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Abstract. The concepts of h-limits, strong h-limits (and

their duals) and partial proofs of homotopy limit reduction the-

orems relating to h-limits and strong h-limits are already known

for a groupoid enriched category (g.e. category). In this paper

the concepts of weak h-limits, quasi-limits (and their duals) are

introduced in a g.e. category and the fuller version of the homo-

topy limit reduction theorems concerning the four types of limits,

i.e., weak h-limits, h-limits, strong h-limits and quasi-limits are

proved. The previously called Brown Complement Theorem is

proved under the restricted assumption that the g.e. category ad-

mits only weak h-limits instead of h-limits and the generalized

version of the Brown Complement Theorem is also proved which

is relevant to the problem of showing under suitable smallness

conditions that if a g.e. category admits all h-limits then it also

admits all h-colomits.

1. Introduction. In [3] Fantham and Moore have discussed the tech-

nique and language of category theory for doing homotopy theory. They

have presented a reasonable approach for the category-theoretic aspects of

homotopy theory via an enriched category. They have also proposed some

concepts that arise from spaces, maps, and homotopy classes of homotopies

of maps. As it stands, they comprise a special type of 2-category [4] in
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which the morphism sets form a groupoid, and accordingly a groupoid en-

riched category (g.e. category) [3]. The one important difference between

g.e. categories and ordinary categories is that the role of the category of

sets in ordinary category theory is replaced by the category of groupoids.

In ordinary category, the morphisms from X to Y form a set hom(X,Y ),

whereas in the g.e. category the morphisms from X to Y and the homotopies

form a groupoid Hom(X,Y ). The definitions of g.e. category, pseudo func-

tor (p-functor), pseudo natural (p-natural) transformatiom, pseudo equiv-

alence (p-equivalence) and their examples can be found in [3]. Also in [3]

Fantham and Moore have extensively studied (strong) h-limits, h-pullbacks,

h-equalizers, h-products and their dual notions namely, (strong) h-colomits,

h-pushouts, h-coequalizers, h-coproducts in a g.e. category. We point out

that there is a certain confusion in the statement of h-limits ([3], p.395).

We introduce the concepts of weak h-limits and quasi-limits. Our main pur-

pose of introducing the concept of weak h-limits is to obtain a generalized

version of the Brown Complement Theorem. We use quasi-limits to prove

that if a g.e. category admits all h-limits, then under appropriate smallness

conditions, it also admits all h-colimits.

If we concentrate on the g.e. category CW of CW -complexes with con-

tinuous maps and homotopy classes of homotopies of maps then although a

model for the h-product exists in CW ([3], p.409), the h-projection map for

this model has scarcely any topological significance (although at this point

one might have expected the h-projection map to be a fibration). In view of

this observation we investigate a stronger version of the definitions of h-limits

and h-colimits, which we call 2-limits and 2-colimits respectively. In order to

define 2-limits (2-colimits) we introduce the concepts of pre 2-limits (pre 2-

colimits) (which have already appeared with various names in general works

on 2-categories [5]) and then we define 2-limit as pre 2-limit+h-limit and

2-colimit as pre 2-colimit+h-colimit, so that 2-limit always implies h-limit

(whereas the converse is not true!) and dually 2-colimit implies h-colimit.
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The definitions and narrative can be recalled from [3]. For a groupoid

G, π0(G) denotes the isomorphism classes of points, i.e., the set of path

components and G(x, x) with identity ex is written as π1(x) [3].

2. Homotopy limits in g.e. categories. Consider the diagram T :

I → C of the graph I in the g.e. category C and the constant diagram

kL : I → C at the object L of C and a p-map θ : kL → T [3]. For each X in

C we have a groupoid homomorphism θ∗X : Hom(X,L) → Hom(kX , T ).

2.1 Definition. (a) The p-map θ and L are called the weak h-limit of

T and weak h-limit object of T respectively if the groupoid homomorphism

θ∗X is a π0-equivalence, i.e., the induced map π0(θ
∗
X) : π0(Hom(X,L)) →

π0(Hom(kX , T )) is a bijection. (b) θ is called an h-limit and L an h-limit

object of T if θ∗X is π0-equivalence and π1-surjective. Such a homomorphism

of groupoids will be henceforth called an h-equivalence. (c) θ is called a

strong h-limit and L a strong h-limit object [3] of T if θ∗X is an equivalence

(π0-equivalence+π1-equivalence) of groupoids. In [3] this limit is called a

pseudo limit, but since the concept is stronger than h-limit for linguistic

reasons we rename it: strong h-limit. (d) θ is called a quasi-limit and L a

quasi-limit object of T if θ∗X is π0-surjective. (e) θ is called a pre 2-limit and

L a pre 2-limit object of T if θ∗X is surjective on objects. (f) θ is called a

2-limit and L a 2-limit object of T if θ∗X is surjective on objects as well as an

h-equivalence. (g) θ is called a strong 2-limit and L a strong 2-limit object

of T if θ∗X is an isomorphism of groupoids.

2.2 Note. In [3], 2.1 (a) is given as the definition of h-limit and there

is a remark (Remark 2, p. 395) to the effect that 2.1 (b) follows. However

the authors admit that their original explanation of this is lost and possibly

incorrect and that we should regard what appears in [3] as an incorrect

definition of h-limit and 2.1 (b) should take its place. However in cases 1 - 4

and examples ([3], p. 396-400), Limit Reduction Theorem ([3], p. 400) and
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Brown Complement Theorem ([3], p. 406) 2.l (b) is used for the definition

of h-limit.

Now we define the contracted or substitute concepts of various limits. In

fact by composing homotopies we can get alternative forms of various limits

corresponding to pullbacks and equalizers in an ordinary category.

2.3 Definition. For the various forms of pullbacks of f : A → C,

g : B → C in C we consider the quintuplet {(u, f, α, v, g) | α : fu ' gv, u :

P → A, v : P → B} such that any other quintuplet {(r, f, β, s, g)|β : fr '

gs, r : X → A, s : X → B} factorizes as ϕ : r ' uk, ψ : vk ' s, k : X → P

with β = (g∗ψ)·(α∗k)·(f∗ϕ) where (1) for a weak h-pullback, although there

may be different factorizations, k is unique to within homotopy, (2) for an

h-pullback if there exists another factorization ϕ′ : r ' uk′, ψ′ : vk′ ' s, k′ :

X → P satisfying β = (g ∗ψ′) · (α∗k′) · (f ∗ϕ′), then there exists a homotopy

µ : k ' k′ such that ϕ′ = (u ∗ µ) · ϕ and ψ = ψ′ · (u ∗ µ), (3) for a strong h-

pullback the homotopy µ in (2) is unique and (4) quasi-pullback in C means

a quintuplet {(u, f, α, v, g) | α : fu ' gv, u : P → A, v : P → B} such that

any quintuplet {(r, f, β, s, g) | β : fr ' gs, r : X → A, s : X → B} factorizes

through it; (5) in the case of pre 2-pulllback there exists factorization with

r = uk, vk = s, k : X → P and β = α ∗ k, (6) a pre 2-pullback becomes a

2-pullback if it is also an h-pullback and (7) finally a 2-pullback is a strong

2-pullback provided it is a strong h-pullback.

