KKT Points and Non-convexity

Suvendu Ranjan Pattanaik

July 24, 2014

Suvendu Ranjan Pattanaik ()

KKT points and Non-convexity

July 24, 2014 1 / 18

Outline

- Convex Programming
- 2 KKT Optimality Condition & Slater's Constraint Qualification
- From convexity to Non-convexity
- 4 Regular and Fréchet upper subdifferential
 - Main Result

Convex Programming

where $K = \{x \in \mathbb{R}^n | g_i(x) \le 0, \quad i = 1, ..., m\}$ and f and g_i both are convex and differentiable function.

Suvendu Ranjan Pattanaik ()

KKT points and Non-convexity

July 24, 2014 3 / 18

Note

• Every local minimum point is global minimum point.

KKT points and Non-convexity

July 24, 2014 4 / 18

Note

- Every local minimum point is global minimum point.
- Ben-Tal and Nemirovsky [1] show that convex optimization requires only convex feasible set without precising its representation, i.e., convex inequalities.
- Every local minimum is global minimum and derivation of this fact uses only the geometry of the feasible set not its representation.

Note

- Every local minimum point is global minimum point.
- Ben-Tal and Nemirovsky [1] show that convex optimization requires only convex feasible set without precising its representation, i.e., convex inequalities.
- Every local minimum is global minimum and derivation of this fact uses only the geometry of the feasible set not its representation.
- With Slater's condition, the KKT optimality condition is both necessary and sufficient.

KKT Optimality Condition & Slater's Constraint Qualification

The point $\bar{x} \in K$ is said to be KKT point of the problem (CP) if there exists scalars $\lambda_i \ge 0, i = 1, ..., m$ such that (i) $0 = \nabla(f)(\bar{x}) + \sum_{i=1}^m \lambda_i \nabla(g_i)(\bar{x})$ (ii) $\lambda_i g_i(\bar{x}) = 0, \quad \forall i = 1, 2, ..., m$.

Problem (CP) satisfies Slater's constraint qualification condition, i.e., there exists $\hat{x} \in \mathbb{R}^n$ such that $g_i(\hat{x}) < 0$ for all i = 1, ..., m.

Suvendu Ranjan Pattanaik ()

KKT points and Non-convexity

July 24, 2014 5 / 18

From convexity to Non-convexity

Lasserre [4, 5] provides with Slater's condition and a mild non-degeneracy condition, KKT optimality condition is both necessary and sufficient for a convex feasible set described by inequalities which are differentiable but not necessarily convex.

From convexity to Non-convexity

Lasserre [4, 5] provides with Slater's condition and a mild non-degeneracy condition, KKT optimality condition is both necessary and sufficient for a convex feasible set described by inequalities which are differentiable but not necessarily convex. For every j = 1, ..., m

 $\nabla g_j(x) \neq 0$

whenever $x \in K$ and $g_j(x) = 0$. For instance, the set

 $K := \{x \in R^2 : 1 - x_1 x_2 = 0; x \ge 0\}$

is convex but the function $x \to 1 - x_1 x_2$ is not convex on \mathbb{R}^2_+ .

Suvendu Ranjan Pattanaik ()

KKT points and Non-convexity

July 24, 2014 6 / 18

Differentiable to Lipschitz Continuous

Dutta and Lalitha [3] extend to the feasible set described by inequalities which are locally Lipschitz and <u>regular</u> in the sense of Clarke [2].

Differentiable to Lipschitz Continuous

Dutta and Lalitha [3] extend to the feasible set described by inequalities which are locally Lipschitz and regular in the sense of Clarke [2]. By Dutta and Lalitha[3]For every j = 1, ..., m

 $0 \notin \partial^C g_j(x)$

whenever $x \in K$ and $g_j(x) = 0$.

From convexity to Non-convexity

Lipschitz Continuous to contineous

We extend to the feasible set described by inequalities which are continuous only.

Suvendu Ranjan Pattanaik ()

KKT points and Non-convexity

July 24, 2014 8 / 18

Sharper Results

Example

function $g_1 : \mathbb{R}^2 \to \mathbb{R}$ is defined as $g_1(x_1, x_2) = -|x_1| + x_2$ and function $g_2 : \mathbb{R}^2 \to \mathbb{R}$ is defined as $g_2(x_1, x_2) = x_1$. Clearly, K is convex but Clarke generalized subdifferential of g_1 at origin is $\{(\xi, 1) | \xi \in \mathbb{R})\}$.

