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In this paper, using a function introduced by Hanson we study some results on variational type inequality problem.
Qur resulis develop the results of Siddiqui, Ansari and Kazmi (Indian J. pure appl. Math. 25 (1994), 969-73).
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1. INTRODUCTICN

In the recent decades, the study of variational inequality and complementarity problem has become
a very effective and powerful technique for studying a wide range of problems ansing in both
mathematical and engineering sciences. Precisely speaking there has been significant development in
the theory of optimization techniques; the study of variational inequality and complementarity problem
is also a part of this development because optimization problems can often be reduced to the solutions
of variational inequality and complementarity problems. Also in the recent years there have been

several generalizations of these problems 68101112

Siddiqui, Ansari and Kazmil'2 have developed the existence theory of a nonlinear variational
inequality problem (see Problem 1, p. 969) in the setting of reflexive real Banach spaces and
Hausdorff topological vector spaces separately. This problem (Problem 1'%, p-969) 1s an interesting
as well as explicit in nature and generalizes many results in the literature. Carbone? has extended
the result of Siddiqui, Ansari and Kazmi'? by using a geometric lemma of Ky Fan®. In this paper,
our aim is to study some results of Siddiqui, Ansari and Kazmil'2 using a functior &-, —) introduced
by Hanson®. The function &~,-) is quite general in nature and is applicable to many cases of
general interests. For the introduction, existence and significance of the function &-, ), we refer o
the papers of Hanson® and Ben-Israel and Mond!. However, in our discussion, for simplicity, we
drop the functional j and the nonlinear mapping A of the Problem 1 developed by Siddigui, Ansari
and Kasmit'? (p. 969). We need the following definition and results which will be frequently used

in the sequel.
Let X be a reflexive real Banach space and let X* be its dual endowed with weak topology.
Let the value of fe X" at x€ X be denoted by (f, x).
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Definition 117 — Let K be a convex subset of X. A map f: K= R is said to be convex
if for any y;,y,€ K, and 0<ts 1, we have

RQ "f))*] +0’2) =l "ﬂﬂyl) +9‘{y2)-

This inequality is called Jensen's ineguality after the Danish mathematician who first
introduced it.

Definition 1.2* — Let K be any subset of X. A point-to-set map F:K — 2" is called a
KKM-map if for each finite subset

{xj x5 .0x,} €K,

n
Conv ({xy,xy, ..., x, ) © Fx}
i=1
where Conv{A} denotes the convex hull of A,

Theorem 13 — Let K be an arbitrary nonempty set in a Hausdorff topological vecior

space X. Let the point-to-set map F: K525 be a KKM-map such that F(x} is closed for all
xe K and is compact for at least one x€ K. Then

M Flo=@
xe K

Theorem 1.4* —— Let K be a nonempty compact convex set in a Hausdorff topological vecior
space X. Let L be a subset of KX K having the following properties :

{a} For each xe€ K, (x,x) € L.
{b) For each fixed vy € K, the set
Ly) = (xe K:(xy)e L}
is closed in K.

{c) For each xe K , the set
Mix}) = {[ve K:(x,y)e L]

is convex.

Then there exists xy € K such that

fxo) x KL

2. THE RESULTS

We begin by considering K to be a compact and convex subset of X and prove the following results
on the nonlinear variational-type inequality problem :
Theorem 2.1 — Let KX be a nonempty compact convex subser of a reflexive real Banach

space X and let X be the dueal of X. Let T:K— X" and 6: KxK — X be two continuous maps
such that
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(a) for each xe K, (Tx, &(x, x)) =0,
{b) for each xe K , the map
(Tx, 8-, x)) : K-> R,
is convex (it means that, in Definition 1.1, if we define f: K 5 R by
£) = (Tx &y, x))

and use the convexity of f then we have
(Tx, (1 - 1)y + 1y, X))
= A -0y, +1yy)
(1 -0y + 50
= (1 - 1} (Tx, &y, x)) + 1(Tx, Ay, X))

for all y,,y,€ K, and 05151),

Then there extsts xy€ K such that

(T, Ay, %)) 20
Jor all ve K.
PROOF : Let
L={xye KxK:{Tx, 8y, x))=0}

By (a) L+ ¢ since (x,x)e L for each xe K. For each ye K, (following the notation of
Theorem 1.4) consider the set

Ly = {xe K:(x,y)e L}
= {xe K:(Tx, &y, x)) 2 0}.