2.4 Definition. Given an indexing set J + {0} with base point 0 and

a family of maps f0, (fi) : A → B, i ∈ J we consider the quintuplet

{(e, (fi), (αi), e, f0) | (αi) : (fi)e ' f0e, e : E → A} such that any other

quintuplet {(e′, (fi), (βi), e
′, f0) | (βi) : fie

′ ' f0e
′, e′ : X → A} factorizes as

ϕ : e′ ' ek, k : X → E with βi = (f0∗ϕ
−1)·(αi∗k)·(fi∗ϕ) where (i) for a weak

h-equalizer, although there may be different factorizations, k is unique to

within homotopy, (ii) for an h-equalizer if there exists another factorization

ϕ′ : e′ ' ek′, k′ : X → E satisfying βi = (f0 ∗ϕ
′−1) · (αi ∗k

′) · (fi ∗ϕ
′) for each
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i ∈ J , then there exists a homotopy µ : k ' k ′ such that e′ = (e∗µ)·ϕ, (iii) for

a strong h-equalizer the homotopy µ in (ii) is unique and (iv) quasi-equalizer

in C means a quintuplet {(e, (fi), (αi), e, f0) | (αi) : (fi)e ' f0e, e : X → A}

such that any quintuplet {(e′, (fi), (βi), e
′, f0) | (βi) : (fi)e

′ ' f0e
′, e′ : X →

A} factorizes through it. (v) For maps f , g : A → B we obtain pre 2-

equalizer as the quintuplet {(l, f, α, l, g) | α : fl ' gl, l : E → A} such that

any other quintuplet {(f, r, β, g, r) | β : fr ' gr, r : X → A} factorizes as

r = lk, k : X → E, with β = α ∗ k. (vi) A pre 2-equalizer is a 2-equalizer if

it is also an h-equalizer. (vii) A 2-equalizer is called a strong 2-equalizer if

it is also a strong h-equalizer.

2.5 Definition. If the graph I is considered to be discrete in cases

2.1 (a-g) then L becomes the weak h-product, h-product, strong h-product,

quasi-product, pre 2-product, 2-product and strong 2-product of the family of

objects {T (i) : i ∈ I} respectively.

2.6 Note. We observe that in a g.e. category C

strong 2-limit ⇒ 2-limit ⇒ pre 2-limit

⇓ ⇓

strong h-limit ⇒ h-limit ⇒ weak h-limit ⇒ quasi-limit

⇓

limit in πC ⇒ quasi-limit in πC

where πC denotes the homotopy class category of πC.

2.7 Examples. We present some examples of the various limits and

substitute limits and their duals, other than given in [3]. We present some

more examples in Section 5 also.

(1). Let T ∗ denote the g.e. category of pointed topological spaces with

continuous base-point preserving maps and base-point preserving homotopy

classes of base-point preserving homotopies of maps. For any X ∈ T ∗ we
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have an h-pullback {(p, i, θ, p, i) | θ : ip ' ip, i : ∗ → X, p : ΩX → ∗} where

ΩX is the loop space of X and θ : ΩX × I → X is defined by θ(ω, t) = ω(t).

Clearly this is not a strong h-pullback.

(2). Similarly in T ∗ we have an h-pushout {(j, q, θ, j, q) | θ : qj ' qj, j :

X → ∗, q : ∗ →
∑
X} where

∑
X is the suspension of X and θ : X × I →

∑
X is defined by θ(x, t) = [x, t]. Clearly this is not a strong h-pushout.

(3). Let CW∗ denote the g.e. category of the compactly generated spaces

of the homotopy type of well pointed CW-complexes with continuous base-

point preserving maps and base-point preserving homotopy classes of base-

point preserving homotopies of maps. Let T : T ∗ → CW∗ be the realized

singular complex functor, i.e., T (Y ) = |SingY |. If i : CW ∗ → T ∗ is the

inclusion functor, the map induced by the singular projection |SingY | → Y

produces a homeomorphism ηX,Y : Hom(X, |SingY |) → Hom(i(X), Y ) which

is natural in X and Y and by traditional argument, ηX,Y is a π0-equivalence.

In [3] it is proved that CW∗ admits all h-limits and through ηX,Y a model

of the product in CW∗ is obtained by (Xi)i∈I → Sing(
∏

i∈I Xi) which is an

h-product but not a 2-product.

(4). Let T k be the g.e. category of compactly generated spaces with

continuous maps and homotopy classes of homotopies. There is a standard

h-pullback {(u, f, θ, v, g) | θ : fu ' gv, f : A → C, u : P → U, g : B →

C, v : P → B} of f , g by spaces of paths, i.e., the subspace of A × C I × B

comprising (a, γ, b) with γ(0) = a, γ(1) = b (I = [0, 1], the product is that of

compactly generated spaces rather than the topological product). This is a

2-pullback but not a strong 2-pullback because {(uπP , f, θ, uπP , g) | θ ∗ πP :

fuπP ' gvπP , f : A → C, uπP : P ×D → U, g : B → C, vπP : P ×D → B}

with D contractible, is also a 2-pullback. Actually this example suggests

what is additionally required for 2-limit to become a strong 2-limit.

(5). Topological spaces with respect to continuous maps and homotopy

classes of homotopies of maps form a g.e. category T . In T the 2-pullback

of f : A → C, g : B → C is given by {(p, f, α, q, g) | α : fp ' gq, p : Pf,g →
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A, q : Pf,g → B} where Pf,g = {(a, ω, b) ∈ A× CI ×B : f(a) = ω(0), g(b) =

ω(1)}, α : Pf,g × I → C is defined by α((a, ω, b), t) = ω(t) and p, q are the

respective projections. This is not a strong 2-pullback.

(6). Chain complexes over a ring with chain maps and chain homotopy

classes of chain maps form a g.e. category Ch. In Ch the 2-pullback of f : A→

X, g : B → X is given by {(p, f, T, q, g) | T : fp ' gq, p : P → A, q : P → B}

where P n = {(a, b, x, x) ∈ An ⊕ Bn ⊕ Xn ⊕ Xn+1 : fn(a) − gn(b) = x +

∂n+1
X (x)}, T n : P n → Xn+1 is defined by T n(a, b, x, x) = x and p, q are the

respective projections of chain complexes. This is not a strong 2-pullback.

(7). In T the 2-equalizer of f, g : A → B is given by {(p, f, α, p, g) |

α : fp ' gp, p : Ef,g → A} where Ef,g = {(a, ω) ∈ A × BI : f(a) =

ω(0), g(a) = ω(1)}, α : Ef,g × I → B is defined by α((a, ω), t) = ω(t) and p

is the projection map. This is not a strong 2-equalizer.

(8). In Ch the 2-equalizer of chain maps f, g : X → Y is given by

{(e, f, T, e, g) | T : fe ' ge, e : E → X} where En = {(x, y, y) ∈ Xn ⊕ Y n ⊕

Y n+1 : fn(x)−gn(x) = y+∂n+1
X (y)}, T : E → Y is defined by T n(x, y, y) = y

and e is the usual projection. This is not a strong 2-equalizer.

(9). In T the 2-pushout of f : A → B, g : A → C is given by

{(f, i, α, g, j) | α : if ' jg, i : B → Cf,g, j : C → Cf,g} where Cf,g =

(B ∪ (A× I) ∪C)/{(a, 0) ∼ f(a), (a, 1) ∼ g(a)}, α : A× I → Cf,g is defined

by α((a, t)) = [a, t] and i, j are the respective quotient maps. This is not a

strong 2-pushout.

(10). In Ch the 2-pushout of chain maps f : X → A, g : X → B

is given by {(f, i, T, g, j) | T : if ' jg, i : A → Q, j : B → Q} where

Qn = (An⊕Bn⊕Xn⊕Xn+1)/F n with F n = {(fn(x),−gn(x),−x,−∂n
X (X)) :

x ∈ Xn}, T : X → Q is defined by T n(x) = [0, 0, 0, x] and i, j are the

respective inclusions of the chain complexes. This is not a strong 2-pushout.