Regular and Fréchet upper subdifferential

Regular Subdifferential

 $\hat{\partial}f(\bar{x}) = \Big\{ v | f(x) \ge f(\bar{x}) + \langle v, x - \bar{x} \rangle + o(\|x - \bar{x}\|) \quad \text{for all} \quad x \in \mathbb{R}^n \Big\}, \ (1)$

Fréchet upper subdifferential

 $\hat{\partial}^+ f(\bar{x}) = \Big\{ v \in \mathbb{R}^n | f(x) - f(\bar{x}) - \langle v, x - \bar{x} \rangle \le o(\|x - \bar{x}\|) \Big\}.$

 $\hat{\partial}^+ f(\bar{x}) = -\hat{\partial}(-f)(\bar{x})$

Suvendu Ranjan Pattanaik ()

KKT points and Non-convexity

July 24, 2014 10 / 18

Framing Problems

 $\max f(x)$, subject to $x \in K$;

$$K = \left\{ x \in \mathbb{R}^n : g_i(x) \ge 0, \quad i = 1, \dots, m \right\},$$

where each $g_i : \mathbb{R}^n \to \mathbb{R}$ is continuous function. Further, we assume problem (CP) satisfies Slater's constraint qualification condition, i.e., there exists $\hat{x} \in \mathbb{R}^n$ such that $g_i(\hat{x}) > 0$ for all i = 1, ..., m.

Suvendu Ranjan Pattanaik ()

(2)

KKT point

The point $\bar{x} \in K$ is said to be KKT point of the problem (CP) if there exists scalars $\lambda_i \geq 0, i = 1, ..., m$ such that (i) $0 \in \hat{\partial}^+(-f)(\bar{x}) + \sum_{i=1}^m \lambda_i \hat{\partial}^+(-g_i)(\bar{x})$ (ii) $\lambda_i g_i(\bar{x}) = 0, \quad \forall i = 1, 2, ..., m.$

We say that the assumption (A) holds if

 $0 \notin -\hat{\partial}^+ g_i(x)$, whenever $x \in K$ and $g_i(x) = 0$.

Suvendu Ranjan Pattanaik ()

Theorem

Let us consider the problem (CP). Assume that the Slater constraint qualification holds and the assumption (A) is satisfied. Then $\bar{x} \in K$ is a global minimizer of f over K if and only if it is a KKT point.

Lemma

Let the set K be given as in the problem (CP). Assume that Slater constraint qualification and the assumption (A) hold. Then K is convex if and only if for every i = 1, 2 ... m,

 $-\hat{\partial}^+ g_i(\bar{x}) \subset N_K(\bar{x})$ for all \bar{x} with $g_i(\bar{x}) = 0.$ (3)

We have extended Locally Lipschitz function to Continuous function.
Also We do not require any regularization condition
By using Fréchet upper subdifferential we get sharper results.

Extra condition

• By Lasserre[4] For every $j = 1, \ldots, m$

 $\nabla g_j(x) \neq 0$

 $0 \notin \partial^C g_i(x)$

whenever $x \in K$ and $g_j(x) = 0$. 3 By Dutta and Lalitha[3]For every j = 1, ..., m

whenever $x \in K$ and $g_i(x) = 0$.

 $0 \notin -\hat{\partial}^+ g_i(x)$, whenever $x \in K$ and $g_i(x) = 0$.

Suvendu Ranjan Pattanaik ()

KKT points and Non-convexity

July 24, 2014 16 / 18

Bibliography

- Ben-Tal, A., Nemirovsky, A.: Lecture on Morden Convex Optimization: Analysis, Algorithims and Engineering Applications. SIAM, Philadelphia (2001).
- Clarke, F. H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983).
- Dutta, J.,Lalitha, C. S.: Optimality conditions in convex optimization revisited, Optim. Lett.,7, 221-229 (2013).
- Lasserre, J.B.: On representation of the feasible set in convex optimization, Optim. Lett. 4, 1-5 (2010).
- Lasserre, J. B.: On convex optimization without convex representation, Optim. Lett., 5, 549-556, (2011).
 - Mordukhovich, B. S.: variational Analysis and Generalized Differention I: Basic Theory, Springer, New York (2006).

Suvendu Ranjan Pattanaik ()

KKT points and Non-convexity

July 24, 2014 17 / 18

Thanks

Suvendu Ranjan Pattanaik ()

KKT points and Non-convexity

July 24, 2014 18 / 18