J. Siegel, N. Beck, L. L. Boloni, M. Maheswaran, A. I.
Reuther, J. P. Robertson, M. D. Theys and B. Yao, “A Comparison of
Eleven Static Heuristics for Mapping a Class of Independent Tasks onto
Heterogeneous Distributed Computing Systems”, Journal of Parallel and
Distributed Computing, Vol. 61, No. 6, pp. 810-837, 2001.

[14] F. Xhafa, J. Carretero, L. Barolli and A. Durresi, “Immediate Mode
Scheduling in Grid Systems”, International Journal Web and Grid
Services, Vol. 3, No. 2, pp. 219-236, 2007.

[15] F. Xhafa, L. Barolli and A. Durresi, “Batch Mode Scheduling in Grid
Systems”, International Journal Web and Grid Services, Vol. 3, No. 1,
pp. 19-37, 2007.

[16] A. K. Chaturvedi and R. Sahu, “New Heuristic for Scheduling of
Independent Tasks in Computational Grid”, International Journal of Grid
and Distributed Computing, Vol. 4, No. 3, pp. 25-36, 2011.

[17] S. Abuelenin, “Trust Based Grid Batch Mode Scheduling Algorithms”,
The 8th International Conference on INFOrmatics and Systems, pp. 46-
54, 2012.

[18] S. K. Panda, S. K. Bhoi and P. M. Khilar, “A Semi-Interquartile Min-
Min Max-Min (SIM2) Approach for Grid Task Scheduling”,
International Conference on Advances in Computing, Springer, Vol.
174, pp. 415-421, 2012.

[19] S. K. Panda, “Effcient Scheduling Heuristics for Independent Tasks in
Computational Grids”, National Institute of Technology, Rourkela, M.
Tech. Thesis, 2013.

[20] K. Etminani and M. Naghibzadeh, “A Min-Min Max-Min Selective
Algorithm for Grid Task Scheduling”, 3rd IEEE/IFIP International
Conference on Internet, 2007.

u_c_hihi u_c_hilo u_c_lohi u_c_lolo u_i_hihi u_i_hilo u_i_lohi u_i_lolo u_s_hihi u_s_hilo u_s_lohi
10

0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

I n s t a n c e s

M
 a

 k
 e

 s
 p

 a
 n

Case 1
Case 2
Case 3

Figure 2. Graphical representation of makespan value (Min-Min).

u_c_hihi u_c_hilo u_c_lohi u_c_lolo u_i_hihi u_i_hilo u_i_lohi u_i_lolo u_s_hihi u_s_hilo u_s_lohi
10

0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

I n s t a n c e s

M
 a

 k
 e

 s
p

a
n

Case 1
Case 2
Case 3

Figure 3. Graphical representation of makespan value (Max-Min).