(11). In T the 2-coequalizer of f, g : X → Y is given by {(f, i, α, g, i) |

α : if ' ig, i : Y → Mf,g} where Mf,g = ((X × I) ∪ Y )/{(x, 0) ∼
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f(x), (x, 1) ∼ g(x)}, α : X × I → Mf,g is defined by α(x, t) = [x, t] and

i(y) = [y]. This is not a strong 2-coequalizer.

(12). In Ch the 2-coequalizer of f, g : X → A is given by {(f, q, T, g, q) |

T : qf ' qg, q : A → Q} where Qn = (An ⊕ Xn−1 ⊕ Xn)/Ln with Ln =

{(fn(x) − gn(x), ∂n
X(x),−x) : x ∈ Xn}, T : X → Q is defined by T n(x) =

[0, x, 0] and qn(a) = [a, 0, 0]. This is not a strong 2-coequalizer.

(13). In T ∗ the pushout of the inclusion maps i : X ∩ Y ↪→ X, j :

X ∩ Y ↪→ Y is X ∪ Y which is a quasi-pushout but not a weak h-pushout.

(14). In T ∗ for any Y ∈ T ∗ the pushout of f : Sn−1 → Y and i :

Sn−1 → Dn is the space Y ∪Dn which is a h-pushout but not a 2-pushout,

Dn and Sn−1 being the unit n-disk and unit n-sphere in R
n respectively.

3. The limit reduction theorems. In ([3], p. 400) the Limit Reduc-

tion Theorem is proved for h-limits only with the omission of a few steps.

Since we are concerned with seven types of limits we give a fuller version of

the same as follows. First we state and prove the Limit Reduction Theorem

for the first four types of limits (2.1, (a) to (d))

3.1 Theorem. (The Limit Reduction Theorem) Let the g.e. category C

admit strong h-products. Then the following hold:

(1) C admits weak h-limits ⇔ C admits weak h-equalizers ⇔ C admits weak

h-pullbacks.

(2) C admits h-limits ⇔ C admits h-equalizers ⇔ C admits h-pullbacks.

(3) C admits strong h-limits ⇔ C admits strong h-equalizers ⇔ C admits

strong h-pullbacks.

(4) C admits quasi-limits ⇔ C admits quasi-equalizers ⇔ C admits quasi-

pullbacks.
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Proof. We prove: (A) C admits pullbacks (1-4) ⇒ C admits equalizers

(i-iv). (B) C admits equalizers (i-iv) ⇒ C admits pullbacks (1-4). (C) C

admits equalizers (i-iv) ⇔ C admits limits (a-d).

(A): To construct the equalizers (i-iv) of the maps f1, f2 : X → Y

consider the diagram F : I → C where I is a graph of the type a, b : 1 → 2

and F (1) = X, F (2) = Y , F (a) = f1, F (b) = f2. We consider p-maps

kZ → F of the form (l,m, (αi)), l : Z → X, m : Z → Y , αi : m ' fil,

i = 1, 2. Let Y ×Y be the strong h-product of 2-copies of Y with projection

maps pi, i = 1, 2. We construct ∆ : Y → Y × Y together with homotopies

δi : 1Y ' pi∆ and h : X → Y × Y together with homotopies γi : fi ' pih,

i = 1, 2. Since Y × Y is a strong h-product, there is a unique homotopy

α′ : ∆m ' hl with αi = (γ−1
i ∗ l) · (pi ∗ α

′) · (δi ∗m), i = 1, 2. In this way we

obtain a bijective correspondence (l,m, (αi)) 7→ (∆,m, α′, h, l) from maps

kZ → F to quintuplets (m,∆, α′, l, h) extending the span of h : X → Y × Y

and ∆ : Y → Y ×Y . Clearly this correspondence commutes with homotopies

and with composition by a map k : Z ′ → Z. Thus we conclude that a limit

object (a-d) Z of F is the lead object of a pullback (1-4) and vice-versa.

Relating the limit of F to equalizers, we obtain the required equalizers (i-iv)

from pullbacks (1-4).

(B): For reasons of brevity this part was not given in [3]. We show

that pullbacks (1-4) for f1 : X1 → X and f2 : X2 → X correspond to the

equalizers (i-iv) for f1p1 : X1×X2 → X and f2p2 : X1×X2 → X where X1×

X2 denotes a strong h-product of X1 and X2 with projections pi, i = 1, 2.

Corresponding to the quintuplet {(u1, f1, α, u2, f2) | α : f1u1 ' f2u2, u1 :

P → X1, u2 : P → X2} we construct homotopies α′ : f1u1l ' f2u2l, βi : u '

pil, i = 1, 2, l : P → X1 ×X2 such that α = (f2 ∗ β
−1
2 ) · α′ · (f1 ∗ β1). The

correspondence α′ ↔ α is bijective and commutes with composition of maps

and homotopies and hence gives pullbacks from equalizers in all four cases

(i)-(iv).
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(C): Next we show that a limit object (a-d) of a diagram S : I → C

can be constructed as an equalizer (i-iv) of strong h-products. Let P denote

the strong h-product of the family S(i) labelled over the points of I and

let Q denote the strong h-product of A(f) labelled over the arrows of I

and for f : i → j, S(i), S(j) are denoted by D(f), A(f) respectively. We

construct maps q, g : P → Q together with homotopies δf : pj ' pjq,

γf : S(f)pi ' pfg, pf : Q → A(f), pj : P → A(f), pi : P → D(f),

S(f) : D(f) → A(f). Consider a p-map ((li), (αf )) : kZ → S, li : Z → S(i),

αf : lj ' S(f)li. Corresponding to (li) we choose l : Z → P with homotopies

ϕi : li ' pil. For f : i→ j in I we write: lf = nf , ϕj = βf , li = mf , ϕi = εf .

Since Q is a strong h-product we can find a unique homotopy α′ : ql ' ql

such that

(S(f) ∗ ε−1
f ) · (γ−1

f ∗ l) · (pf ∗ α′) · (δf ∗ l) · βf = αf(1)

and hence a cone C ′ = (l, (q, g), α′). We consider the correspondence ((li),

(αf )) ↔ (l, (ϕi), α
′). Put (l, (ϕi)) ∼ (l, (ϕi)) if there is a homotopy ω : l ' l

such that ϕi·ω = ϕi for all i ∈ I. This is an equivalence relation and for given

(li), (αf ) we extend this to an equivalence relation on triples by (l, (ϕi), α
′) ∼

(l, (ϕi), α
′); in this case (relative to given (li), (αf )), α′ is derived from (li),

(ϕi) in the same way α′ is derived from l, (ϕi). We denote the equivalence

class by < l, (ϕi), α
′ > and we have a bijective correspondence

((li), (αf ) ↔< l, (ϕi), α
′ > .(2)

We also observe that by omitting the (ϕi) the resulting class of pairs < l, α′ >

(let us call it) is merely a homotopy class of equalizers {(l, q, α′, l, q) | α′ :

ql ' ql}. We see easily that the correspondence given by (2) commutes with

composition in the sense that ((lis), (αf ∗ s)) ↔< ls, (ϕi ∗ s), a
′ ∗ s > for

appropriate s.
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In order to examine the effect of a homotopy let θi : li ' li determine

a homotopy θ : ((li), (αf )) ' ((li), (αf )), i.e., αf = (S(f) ∗ θi) · αf · θ−1
j ,

f : i→ j. The correspondence (2) gives ((li), (αf )) '< l, (ϕi · θ
−1
i ), ? >. We

show that the undetermined homotopy ? = α′. Suppose that corresponding

to αf we have a homotopy ? : ql ' gl such that (S(f)∗ε−1
f ) ·(γ−1

f ∗ l) ·(pf∗?) ·

(δf ∗ l) · βf = αf where εf = εf · θ−1
i , βf = βf · θ−1

j . Thus (S(f) ∗ ε−1
f ) ·

(γ−1
f ∗ l) · (pf∗?) · (δf ∗ l) · βf = αf and hence by the uniqueness condition of

the definition of strong h-product, ? = α′.