We assert that L(y) is closed for each ye K Let x, € L{y) and lim x =x Since
n— oo

x, € L(y) we have

{Tx,, &y, x,) 20

for all ye K, and since T and 8 are continuous taking limit n —eo in the above ineguality we
obtain that

{Tx, 8y, x)} 20
for all y € K, showing L{y) to be closed for each ye K.
We assert that for each xe K, the set

M) = {ye K:(x,y)& L}

{ye K:(Tx 6y x) <0}.
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is convex. Let y,, y,€ M(x),0<¢<1 and
w=(1 -1y, +y,
By (b)..
(Tx, &w, x))
= (Tx, &(1 -1y, +1y,. X))
£ {1 =0 (Tx, 8y, X)) + {Tx, By,, X))
< O

showing that w e M(x).
Thus all the conditions of Theorem 14 are satisfied and hence there exists Xy € K such that
{xo} xKcl, Le,

(Txg, 80y, %)) 20

for all ye K. This completes the proof of Theorem 2.1,

We can generalize Theorem 2.1 by considering K to be a locally compact and convex subset
of X.

Theorem 2.2 — Let K be a nonempty locally compact and convex subset of a reflexive real

Banach space X and let X" be the dual of X. Let T: K —> X" and @: KxK — X be two continuous
maps such that

{a) for each xe K, (Tx, &x, x)) =0,
(b) for each x€ K, the map

{Tx, -x)): K >R,

is convex and

i 0
(¢} for at least one r > O, there exists ue D, such that

Ty, Ou, y) <0

for all ye §,, where

D = [xe K. kxllgr}

0

D = {xe K:llxlk<r}
and S =fxeK:lxli=rL

Then there exists xy € K such thar
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(Txg 60, 5)) 20

Jor all ye K.

PROOF : Since D_is a compact and convex subset of K, by Theorem 2.1, there exists
xg€ D_ such that

(Txy, &y, xp)) 20 - ()

for all ye D, We have two cases :

Case I — llxgli<r : For each ye K, choose re (0,1} such that
y,=ty+(l-0xae D

We guarantee that such a choice of t is possible. If- ye D_, then it is clear that we can
always choose te (0, 1) such that

y=ty+{1=xze D,

as D, is convex. If ye¢ D_, then we have ffyli>r. Also we have r-llx, >0 and lly—x,ll=0.
Let

- r—IIxOII
Iy —xq I

Clearly r > 0. We assert that 1 < 1. Suppose to the contrary that (= 1. Then we have

r—tHxplzly—xgl 28 yll-Dx, i

and hence r2#yH, which is a contradiction. Hence, ¢t (0, 1). With the above choice of ¢ it is clear
that lly 1 <r, that is,

y,=ty+{l -fixge D,
Putting y =y, in (1) we have
0 < (Txy, &, xg)
= (Txy Bty + (1 - Ny, X))
< UTxg, &1, xg)) + (1 = 1} {Txg, &g, x))
= (Txy, &y, xp))
showing

(Txg, &y, xp)) 20
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for all ye X,
Case II — fixgli=r : Putting y = u in (1) and using the hypothesis we obtain

(Txo, B, xo)) =0.
For any z€ K, choose t > 0 sufficiently small such that
u=tz+(l-nNue D_
Putting y=u, in (1), we obtain
0 < (Txy, Aue, xp))
= (T, 8tz + (1 - Hu, xy)
S HTxy, &z, xg)) + (1 — 1) (T, A, x5)
= (Txy &z, xp)),
showing
{Txy, &z, xp)) 20

for all ze K. Thi} completes the proof of Theorem 2.2.
Theorem 2.3 — Let K be a locally compact and convex subser of a reflexive real Banach

space X and let X* be the dual of X. Let T:K— X" and 6:KxK— X be two continuous maps
such that

{a} for each x€ K, (Tx, &x,x}} =0,
(b) for each x€ K, the map

(Tx, &- x)): K >R,

is convex and

(c) ‘there exists a nonempty, compact and convex subset C of K and ue C such that

