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Convex Programming

Convex Programming

min
x

f (x) subject to x ∈ K

where
K = {x ∈ R

n|gi (x) ≤ 0, i = 1, . . . ,m}

and f and gi both are convex and differentiable function.
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Convex Programming

Note

1 Every local minimum point is global minimum point.
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Convex Programming

Note

1 Every local minimum point is global minimum point.

2 Ben-Tal and Nemirovsky [1] show that convex optimization requires
only convex feasible set without precising its representation, i.e.,
convex inequalities.

3 Every local minimum is global minimum and derivation of this fact
uses only the geometry of the feasible set not its representation.
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Convex Programming

Note

1 Every local minimum point is global minimum point.

2 Ben-Tal and Nemirovsky [1] show that convex optimization requires
only convex feasible set without precising its representation, i.e.,
convex inequalities.

3 Every local minimum is global minimum and derivation of this fact
uses only the geometry of the feasible set not its representation.

4 With Slater’s condition, the KKT optimality condition is both
necessary and sufficient.
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KKT Optimality Condition & Slater’s Constraint Qualification

KKT Optimality Condition & Slater’s Constraint

Qualification

The point x̄ ∈ K is said to be KKT point of the problem (CP) if there
exists scalars λi ≥ 0, i = 1, . . . ,m such that

(i) 0 = ∇(f )(x̄) +
∑m

i=1 λi∇(gi )(x̄)

(ii) λigi (x̄) = 0, ∀i = 1, 2, . . . ,m.

Problem (CP) satisfies Slater’s constraint qualification condition, i.e.,
there exists x̂ ∈ R

n such that gi (x̂) < 0 for all i = 1, . . . ,m.
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From convexity to Non-convexity

From convexity to Non-convexity

Lasserre [4, 5] provides with Slater’s condition and a mild non-degeneracy
condition, KKT optimality condition is both necessary and sufficient for a
convex feasible set described by inequalities which are differentiable but
not necessarily convex.
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From convexity to Non-convexity

From convexity to Non-convexity

Lasserre [4, 5] provides with Slater’s condition and a mild non-degeneracy
condition, KKT optimality condition is both necessary and sufficient for a
convex feasible set described by inequalities which are differentiable but
not necessarily convex.
For every j = 1, . . . ,m

∇gj(x) 6= 0

whenever x ∈ K and gj (x) = 0.
For instance, the set

K := {x ∈ R2 : 1− x1x2 = 0; x ≥ 0}

is convex but the function x → 1− x1x2 is not convex on R
2
+.
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From convexity to Non-convexity

Differentiable to Lipschitz Continuous

Dutta and Lalitha [3] extend to the feasible set described by inequalities
which are locally Lipschitz and regular in the sense of Clarke [2].
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From convexity to Non-convexity

Differentiable to Lipschitz Continuous

Dutta and Lalitha [3] extend to the feasible set described by inequalities
which are locally Lipschitz and regular in the sense of Clarke [2].
By Dutta and Lalitha[3]For every j = 1, . . . ,m

0 /∈ ∂Cgj(x)

whenever x ∈ K and gj (x) = 0.
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From convexity to Non-convexity

Lipschitz Continuous to contineous

We extend to the feasible set described by inequalities which are
continuous only.
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From convexity to Non-convexity

Sharper Results

Example

function g1 : R
2 → R is defined as g1(x1, x2) = −|x1|+ x2 and function

g2 : R
2 → R is defined as g2(x1, x2) = x1. Clearly, K is convex but Clarke

generalized subdifferential of g1 at origin is {(ξ, 1)|ξ ∈ R)}.
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Regular and Fréchet upper subdifferential

Regular and Fréchet upper subdifferential

Regular Subdifferential

∂̂f (x̄) =
{

v |f (x) ≥ f (x̄) + 〈v , x − x̄〉+ o(‖x − x̄‖) for all x ∈ R
n
}

, (1)

Fréchet upper subdifferential

∂̂+f (x̄) =
{

v ∈ R
n|f (x) − f (x̄)− 〈v , x − x̄〉 ≤ o(‖ x − x̄ ‖)

}

.

∂̂+f (x̄) = −∂̂(−f )(x̄)
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Regular and Fréchet upper subdifferential

Framing Problems

max f (x), subject to x ∈ K ;

K =
{

x ∈ R
n : gi (x) ≥ 0, i = 1, . . . ,m

}

, (2)

where each gi : R
n → R is continuous function. Further, we assume

problem (CP) satisfies Slater’s constraint qualification condition, i.e., there
exists x̂ ∈ R

n such that gi (x̂) > 0 for all i = 1, . . . ,m.
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Regular and Fréchet upper subdifferential

KKT point

The point x̄ ∈ K is said to be KKT point of the problem (CP) if there
exists scalars λi ≥ 0, i = 1, . . . ,m such that

(i) 0 ∈ ∂̂+(−f )(x̄) +
∑m

i=1 λi ∂̂
+(−gi )(x̄)

(ii) λigi (x̄) = 0, ∀i = 1, 2, . . . ,m.

We say that the assumption (A) holds if

0 /∈ −∂̂+gi (x), whenever x ∈ K and gi (x) = 0.
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Main result

Theorem

Let us consider the problem (CP). Assume that the Slater constraint
qualification holds and the assumption (A) is satisfied. Then x̄ ∈ K is a
global minimizer of f over K if and only if it is a KKT point.
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Main result

Lemma

Let the set K be given as in the problem (CP). Assume that Slater
constraint qualification and the assumption (A) hold. Then K is convex if
and only if for every i = 1, 2 . . .m,

− ∂̂+gi (x̄) ⊂ NK (x̄) for all x̄ with gi (x̄) = 0. (3)
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Conclusion

1 We have extended Locally Lipschitz function to Continuous function.

2 Also We do not require any regularization condition

3 By using Fréchet upper subdifferential we get sharper results.

Suvendu Ranjan Pattanaik () KKT points and Non-convexity July 24, 2014 15 / 18



Conclusion

Extra condition

1 By Lasserre[4] For every j = 1, . . . ,m

∇gj(x) 6= 0

whenever x ∈ K and gj(x) = 0.

2 By Dutta and Lalitha[3]For every j = 1, . . . ,m

0 /∈ ∂Cgj (x)

whenever x ∈ K and gj(x) = 0.

0 /∈ −∂̂+gi (x), whenever x ∈ K and gi (x) = 0.
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Conclusion
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Conclusion

Thanks
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