We note that if the equalizer (weak h-equalizer or quasi-equalizer) of q,

g exists, then we have

[m]

[(li), (αf )]
≈
7→ < l, α′ >
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with m : Z → E and l ' um for an equalizer {(u, q, β, g, u) | β : qu ' gu, u :

E → P}. Hence through the reverse horizontal correspondence we have

respectively a bijection (in the case of weak h-equalizer) and a surjection

(in the case of quasi-equalizer) [Z,E] → [kZ , S]. Since the horizontal corre-

spondence in the diagram (3) commutes with composition W → Z → E, it

follows that E is displayed as the weak h-limit or quasi-limit of S respec-

tively and vice-versa by some ξ : kE → S corresponding to the identical

maps E → E on the left hand side.

For the remainder (cases (2) and (3)) we consider the above bijection

[Z,E] → [kZ , S]. Let αf : lj ' S(f)·li and {(l, q, α′, l, g) | α′ : ql ' gl, l : Z →

P} correspond through the original equivalence (depending on the choice

(ϕi)). Let η = (ηi), ηi : li ' li, define a homotopy of the cone ((li), (αf )) to

itself; this subjects the homotopies (ηi) to the condition (S(f) ∗ ηi) · αf =

αf · ηj . By the definition of strong h-product the homotopies ηi determine,

through (ϕi), a unique homotopy η′ : l ' l such that ϕi · ηi = (pi ∗ η
′) · ϕi

for each i. This is a homotopy of the equalizer {(l, q, α′, l, g) | α′ : ql '
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gl, l : Z → P} with itself, i.e., (g ∗ η′) · α′ = α′ · (q ∗ η′). Indeed, we have

(pf ∗α
′) ·((pfq)∗η

′) ·(δf ∗ l) ·βf = pf (α′ ·(q∗η′)) ·(δf ∗ l) ·βf = pf ((g∗η′) ·α′) ·

(δf ∗l)·βf = ((pfg)∗η
′)·(pf ∗α

′)·(δf ∗l)·βf = ((pfg)∗η
′)·(γf ∗l)·(S(f)∗εf )·αf

by (1). Conversely, by the reverse argument, each η : l ' l gives a homotopy

of the equalizer and determines unique homotopies ηi : li ' li with ϕi · ηi =

(pi∗η
′) ·ϕi for each i. This gives a homotopy of the given cone to itself. Thus

the correspondence η ↔ η′ gives the bijection π1(kZ , S; (li), (ϕi)) → G(l, α′)

where for f : A→ B, π1(A,B; f) denotes the group of homotopies f ' f and

G(l, α′) is the group of homotopies in the groupoid G(Z, q, g) of equalizers

around the given equalizer (l, α′). It is evident that this bijection is a group

isomorphism; indeed (pi∗(η′ ·ξ′)) ·ϕi = (pi∗η
′) ·(pi ∗ξ

′) ·ϕi = (pi∗η
′) ·ϕi ·ξi =

(ϕi · ηi) · ξi = ϕi · (ηi · ξi).

Let {(u, q, β, u, g) | β : qu ' gu, u : E → P} be the weak h-equalizer of

q, g and let it correspond to m : Z → E through λ : um ' l. We replace

this equalizer by trivializing λ (i.e., (um, β ∗m) which is a point in the same

component (l, α′)) of G(Z, q, g). By composition the homotopy µ : m ' m

determines a homotopy (um, β ∗m) ' (um, β ∗m) of the replaced equalizer

to itself and we get cZ : Hom(Z,E) → G(Z, q, g) which is an equivalence in

case the equalizer is a strong h-equalizer and an h-equivalence (since it is a

π0-equivalence and by the proof for cases (1) and (4) it is π1-surjective) in

case the equalizer is merely an h-equalizer. We thus have

π1(Z,E;m)

π1(kZ , S; (li), αf )
≈

−→ G(l, α′)
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and um = l, β ∗ m = α′. The combined map aZ : π1(Z,E;m) →

π1(kZ , S; (li), αf ) commutes with the composition of maps because the hor-

izontal and vertical maps do so. Thus from ξ : kE → S defined in the

first part we obtain by composition bZ : Hom(Z,E) → Hom(kZ , S) (which

gives, on application of the path-class operator, the map [Z,E] → [kZ , S]
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of the first part) and it is this map of groupoids that restricts to aZ on

appropriate path-groups. Thus the map bZ is respectively an equivalence or

h-equivalence when cZ is so.

Next we use the above theorem to prove the Limit Reduction Theorem

(Theorem 3.3, below) concerning pre 2-limits and 2-limits.

3.2 Note. It is to be noted that in [7] the concepts of pre 2-limits

have already appeared before under various names in numerous works on 2-

categories. Here we compare the lay-out the proof of Theorem 3.3 (theorem

below) with that of Theorem 3.1 and see how greatly simplified the later

would become if strong 2-products were available, namely through the omis-

sion of the homotopies (δi), (βi) in parts (A), (B) and all of the homotopies

γ, ε, δ, β in part (C) so that the homotopy α′ is resulted by compounding

the homotopies (αf ) into the product Q.

3.3 Theorem. Let the g.e. category C admit strong 2-products. Then

C admits 2-limits ⇔ it admits 2-equalizers ⇔ it admits 2-pullbacks.

Proof. First we obtain 2-pullbacks from 2-equalizers. For the maps

fi : Ai → B, i = 1, 2 we use ordinary product notation A1 × A2 for strong

2-products, pi : A1 × A2 → Ai and if {(e, f1p1, α, e, f2p2) | α : f1p1e '

f2p2e, e : E → A1 × A2} is a 2-equalizer then clearly {(p1e, f1, α, p2e, f2) |

α : f1p1e ' f2p2e} is a pre 2-pullback and hence a 2-pullback by Theorem

3.1.

Next we obtain 2-equalizers from 2-pullbacks. For f1, f2 : A → B

if {e, (f1, f2), α, e
′,∆) | α : (f1, f2)e ' ∆e′, e : E → A, e′ : E → B,∆ :

B → B × B} is a 2-pullback, then clearly {(e, f1, (q2 ∗ α
−1) · (q1 ∗ α), e, f2 |

(q2 ∗ α
−1) · (q1 ∗ α) : f1e ' p2e, qi : B ×B → B, i = 1, 2} is a pre 2-equalizer

and again the proof is completed by Theorem 3.1.
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Next we show that a 2-limit object of a diagram T : I → C can be

constructed as 2-equalizer of strong 2-products. For each arrow a in I, we

have T (a) : T (d(a)) → T (r(a)), where d(a) and r(a) are the domain and

range of a respectively. Let A be the strong 2-product of the family {T (i)}

labelled over the points of I and let B denote the strong 2-product of the

family {T (r(a))} labelled over the morphisms of I with projection maps

pi : A→ T (i) and pr(a) : B → T (r(a)) respectively. By strong 2-product, for

each arrow a ∈ I, we obtain maps f , g : A→ B such that pr(a) = p′r(a)f and

T (a)pd(a) = p′r(a)g respectively. Let {(e, f, ε, e, g) | ε : fe ' ge, e : E → A}

be the 2-equalizer of f , g. For each a : i→ j in I, let i = d(a) and j = r(a)

and observe that we have a homotopy cone p′r(a) ∗ ε
−1 : T (a)pd(a)e ' pr(a)e.