(Ty, B(u, Y} <0

for all ye K-C.
Then there exists X € K such that

(Txg, 603, xp)) 20

for all ye K

PROOF : Since C is compact, there exists r > O such that y e D? for all ye C. By Theorem
2.1, there exists xy€ D, such that
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(Txy Ky, %)) 20 . (2

for all ye CcD,. In fact x;e C. W x € C. (ie, x,€ K- C) then by hypothesis there exists
ue C such that

(Txgy &u, xp)) <0,

which contradicts (2) when y = «. Thus #xyll<r. Now for any given ye K, choose 0 < r < 1}
sufficiently small such that

=ty+{l-Hxye D k.
By (a), (b)) and (2) we have

0 < (Txy, &z, x))
= (Txq. Oty + (1 - 1)xg, x5)}
< KTy, 8y, xp) + (1 = 1) (Frp, &g, x0))
= Txp, &y, xp)),

for all ye K. Since ¢ >0 we see that
(Txg, 80, xp)) 2 0

for all ye K. This completes the proof of Theorem 2.3.

As have been done in Lemma I by Siddiqui, Ansan and Kazmi'> we prove the following
lemma, a generalization due to Mmty (also see Chlpot) which will be needed in the proof of
Theorem 2.5. Once more we point out that for sirmplicity we have dropped the nonlinear mapping
T and the functional j of Lemma 1?

Lemma 2.4 — Let X be a nonempty closed, convex subset of a reflexive real Banach space

X and let X" be the dual of X. Let T:K—X and 8:KxK— X be two continuous maps such
that

{a) for each xe K, (Tx, Bx, x))=0;
(b) for cach xé K, the map

{Tx, &-,x)}}: K >R,
is convex; and

() (Tx, &y, )+ (Ty, 8(x, y)) <0 for all x,ye K.

Then the following are equivalent :

(A) x5 € K, (Txo. oy, xo))ZO for all ye K.

(B) x5€ K, (Ty, &xy, y)) <0 for all ye K.
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PROOF : Suppose that x;€ K and

(Txo, &y, xp)) 20
for all ye K. By (c)
(Ty, 8xg, ) < = (T, Ay, 2N S0

for all ye K.
Conversely, suppose that x, € X and

(Ty, Qxy, YN S0
for all ye K. For an arbitrary y € K, let
y, =0+ (1 -1x,
0 < < 1. Since K is convex y, € K. Using (a), (b) and (B) we obtain
0= (Ty, 8y, »)
= (Ty, 8ty + (1 - x, 7))
€Ty, 8.y ) + {1 -0 Ty, &Kxo, ¥}
sHTy, &y, yp)
< (Ty, 8y, y));
since T and & are continuous, taking limit 7 — 0 in the above mequality we get
(Txp &y, %)) 20

for all ye K. This completes the proof of Lemma 2.4.

Using the above Lemma we can generalize Theorem 2.2 when K is closed, convex and
bounded.

Theorem 2.5 — Let K be a nonempty closed, convex and bounded subset of a reflexive real

Banach space X and let X" be the dual of X. Let T:K 5 X" and 6: KxK — X be two continuous
maps such that

(a) for each xe K, (Tx, &x, x)) =0,
(b) for each x e K, the map

{Tx, (-, x)): K> R,
is convex, and

(¢} (Tx, 6y, x)) +{Ty, Kx, I<O0 for all x,ye K



ON NONLINEAR VARIATIONAL-TYPE INEQUALITY PROBLEM 19

Then there exists xp € K such that

(Txy, &y, x5)) 20

for all ye K.
PROOF : Define a set valued map

E:Kk-7
by the rule
EQy) = {xe K:(Ty, &x, y))<0).
By {(a), E(y) is nonempty for each ye€ K. It is easy to see that for each ye K, E(y) is a

closed and convex subset of K. Since K is a closed, convex and bounded subset of a reflexive real
Banach space X, it is also weakly compact, hence E(y) is also weakly compact for each ye K.

Define ancther set vaiued map
F:Kk—2¥
by the rule
F(y) = {xe K: (Tx, 8y, x)) 20}.

