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Browder® has proved the variational inequality problem in reflexive real Banach
spaces. Isac!® has proved the same variational inequality problem in Hausdorff
topological vector spaces. The authors? have already obtained a generalization of
Browder’s resuit. In this paper a certain generalization of Isac’s result is presented.

1. INTRODUCTION

There have been significant development in the theory of optimization techniques
in the recent decades. The study of variational inequalities and complementarity
problems is also a part of this development because optimization problems can often
be reduced to the solution of variational inequalities and complementarity problems.
Also in recent years there have been several generalizations of these problems? ¥ &
9. 1112, 15. 17 In this paper our aim is to use the techniques of Hanson® and Ben-Israel
and Mond? for generalizing a certain variational inequality problem.

Browder has proved the variational inequality problem in reflexive real Banach
spaces*. Isac has proved the same variational inequality problem in Hausdorff
topological vector spaces!?. The authors have already obtained a generalization of
Browder’s result’. In this paper our aim is to obtain a generalization of Isac’s result
in the line of the generalization of Browder’s result. For obtaining the said
generalization, we use a function 6(—, —) introduced by Hanson’. The function
0(—, -) is quite general in nature and applicable to many cases of general interests.
For the introduction, existence and significance of the function 6(-, —) we refer to
the papers of Hanson® and Ben-Israel and Mond>.

Let X be a reflexive real Banach space and let X* be its dual endowed with
weak” topology. Let the value of fe X* at xe X be denoted by (. x). Let K be a
closed convex set in X, with O e K. For each r20 we write

D, = {xeK:lixlisr}



182 A, BEHERA AND G. K. PANDA

D)= {(xeK:lixli<r)
S, = {xe K:lixll=r).

The following result is proved by Browder* (see also Chipot®, Mosco'4).

Theorem 1.1 — Let T be a monotone and hemicontinuous map of a closed
convex set K in X, with 0 € K, into X", and if K is not bounded, let T be coercive
on K. Then there exists an xy € K such that

(Txg,y—xg)2 O . D

for all ve K.

The inequalities of the form (1) are called variational inequalities and applicable
to many cases of general interests.

The above theorem is generalized in the following way?,

Theorem 1.2 — Let K be a closed convex set in a reflexive real Banach space
X, with 0 e K, and X" be the dual of X. Let T : K—= X" and 6: Kx K = X be two
continuous maps such that

(i) (Ty,0(y,y)) = O for all ye K,
(1) for each fixed y € K, the function

(Ty,9(-, y)): K- R

is convex.
Then there exists x,€ K such that

(Txg, 0(y, X)) 2 0 e (2)

for all y € K, under each of the following conditions :

(@) For at least one r > 0, there exists u € D(,) such that
(Ty. 6(u, ¥)) < O

for all ve §..

(b) There exist a nonempty, compact and convex subset C of K and u e C such
that

(Ty, 8(u.y)) < 0

for every ye K- C.
Remark 1.3 . If 8(y,xp) =y - x,. then (2) reduces to (1).

In this paper, our aim is to show the existence of the solution x; belonging to
a convex compact subset of K (K not being necessarily closed), in the presence of
the condition (b) of Theorem 1.2, For doing this we consider a Haudorff topological
vector space X.

In fact strictly speaking we obtain a generalization of the following result proved
by Isac'® (Theorem 4.3.2., p. 116) which is parallel to Theorem 1.1, proved by Browder.
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Theorem 1.4 — Let K be a nonempty convex subset in a Hausdorff topological
vector space X and let X* be the dual of X. Let T : K— X* be a mapping such
that

(i) x> (Tx, y — x) is upper semicontinuous on K for every y € K,

(ii) there exist a nonempty, compact and convex subset L < K and u € L such
that

Ty, u-y)<0
for all ye X-L.
Then there exists xpe L such that
(Txo,y—x0)2 0 . (3)

for all ye K.

Furthermore, the following result proved by Isac'® (Proposition 6.2.2, p. 170) can
also be obtained as a particular case of our result.

Theorem 1.5 — Let K be a nonempty compact convex subset of a Hausdorff
topological vector space X and let X* be the dual of X. Let T:K— X" and
g: K — K be two continuous mappings such that

(Tx, x — g(x)) 20

for all x e X. Then there exists x, € K such that

(Txp, y —8(xp))2 0 (4

for all ye K.

2. MAIN RESULT

We prove the following resuit.

Theorem 2.1 — Let K be a nonempty convex subset in a Hausdorff topological
vector space X and let X* be the dual of X. Let T: K - X" and 8: KXK— X be
any two maps such that

(A) (Ty, 80y, y)) = 0 for all ye K,
(B) for each fixed y € K, the function
(T, 8(-y): K-> R

is convex,
(C) x = (Tx, 6(y, x)) is upper semicontinuous for each ye K,

(D) there exist a nonempty, compact and convex subset L of X and u e L such
that

(Ty, 8(u, y)) <0
for every ye K - L.
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Then there exists x,€ L such that

(Txo, 0(y, x0)) 20 v (85
for all ye K.
Remark 2.2 : If 6(y, xg)=y —x,, then (5) reduces to (3).