For an arbitrary cone qi : X → T (i), i ∈ I with θ : T (a)qd(a) ' qr(a),

by strong 2-product we obtain h : X → A such that qi = pih for each

i ∈ I and hence a homotopy ϕ : fh ' gh such that θ−1 = p′r(a) ∗ ϕ. By

2-equalizer there is a factorization l : X → E with el = h and ϕ = ε ∗ l.

Thus qi = pih = piel = (pie)l. The rest follows from Theorem 3.1.

Conversely if C admits all 2-limits we consider the graph I with two

objects 1, 2 and two arrows j, j ′ : 1 → 2 only and the diagram T : I → C

given by T (1) = A, T (2) = B, T (j) = f , T (j ′) = g. If θ : kL ' T is the

2-limit of T we show that the 2-equalizer of f and g is {(θ1, f, α, θ1, g) | α :

fθ1 ' gθ1} where ϕ : fθ1 ' θ2, ψ : gθ1 ' θ2, α = ψ−1 · ϕ. Let β : fξ1 ' gξ1,

ξ1 : X → A and fξ1 = ξ2; so β−1 = gξ1 ' ξ2. By the presence of 2-limit

there is a factorization h : X → L such that ξ1 = θ1h. By the choice of

fξ1 = ξ2, the homotopy β−1 · (α ∗ h) is trivial, i.e., β = α ∗ h. The rest

follows from the analysis of h-equalizer in ([3], p.398).

3.4 Note. Theorems 3.1 and 3.3 can be dualized in the obvious way.

4. Fibrations and cofibrations in g.e. categories. We now inves-

tigate what is additionally needed for an h-limit to be 2-limit.
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4.1 Definition. A map f : X → Y in a g.e. category C is called a

fibration if for any map g0 : Z → X and any homotopy α : fg0 = h0 ' h1,

h0, h1 : Z → Y there exists a homotopy β : g0 ' g1, g1 : Z → X, such that

fg1 = h1 and f ∗ β = α. The dual concept is that of cofibration.

4.2 Proposition. If {(u, f, α, v, g) | α : fu ' gv, u : P → A, f : A →

C, v : P → B, g : B → C} is a 2-pullback, then u, v are joint fibrations

in the sense that for every map k : X → P and homotopies ϕ : uk ' u′,

u′ : X → A, ψ : vk ' v′, v′ : X → B there is a homotopy µ : k ' k′,

k′ : X → P such that u′ = uk′, v′ = vk and ϕ = u∗µ, ψ = v ∗µ. Conversely

if {(u, f, α, v, g) | α : fu ' gv, u : P → A, f : A→ C, v : P → B, g : B → C}

is an h-pullback and u, v are joint fibrations then the given h-pullback is a

2-pullback.

Proof. Suppose we have a map k : X → P and homotopies ϕ : uk ' u′,

ψ : vk ' u′. Let Φ = (g ∗ψ) · (α ∗ k) · (f ∗ϕ−1) : fu′ ' gv′. By the definition

of pre 2-pullback there exists a map k ′ : X → P such that u′ = uk′, v′ = vk′.

By the definition of h-pullback there exists a homotopy µ : k ' k ′ such that

ϕ · (u ∗ µ−1) = eu′ (the trivial homotopy at u′) i.e., ϕ = u ∗ µ and ψ = v ∗ µ.

Hence u, v are joint fibrations.

To prove the converse we consider {(u, f, β, v, g) | β : fu ' gv, u : X →

A, f : A→ C, v : X → B, g : B → C}. By the definition of h-pullback there

exist a map h : X → P and homotopies ε : uh ' p, δ : vh ' q such that

β = (g ∗ δ) · (a ∗ h) · (f ∗ ε−1). Since u, v are joint fibrations there exists a

homotopy η : h ' h′, h′ : X → P such that uh′ = p, vh′ = q and ε = u ∗ η,

δ = v ∗ η. Thus β = ((gv) ∗ η) · (a ∗ h) · ((fu) ∗ η−1). As composition is a

functor of two variables, we get (α ∗ h′) · ((fu) ∗ η) = ((gv) ∗ η) · (a ∗ h) and

using this we get β = α ∗ h′. Thus we get the required 2-pullback.

4.3 Proposition. If the g.e. categoery C is closed under 2-pullbacks,

then any map f : X → Y can be factored as f = pt where p is a fibration
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and t is a homotopy equivalence.

Proof. Let {(p, 1Y , ϕ, q, f) | ϕ : 1Y p ' fq, f : X → Y, 1Y : Y → Y }

be the 2-pullback of f , 1Y . Let ef be the trivial homotopy at f . By the

definition of 2-pullback there is a factorization pt = f , qt = 1X and ϕ∗t = ef ,

t : X → P . By Proposition 4.2, p is a fibration and P is homotopy equivalent

to X since {(p, 1Y , q, f) | ϕ : 1Y p ' fq, f : X → Y, 1Y : Y → Y } is clearly an

h-pullback and limit objects of h-pullbacks are unique to within homotopy

equivalence.

The next result proves a similar fact for products.

4.4 Proposition. If P is a 2-product of a family {Xi : i ∈ I} then the

family of maps pi : P → Xi has joint fibration property in the sense that if

k : X → P and homotopies αi : pik ' hi are given then there is a homotopy

µ : k ' k′ such that pik
′ = hi and pi ∗ µ = αi for each i ∈ I. Conversely if

P is an h-product with projections pi : P → Xi then P is a 2-product with

respect to these projections if the family of maps pi has the joint fibration

property.

Proof. Suppose that we are given a map k : X → P and homotopies αi :

pik ' hi. By the definition of pre 2-product there is a factorization pik
′ = hi,

k′ : X → P . By the definition of h-product there exists a homotopy µ : k '

k′ such that (pi ∗ µ) · α−1
i = ehi

(trivial homotopy at hi) i.e., αi = pi ∗ µ.

Thus the family of maps pi : P → Xi has joint fibration property.

To prove the converse consider the family of maps fi : Z → Xi, i ∈ I.

By the definition of h-product there exist a map h : Z → P and homotopies

βi : fi → pih. Since the family of maps pi : P → Xi has joint fibration

property, there exists a homotopy v : h ' h′, h′ : Z → P such that pih
′ = fi

and pi ∗ v = β−1
i . Hence P is the pre 2-product of the family {Xi : i ∈ I}.

Propositions 4.2, 4.3 and 4.4 can be dualized in the obvious way.
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4.5 Example. Each projection map pi of a 2-product is a fibration

(i.e., we augument a homotopy for a single i ∈ I to a family of homotopies

for the whole set I).

5. Extensions of the Brown Complement Theorem with appli-

cations. We will use the following forms of limits, pullbacks and equalizers

in the g.e. category G of groupoids with respect to homomorphisms and

homotopies.

Limits in G : For a diagram S : Γ → G the points of the limit object L are

given by L = {(xi, αf ) : i ∈ Γ, f : i→ j in Γ, xi ∈ S(i), αf : S(f)(xi) ' xj}.