By (¢), it is clear that for each ye K, F(y) < E(y). We assert that F is a KKM-map. If F
is not a XXM-map then there exists

{xl,xz, ...,xﬂ} K

and
a;2 0,I<isn
with
n
z a'.=1
i=1
such that
n n
2 axe U Fix)
i=] j=
e,
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for any j = 1, 2, ..., n. Thus
n
TZafxle X z ax; [ [<0
i=1 i=1

for each j = 1, 2, ..., n. By the convexity of the map

y> (Tx, &y, x))
of K into R, it follows that

n n

T 2 agx, 6 z ax, 2 ax;
j=1

i=] =1

n i

Z T % x5 Y ax

i= f =

< 0,

which contradicts (a@). Thus F is a KKM-map and hence £ is also a KKM-map. By Theorem 1.3

M Epy=¢

ye K

Le., there exists xy€ K such that

(Ty. 8xg ) SO

for all ye K. By Lemma 2.4, this is equivalent to saying that there exists x, € K such that

(T 8y, %)) 20

for all ye K. This completes the proof of Theorem 2.5.

The following result generalizes Theorem 2.5 when K is an unbounded, closed and convex
subset of X.

Theorem 2.6 — Let K be a nonempty closed, convex and unbounded subset of a reflexive

real Banach space X and let X* be the dual of X. Let T:K—5 X" and 6: KxK—> X be two
continuous maps such that

(a) for each xe K, (Tx, 8(x, x)) =0,
(b) for each xe K, the map

(Tx, X- <)) : K >R,

IS convex.
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{c) (Tx, 8(y, )+ (Ty, Hx, ¥)) <0 for all x,ye K,

. 0
(d) for at least one r > 0, there exists ue D such that

Ty, &u, )} <0

for all ye S,

Then there exists xy € K such thar

(Txy, 80, 7)) 20

Jor all ye K.
PROOF : D_is a closed, convex and bounded subset of K. By Theorem 2.5, there exists
xy€ D, such that

(Txg, 8, X)) 20

for alt y€ D, The remaining part of the proof is similar 1o the corresponding part of the proof of
Theorem 2.2. This completes the proof of Theorem 2.6.

The following result generalizes Theorem 2.3 when X is a closed, convex and unbounded
subset of X.

Theorem 2.7 — Let K be a nonempty closed, convex and bounded subset of a reflexive real

Banch space X and let X" be the dual of X. Let T:K > X' and 8: KxK— X be two continuoius
maps such that *

(@) for each xe K, (Tx, &x, 1)} =0,
(b} for each xe K. the map

(Tx, 8(-x)): K >R,

is convex,
() (Tx, &y, ) + (Ty, Kx, y)) <0 for all x,ye K, and
(d} there exists a nonempty, compact and convex subset C of K and u€ C such that

(Ty, O, y2y <0

Jor all ye K- C.
Then there exists xg € K such that

(T, &, 5))2 0

Jor ail ye K.

0 . .
PROOCF : Since C is compact, there exists r > 0 such that ye D, for all ye C. Since D, is
closed, convex and bounded subset of K, by Theorem 2.5, there exists xg€ D, such that

(Txgy 80, 50)) 20
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for all ye Cc D, The remaining part of the proof is similar to the corresponding part of the proof
of Theorem 2.3. This completes the proof of Theorem 2.7.

3. UNIQUENESS OF SOLUTION

In this section, under reasonable conditions we show that the solution Xy € K as obtained in
Theorem 2.1 is unique.

Theorem 3.1 — Let K be a nonempty compact and convex subsei of a reflexive real Banach

space X and let X" be the dual of X. Let T:K— X" and 8: KxK > X be two continuous maps
suchk that

{a) for each x€ K, (Tx, &x, x))=0,
(b} for each xe K, the map

(Tx, 8-, x)}: KR,
is conver,
{c) (Tx, Xy, x)) +(Ty, x, ) £0 for all x,y€ K, and
{d) (Tx, 8y, X))+ (Ty. 8(x, y)) =0 implies x = y.
Then there exists a unique xy,€ K such that
(Txy &y, xp)) 20

for ail ye K

PROOF : Existence of the solution x; e K is already proved in Theorem 2.1. Let x),x,€ K
be such that

(Tx;, 80, x)) 20 and (Tx, 8, x)) 20

for all y€ K; putting y=x, and y=x, in the former and later inequality respectively and on adding
we get

(Tx,, &xy, x () + (Txy, Bxy, x5} 20
and this combined with inequalty given in (¢} gives
(Tx] L] “x‘p I!)) + (TXZ, axls xz) = 0

Now by (d) we have x| =x,. This completes the proof of Theorem 3.1.

It is a pleasure to thank the referee for his comments which resulted in an improved
presentation of the paper.
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