We need the following definition and result which are fundamental to prove
Theorem 2.1.

Definition 2.37 — A point-to-set map F : K — 2% is called a KKM-map if for
each finite .subset

{x1, %3, ..oy X} €K,

n

conv ({xy, Xy, ..., xp}) < . F(x;)
i=1

where conv(A) denotes the convex hull of A.

Theorem 2.4 — Let K be an arbitrary nonempty set in a Hausdorff topological
vector space X. Let the point-to-set map F: K — 2X be a KKM-map such that F(x)
is closed for all x € K a.d is compact for at least one x € K. Then

M Fx)#9¢.

xe K

3. PROOF OF THEOREM 2.1

Proof of Theorem 2.1 — For each y e K define a set valued map
E:K-»>2X

by the rule
E(y) = {xe L:(Tx, 06(y, x)) 2 0}.

By (A) we note that for each y € K, E(y) is nonempty (since y € E(y)). By hypothesis
(C) since x+— (Tx, B(y, x)) is upper semicontinuous E(y) is closed and consequently
E(y) is compact.

We claim that the family {E(y) : y € K} has the finite intersection property. Let
¥Yis Y25 - ¥y De arbitrary elements of K and denote

H = conv(L \U {31, y20 0 Ym})-

Obviously H is a compact convex subset of K. For every y e K define another set
valued map

F:K->2X
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by the rule
F(y) = {xe H:(Tx, 8(y, x)) 2 0}.

Again by (A) we note that for each y e K, F(y) is nonempty (since y € F(y)). By
hypothesis (C) since x> (Tx, 8(y, x)) is upper semicontinuous F(y) is closed and
consequently F(y) is compact.

We assert that F is a KKM-map. If F is not a KKM-map, then there exist

{x1, %9, s xp} < H

and
a,20, 1<i<n
with
n
Z a, = 1
i=1
such that
n n
D axe U Fx)
i=1 ji=1
ie.,
n
2 a;x; € Flx)
i=1
for any j = 1, 2, ..., n. Thus

n n
T z ax; i, 0 xj', 2 a; x; <0
i=1 i=1

for any j = 1, 2, .., n. By the convexity of-(Ty, 6(-, y)) (hypothesis (B)) we get

N,
-

n n
a;x; [, 0 2 a; x;, Z ax; |1<0
1 i=1 i=1

W

which is a contradiction to (A). So F is a KKM-map.
Hence by Theorem 2.4

M Fo)#¢.

ye H

Thus there exists
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Xoe M FO)

‘vye H
i.e., ;& F(y) for all ye H. Hence X, € H and

for all ye H. In fact X, € L. Suppose to the contrary that X, & L (ie, %€ H - L
c K- L). By hypothesis (D) there exists u € L such that

(Ty, 6(u, y)) <0
for all ye K- L; putting y = X, in the above inequality we obtain
(T%, O(u, Xp)) < O,

which is a contradiction to (6).
Thus X; € L and in particular Xy E(y) for i = 1, 2, .., m, ie.,

m

Xoe M Ey).

i=1

Hence the family {E(y) : y € K} has the finite intersection property, i.e., there exists
X, € K such that

(Tx07 9()’» -xO)) 2 0

for all y e K. Since x,€ E(y) for each ye K-and E(y)c L, we see that x; € L. This
completes the proof of Theorem 2.1.

Remark 3.1 : If the maps 7: K — X* and 6 : K x K — X are continuous then the
hypothesis (C) in Theorem 2.1 may be dropped and in that case we have the
following theorem.

Theorem 3.2 — Let K be a nonempty convex subset in a Hausdorff topological
vector space X and let X* be the dual of X. Let T: K —> X" and 8: KxK— X be
any two continuous maps such that

(o) (Ty,8(y,y)) = O for all ye K,
(B) for each fixed y € K, the function
Ty, 0(=y): K-> R

is convex,

(y) there exist a nonempty, compact and convex subset L K and u€ L such
that

(Ty, 8(u, y)) < 0

for every ye K - L.
Then there exists x,€ L such that
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(Txg, 00y, x0)) 20 )

for all ye K.

PROOF : The proof is exactly similar to the proof of Theorem 2.1 except the

arguments for proving the compactness of £(y) and F(y) as defined in the proof of
Theorem 2.1; by the continuity of the maps T: K-> X" and 8: Kx K — X it is easy
to check that E(y) and F(y) are closed and consequently compact and hence we omit
the proof.

Remark 3.3 : If O(y, xo) =y - g(xp), then (7) reduces to (4).
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