A path (γi) : (xi, αf ) ' (x′i, α
′
f ) in L is a family of paths γi : xi ' x′i in S(i)

for each i ∈ Γ with α′
f · S(f)(γi) = γj · αf (limit path condition). The cone

θ : kL → S is given by projections θi : ((xi, αf )) = xi, θf : ((xi, αf )) = αf .

For a cone ξ : kX → S, we obtain the factorization through X → L given by

x 7→ (ξi(x), ξf (x)) and for α : x → y, α 7→ ξi(α)). Thus θ : kL → S is a pre

2-limit. This is a strong 2-limit in the sense that for a homotopy of maps

τ : ξ ' ξ′ where ξ, ξ′ : kX → S and ξ, ξ′ are obtained from the limit cone

θ by ξ = θ · kh, ξ′ = θ · kh then there is a unique homotopy η : h ' h′ such

that τ = θ ∗η. One checks that τ : x 7→ (τi(x)). Note that for Γ discrete this

becomes the concept of strong 2-product and also note that for 2-products

a strong 2-limit as presently described is unique to within isomorphism.

Pullbacks in G: For f : A → C, g : B → C consider the quintuplet

{(u, f, α, v, g) | α : fu ' gv, u : P → A, v : P → B} where the points of

P are given by P = {(a, α, b) : a ∈ A0, b ∈ B0, α : f(a) ' g(b) (A0 means

the point of A) and a path in P is given by (θ, ϕ) : (a, α, b) ' (a′, α′, b′)

with θ : a ' a′, ϕ : b ' b′ and g(ϕ) · α = α′ · f(θ) and u, v are given by

u : (a, α, b), (θ, ϕ) 7→ a, θ and v : (a, α, b), (θ, ϕ) 7→ b, ϕ. For a general

quintuplet {(l, f, γ, h, g) | γ : fl ' gh, l : X → A, h : X → B} associated

to f , g we factorise the first quintuplet via, k : X → P given by x 7→

(l(x), γ(x), h(x)) and for a path β : x ' y, β 7→ (l(β), h(β)). This shows
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that the first quintuplet is a pre 2-pullback. It is also a strong 2-pullback:

For if (θ, ϕ) : (l, γ, h) ' (l′, γ′, h′) is a homotopy of the quintuplets in the

sense that θ : l ' l′, ϕ : h ' h′ and (g ∗ ϕ) · γ · (f ∗ θ
−1

) = γ′, l′ : X → A,

h′ : X → B and the two quintuplets are obtained by factorization through k,

k′ : X → P then there is a unique homotopy µ : k ' k ′ such that u ∗ µ = θ,

v ∗ µ = ϕ; specifically, µ : x 7→ (θ(x), ϕ(x)). It is easy to see that a strong

2-pullback in this sense is unique to within isomorphism.

Equalizers in G: For a family of maps (fi), f0 : X → Y , i ∈ J , J being an

index set with base point 0, consider the multi-quintuplet {(u, (fi), (ξi), u, f0)

| (ξi) : (fi)u ' f0u, u : E → X} where the points of E are given by E =

{(x, (ξi)) : x ∈ X0, ξi : fi(x) → f0(x), i ∈ (J − {0})} and the paths in E are

θ : (x, (ξi)) → (x′, (ξ′i)) with θ : x ' x′ and f0(θ) · ξi = ξ′i ·fi(θ) and u is given

by u : (x, ξi), θ 7→ x, θ. A general multi-quintuplet {(v, (fi), (βi), v, f0) |

(βi) : (fi)v ' f0v, v : Q → X} is factorized via, k : Q → E given by

z 7→ (v(z), (βi)(z)) and for ζ : z 7→ w, ζ 7→ v(ζ). It is easy to check that E is

a strong multiple 2-equalizer of the family of maps (fi), f0 in the sense that

if two multi-quintuplets {(v, (fi), (βi), v, f0) | (βi) : (fi)v ' f0v, v : Q → X}

and {(v′, (fi), (β
′
i), v

′, f0) | (β′
i) : (fi)v

′ ' f0v
′, v′ : Q → X} with ϕ : v ' v′

and (f0 ∗ ϕ) · βi · (f0 ∗ ϕ
−1) = β′i, are factored through k, k′ : Q → E, then

there is a unique homotopy µ : k ' k′ such that u ∗ µ = ϕ.

For what occurs later, we work out some induced limit maps.

5.1 Proposition. In the g.e. category G let {(u, (fi), (αi), u, f0) | αi :

fiu ' f0u, u : E → X)} and {(u′, (f ′i), (α
′
i), u

′, f ′0) | α
′
i : f ′iu ' f ′0u

′, u′ : E′ →

X)} be the multiple h-equalizers of the family of maps fi, f0 : X → Y and

f ′i, f
′
0 : X ′ → Y ′ respectively. Let p : X → X ′ be π0-surjective, q : Y → Y ′

be π1-surjective and ϕi : f ′ip ' qfi, ϕ0 : f ′0p ' qf0, i ∈ J , J being an index

set with base point 0. Then there exists a map k : E → E ′ with pu ' u′k

and k is π0-surjective.
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Proof. Points of E are (x, (ξi)), x ∈ E0 with ξi : fi(x) → f0(x) in Y and

paths are θ : (x, (ξi)) → (x′, (ξ′i)) with θ : x→ x′ and ξ′i = f0(θ) · ξi · fi(θ)
−1;

similarly for E ′. We define groupoid homomorphism k : E → E ′ by setting

k(x, (ξi)) = (p(x), ϕ−1
0 (x) ·q(ξi) ·ϕi(x)) whose right hand side is in E ′ and for

a path θ : (x, (ξi)) → (x′, (ξ′i)) setting k(θ) = p(θ) which also is in E ′ and this

means we have to check in Y ′ that f ′0p(θ) · ϕ
−1
0 (x) · q(ξi) · ϕi(x)) = ϕ−1

0 (x′) ·

q(ξ′i) · ϕi(x
′)) · f ′ip(θ). The homotopies ϕi : f ′ip ' qfi, ϕ0 : f ′0p ' qf0 and

θ : x→ x′ give qfi(θ) ·ϕi(x) = ϕi(x
′) ·f ′ip(θ), qf0(θ) ·ϕ0(x) = ϕ0(x

′) ·f ′0p(θ).

Thus ϕ−1
0 (x′) · q(ξ′i) ·ϕi(x

′) · f ′ip(θ) = ϕ−1
0 (x′) · qf0(θ) · q(ξi) · qfi(θ)

−1 · qfi(θ) ·

ϕi(x) = ϕ−1
0 (x′) · qf0(θ) · q(ξi) · ϕi(x) = f ′0p(θ) · ϕ

−1
0 (x) · q(ξi) · ϕi(x)), as

desired.

To show that k is an induced map in the sense required, we observe that

they are in fact equal, viz., pu(x, (ξi)) = p(x), u′k(x, (ξi)) = u′(p(x), ϕ−1
0 (x) ·

q(ξi) · ϕi(x)) = p(x).

In order to show that k is π0-surjective for any (y′, (η′i)) in E′, we have

to find (x, (ξi)) in E such that k(x, (ξi)) = (p(x), ϕ−1
0 (x) · q(ξi) · ϕi(x)) '

(y′, (η′i)), i.e., we have to find ε: p(x) → y′ and ξi : fi(x) → f0(x) such that

f ′0(ε) ·ϕ
−1
0 (x) ·q(ξi) ·ϕi(x) = η′i ·f

′
i(ε). Since p is π0-surjective we get such an

ε : p(x) → y′. To have η′i = f ′0(ε) ·ϕ
−1
0 (x) · q(ξi) ·ϕi(x) · f

′
i(ε)

−1, it is enough

to take ξi so that q(ξi) = ϕ0(x) ·f0(ε)
−1 ·η′i ·f

′
0(ε) ·ϕi(x)

−1 and the right hand

side here is a path qfi(x) ' qf0(x); this is possible since q is π1-surjective

(viz., θ : G→ H is π1-surjective means by definition that if h ∈ H0 is in the

image of θ so is any path at h and this easily implies that if h ,h′ ∈ H0 are

both in the image of θ so also is any path h ' h′).

