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1. INTRODUCTION

In the recent decades, there have been a great deal of development in the theory of
optimization techniques. The study of variational inequalities and complementarity
problems is also a part of this development because optimization problems can often
be reduced to the solution of variational inequalities and complementarity problems.

One of the important results of variational inequality theory is Minty’s Lemma,
which has interesting applications in the study of obstacles problems, confined
plasmas, filtration phenomena, free-boundary problems, plasticity and viscoplasticity
phenomena, elasticity problems and stochastic optimal control problems. In this paper,
following the traditional proof the Minty’'s lemma, we obtain a certain generalization
of Minty’s lemma. Furthermore we apply this result to obtain the solution of a certain
variational-like inequality.

2. PRELIMINARIES

Let X be a reflexive real Banach space and let X* be its dual endowed with weak®
topology. Let the value of fe X* at x € X be denoted by (f, x). Let K be a nonempty
closed convex set in X and T: K — X* an operator.

An operator T: K— X is said to be monotone! if
Tx-Ty,x-y)20
for all x,ye K.
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A map S:K— Y, where Y is a Banach space, is said to be hemicontinuous' at
x € X if any sequence {x,) converging to x along a line in K, the sequence {Sx,}
converges weakly to Sx in Y.

A map S:K—Y is said to be continuous on finite dimensional subspaces? if

for every finite dimensional subspace M of X the mapping S: KM\ M —> Y is weakly

continuous i.e., {x,} converges to x in K(\ M implies that {Sx,} converges weakly
to Sx in Y.
When Y=X", the convergence of {Sx,} in the definitions of hemicontinuity and

continuity on finite dimensional subspaces refer to convergence in the weak” topology
of X*.

A set valued map F:K — 2X is called a KKM-map® if for each finite subset
{xi, %2, ..., x,} <K

conv ({x;, xz, ..., %,}) c\J F(x)
i=1
where conv(A) denotes the convex hull of A.

Theorem 2.1 (Fan®) — Let K be an arbitrary nonempty set in a Hausdorff
topological vector space X. Let the set valued map F:K—2X be a KKM-map such
that F(x) is closed for all xe K and is compact Sor at least one x € K. Then

M Fx)#¢.

xe K

3. MINTY'S LEMMA

Minty’s lemma is stated as the following.

Theorem 3.1 (Chipof, p. 6; also see Browder’) — Let K be a nonempty closed
convex subset of a reflexive real Banach space X and let X* be the dual of X. Let
T:K— X" be a monotone operator which is continuous on finite dimensional
subspaces (or at least hemicontinuous). Then the following are equivalent :

@) xge K, (Txp, y~x5) 20 for all ye K.
) xo€ K, (Ty,y - x0) 20 for all ye K.

Our aim is 1o obtain a generalization of Theorem 3.1.

4. THE RESULT

We generalize Minty's lemma as follows :

Theorem 4.1 — Let X be a nonempty closed convex subset of a reflexive real

Banach space X and let X* be the dual of X. Let T:K— X" and 8: Kx K — X be
two maps such that
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i) (Ty, &y,y))=0 for all ye K,
(i) the map

x> (Tx, &y, x))

of K into IR is continuous on finite dimensional subspaces (or at least
hemicontinuous), for each ye K,

(iii) the map
y = (Tx, &y, x))
of K into IR is convex for each x € K,
(iv) (Tx, Ay, x)) +(Ty,Hx,y)) <0 for all x,ye K.
Then the following are equivalent :
(A) xg€ K, (Txg, &y, x5)) 20 for al' ye K.
(B) xg€ K, (Ty, &xp, ¥)) <0 for all ye K.
PROOF : Suppose that xoe K and
(Txo, &y, x0)) 20
for all ye K. By (iv)
(Ty, Kxp, ¥)) <~ (Txp, Ky, x0)) <0 for all ye K.
Conversely suppose that xge K and
(Ty, &x, y)) <0
for all ye K. For any arbitrary x e K, let
yi=tx+(1-0x,0<t< 1.
Since K is convex, y,€ K. Putting y=y, in (B) we get
Ty, &xo y)) < 0. e (1)
Also by (i) we have
Ty, &yny)) 20
and by the convexity of the map
y (Tx, &y, x))
we have
0=<(Ty, &y y1))
= (Typ Qtx + (1~ ) 0, y)) < KTy, &x, yy)
+ (1 -0 (Ty,, &xo, y1))-
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Thus
(Ty,, &x, y)
>~ =Ly, B0, 3)
20, by (1).

So

(Typ, &x,y,)) 2 0.
Since the map

x> (Tx, &y, x))
|

of K into IR is continuous on finite dimensional subspaces (or at least hemicon-
tinuous), taking limit as ¢ +— O in the above inequality, we get

(Txp, B(x, xp)) 2 0.

Since x € K is arbitrary, the required inequality follows. This completes the proof of
Theorem 4.1.

Note 4.2 : If we define the map 8: KX K — X by the rule
Ax,y)=x-y

then Theorem 3.1 follows as a direct consequence of Theorem 4.1.

5. AN APPLICATION

In this section we apply Theorem 4.1 to prove the existence of a solution of
variational-like inequality.

Theorem 5.1. — Let K be a nonempty closed, convex and bounded subset of a
reflexive real Banach space X and X* be the dual of X. Let T:K—> X' and
0:KxK— X be two maps such that

i) (Ty,8y,y))=0 for all ye K,
(1)) the map

x> (Tx, &y, x))

of K into R is continuous on finite dimensional subspaces (or at least
hemicontinuous), for each y € K,

(iii) the map
y= (Tx, &y, x)) of K into R is convex for each xe K,
iv) (Tx, &y, x))+(Ty,Hx,y)) <0 for all x,ye K.
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Then there exists xg€ K such that

(Txy, &y, %)) 20

for all ye K.
PROOF : Define a set valued map

E:K—2
by the rule
E(y) = (xe K:(Ty,&x,y)) <0}

By (i) E(y) is nonempty for each y € K. It is easy to see that for each y e K, E(y)
is a closed and convex subset of K. Hence E(y) is weakly compact for each
ye K.

Define another set valued map
F: K2
by the rule
Fy) = {xe K:(Tx, &y, x)) 20)}.

By (iv) it is clear that for each y € K, F(y) c E(y). We assert that F is a KKM-map.
If F is not a KKM-map, then there exist

{X], X2y vony x,,} ck

and
a;20,1<i<n
with
n
2 a,‘=1
i=1
such that
n n
Y axe U Flx)
i=1 j=1
ie.,

Z a;x; € F(x)

for any j = 1, 2, ..., n. Thus
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n n
T Z a;x, § x, z a;x; ||<0
i=1

i=1
for each j = 1, 2, ..., n. Now by the convexity of the map

y = (Tx, &y, x))
of X into IR, it follows that

n n n
T Z a; x;, 6 z a; X, Z a; X;
j=1

i=1 i=1

n

n . n
< }5 a; T }E a; x;, e '93 :E a; x; < Oa

i=1 i=1 i=1

which contradicts (i). Thus F is a KKM-map and hence E is also a KKM-map. Now
by Theorem 2.1

N EQ)#¢

ve Kk

i.e., there exists x, € K such that

(Ty»élxo»Y))550

for all ye K. By Theorem 4.1, this is equivalent to saying that there exists xo€ K
such that

(Txo, Ay, %)) 20
for all y e K. This completes the proof of Theorem 5.1.
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