5.2 Corollary. Let S, T : Γ → G be diagrams and θ : S → T a p-map

such that θ(i) : S(i) → T (i) is an h-equivalence for i ∈ Γ. Then an induced

limit map Lθ : LS → LT is π0-surjective.

Proof. The result follows from the above proposition since straight prod-

ucts of h-equivqlences of groupoids are obviously h-equivalences.
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5.3 Proposition. Let (u, f, α, v, g) | α : fu ' gv, u : P → X, f : X →

Z, v : P → Y, g : Y → Z} and {(u′, f ′, α′, v′, g′) | α′ : f ′u′ ' g′v′, u′ : P ′ →

X ′, f ′ : X ′ → Z ′, v′ : P ′ → Y ′, g′ : Y ′ → Z ′} be two h-pullbacks in the

g.e. category G. Let r : X → X ′, s : Y → Y ′ be π0-surjective and t : Z → Z ′

be π1-surjective and Φ : tf ' f ′r, Ψ : tg ' g′s. Then the induced map

k : P → P ′ is π0-surjective.

Proof. Points of P are given by P = {(x, y, ξ), x ∈ X0, y ∈ Y0, ξ : f(x) '

g(y)} and paths are (θ, ϕ) : (x, y, ξ) → (x, y, ξ) with θ : x → x, ϕ : y → y,

ξ = g(ϕ) · ξ · f(θ)−1 and u, v, α are defined by evaluating on (x, y, ξ) as x,

y, ξ respectively; similarly for P ′.

We define a groupoid homomorphism k : P → P ′ by setting k(x, y, ξ) =

(r(x), s(y),Ψ(y) · t(ξ) · Φ−1(x)) where r(x) ∈ X ′
0, s(y) ∈ Y ′

0 and for paths

(θ, ϕ) : (x, y, ξ) → (x, y, ξ) by setting k(θ, ϕ) = (r(θ), s(ϕ)), which again is

in P ′ and this means we have to check that g ′s(ϕ) · Ψ(y) · t(ξ) · Φ−1(x) =

Ψ(y) · t(ξ) · Φ−1(x) · f ′r(θ) in Z ′. From the homotopies Φ, Ψ, θ, ϕ we have

f ′r(θ) · Φ(x) = Φ(x) · tf(θ), g′s(ϕ) · Ψ(y) = Ψ(y) · rg(ϕ). Thus Ψ(y) · t(ξ) ·

Φ−1(x) · f ′r(θ) = Ψ(y) · t(ξ) · tf(θ) · Φ−1(x) = Ψ(y) · tg(ϕ) · t(ξ) · tf(θ)−1 ·

tf(θ) · Φ−1(x) = g′s(ϕ) · Ψ(y) · t(ξ) · Φ−1(x).

To check that k is an induced map in the sense required, viz., ru ' u′k,

sv ' v′k we observe that they are in fact equal, viz., ru(x, y, ξ) = r(x),

u′k(x, y, ξ) = u′(r(x), s(y),Ψ(y) · t(ξ) · Φ−1(x)) = r(x), ru((θ, ϕ)) = r(θ),

u′k((θ, ϕ)) = u′(r(θ), s(ϕ)) = r(θ); similarly the other one.

In order to show that k is π0-surjective consider any (x′, y′, ξ′) in P ′;

we have to find (x, y, ξ) in P such that k(x, y, ξ) = (r(x), s(y),Ψ(y) · t(ξ) ·

Φ−1(x)) ' (x′, y′, ξ′) i.e., we have to find ε : r(x) → x′, δ : s(y) → y′ and

ξ : f(x) → g(y) such that g′(δ) · Ψ(y) · t(ξ) · Φ−1(x) = ξ′ · f ′(ε). Since

r, s are π0-surjective we get such ε : r(x) → x′, δ : s(y) → y′. To have

ξ′ = g′(δ) · Ψ(y) · t(ξ) · Φ−1(x) · f ′(ε)−1 it is enough to take t(ξ) = Ψ(y)−1 ·
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g′(δ) · ξ′ · f ′(ε) ·Φ(x) and the right hand side is a path tf(x) → tg(y); this is

possible since t is π1-surjective.

In [3], the Brown Complement Theorem states that if all h-limits exit in a

g.e. category C and if T : C → G is π0-representable (i.e., there is an object K

and a p-natural transformation Hom(K,−) → T (−) which is π0-equivalence

for each value of the variable, i.e., [K,X] → πT (X) is a bijection [3]) and

π0-limit preserving then it is pseudo representable (i.e., that the values of

the above p-natural transformation, Hom(K,X) → T (X) are equivalences

of groupoids [3]). We prove that this theorem remains true for weak h-

limits replacing h-limits. Also we generalize it in the sense that if all weak

h-limits exist in C and if the p-functor T : C → G is π0-limit surjective and

π0-representable then it is h-representable in sense now to be defined. We say

that a p-functor T : C → G is h-represented by the objectK in C if there is a p-

natural transformation τ : Hom(K,−) → T (−) which induces for each X, an

h-equivalence (i.e., π0-equivalence+π1-surjective) τX : Hom(K,X) → T (X).

We say T is h-representable when there exists such a K.

5.4 Theorem. If all weak h-limits exist in the g.e. category C and

if T : C → G is π0-limit preserving and π0-representable then it is pseudo

representable.

5.5 Theorem. (Generalized Brown Complement Theorem) If all weak

h-limits exist in the g.e. category C and if T : C → G is π0-limit surjective

and π0-representable then it is h-representable.

Proof of Theorem 5.5. Since T is π0-representable there exists an

object K in C and a p-natural transformation τ : Hom(K,−) → T (−) such

that for each X ∈ C, τX : Hom(K,X) → T (X) is a π0-equivalence. By

the Yoneda Reduction Lemma [3] it is sufficient to prove that if, in the

terminology of [3], the Yoneda transformation Y : Hom(K,−) → T (−)

defined by η = YK(1K) ∈ T (K) induces a π0-equivalence YX : Hom(K,X) →
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T (X) then for each f : K → X the induced map π1f : π1K → π1(T (f)(η)) =

π1(YX(f)) is a surjection.

We take an indexing set A+ {0} with base point 0 and the diagram de-

fined by the family of maps X → X indexed over A+{0}, each one of which

is the identity map. We construct weak h-equalizer cones of this family and

its images under T and Hom(K,−) respectively as {(λ, (1X ), (βi), λ, 1X ) |

(βi) : (1X)λ ' 1Xλ, λ : C → X}, {(l, (1T (X)), (αi), l, 1T (X) | (αi) : (1T (X))l

' 1T (X)l, l : E → T (X)}, {(l′, (1Hom(K,X)), (α
′
i), l

′, 1Hom(K,X)) | (α′
i) :

(1Hom(K,X))l
′ ' 1Hom(K,X)l

′, l′ : E′ → Hom(K,X)}. By the definition of

weak h-equalizer there exist factorizations a : T (C) → E, b : Hom(K,C) →

E′ such that T (λ) ' la, Hom(K,λ) ' l′b and a is π0-surjective since T is

π0-limit surjective. Also by the definition of weak h-equalizer there exists

a map k : E′ → E such that YX l
′ = lk. In fact we define k by setting

(f, (εi)) 7→ (YX(f), (YX(εi))) for (εi) : (f) → f in Hom(K,X) and the

path (ξ) : (f, (εi)) → (g, (δi)) is sent to (YX(ξ)) : (YX(f), (YX(εi))) →

(YX(ξ), (YX (δi))). Also we have T (λ)YC ' YXHom(K,λ) and by weak

h-equalizer we have aYC ' kb. Since a is π0-surjective and YC is a π0–

equivalence, kb and hence k are π0-surjective and it is the latter which is

of significance to us. We put x = T (f)(η) = YX(f) and take A to be the

family of all paths a : x→ x. Consider the element (x, (γa)) = (x, (a)) in E.

Since k is π0-surjective there exists an element y = (f ′, (εa)) in E′ such that

(x, (a)) ' k(f ′, (εa)) and since YX is a π0-equivalence it follows that f ' f ′.

Hence by a path in E ′ we may suppose that y = (f, (εa)). Thus there is a

path ξ : x→ YX(f) such that ξa = YX(εa)ξ. Hence YX(εa) = ε · a · ε−1 and

the desired surjectivity follows.

Proof of Theorem 5.4. In this case a, b and YC are π0-equivalences

and hence k is a π0-equivalence. Thus for ε : f ' f in Hom(K,X) if YX(ε)

is trivial i.e., YX(ε) = eYX(f) then, since k is a π0-equivalence, it is clear that

ε = ef . This establishes the injectivity.
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We want to obtain a converse to the Theorem 5.5. We say that T :

C → G is π0-equalizer (multiple) surjective if for every family of maps (fi),

f0 : X → Y in C, i ∈ A, A being an index set with base point 0, the induced

map T (E) → E is π0-surjective where E is a multiple h-equalizer of the

family of maps fi, f0 in C and E is a multiple h-equalizer of the family of

maps T (fi), T (f0) in G. The following result is the first step.

5.6 Proposotion. If all weak h-limits exist in C and if T : C → G is

h-representable then (i) T is π0-eqzualizer (multiple) surjective and (ii) T is

π0-product preserving.

Proof. (i) For the family of maps (fi), f0 : X → Y in C, i ∈ A, A being

an index set with base point 0 let E be a multiple weak h-equalizer of fi,

f0 in C and (E ′, e′) the multiple h-equalizer of the family of maps T (fi),

T (f0) in G. We prove that the induced map t : T (E) → E ′ is π0-surjective.

Let (E, e) be the multiple h-equalizer of (Hom(K, fi)) and Hom(K, f0); τE :

Hom(K,E) → T (E); τX : Hom(K,X) → T (E), τY : Hom(K,Y ) → T (E)

are h-equivalences. Let k : E → E ′ be the induced map with τXe = e′k.

We note that the induced map s : Hom(K,E) → E is a π0-equivalence

and ks = tτE. It is enough to show that k is π0-surjective and this fol-

lows from Proposition 5.1. (ii) Let
∏
Xi denote the weak h-product of the

family of objects {Xi} in C. We have a π0-equivalence Hom(K,
∏
Xi) →

∏
Hom(K,Xi) and an h-equivalence τΠXi

: Hom(K,
∏
Xi) → T (

∏
Xi). Also

∏
τXi

:
∏

Hom(K,Xi) →
∏
T (Xi) is a π0-equivalence since each τXi

:

Hom(K,Xi) → T (Xi) is an h-equivalence. Now it is clear that there ex-

ists a π0-equivalence T (
∏
Xi) →

∏
T (Xi) as required.

5.7 Proposition. If all weak h-limits exist in C and if T : C → G is π0-

equalizer (multiple) surjective and π0-product preserving then T is π0-limit

surjective.
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Proof. We construct a weak h-limit object of a diagram F : C → G

as a weak h-equalizer of the constructed maps q, g :
∏
F (i) →

∏
A(f) as

described in Theorem 3.1. Let L be a weak h-equalizer of q, g; E a weak

h-equalizer of T (q), T (g) and E0 a weak h-equalizer of s, t:
∏
T (F (i)) →

∏
T (A(f)). Since T is π0-product preserving, we have π0-equivalences ϕ :

T (
∏
F (i)) →

∏
T (F (i)), ψ : T (

∏
A(f)) →

∏
T (A(f)). Since T is π0-limit

surjective we have a π0-surjective map e : T (L) → E. We observe from

Theorem 5.5 that ϕ, ψ are h-equivalences. Hence by Proposition 5.1, k is

π0-surjective.

From Propositions 5.6 and 5.7 we obtain the following.

5.8 Proposition. If all weak h-limits exist in C and if T : C → G is

h-representable then T is π0-limit surjective.

Theorems 5.4 and 5.5 have as applications, the following two theorems

which are the main results.

5.9 Theorem. If the g.e. category C admits weak h-limits then any

weak h-coproduct is a strong h-coproduct.

Proof. Let L be a weak h-coproduct of a family of objects {Ai : i ∈

Γ}. Then we have π0-equivalence Hom(L,X) → Hom(S, kX) where S :

Γ → C is a diagram defined by S(i) = Ai, i ∈ Γ and Γ is discrete. Since

Hom(L, k−) ≈
∏

i∈Γ Hom(S(i),−) and each component Hom(S(i),−) is π0-

limit preserving (i.e., Hom functors are π0-limit preserving ([3], p.404)) it

follows that the p-functor Hom(L, k−) : C → G is π0-limit preserving. By

Theorem 5.4, Hom(L,X) → Hom(S, kX) is an equivalence and thus any

weak h-coproduct is a strong h-coproduct.

Dually, we see that in the presence of weak h-colimits every weak h-

product is a strong h-product.
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5.10 Theorem. Assume that all h-limits and weak h-colimits exist in

C. Then each weak h-colimit is an h-colimit.

Proof. For a diagram T : Γ → C we have π0-equivalence Hom(L,X) →

Hom(T, kX) where L is a weak h-colimit of T . We show that the functor

Hom(T, k−) : C → G is π0-limit surjective. Hence by Theorem 5.5, it follows

that Hom(L,X) → Hom(T, kX) is an h-equivalence and thus the weak h-

colimit is an h-colimit.

To prove the required π0-limit surjectivity we proceed as follows: Cor-

responding to T : Γ → C we form Hom(T,X) which is the image of the

diagram T through the functor Hom(−, X). Let LHom(T,X) be the 2-limit

groupoid of this functor. So the induced Hom(T, kx) → LHom(T,X) is an

isomorphism of groupoids. We observe that strict p-maps of diagrams of

groupoids and their homotopies induce maps and homotopies of the 2-limit

groupoids canonically so that 2-limit formation gives a strict functor. Hence

if we put LHom(T,X) = M(X) each f , g : X → Y and α : f ' g induces

M(f), M(g) : M(X) →M(Y ), M(α) : M(f) 'M(g) and M(−) becomes a

strict functor and this strict functor corresponds through the above isomor-

phism to the strict functor structure on Hom(T, k−), alluded to above. If we

apply M to a diagram S : ∆ → C we get LHom(T, S) : ∆ → G (to remove

ambiguity we write this as LΓHom(T, S)). This diagram itself has a 2-limit

groupoid which we write as L∆LΓHom(T,L). We note that we could have

also alternatively formed first the diagram L∆Hom(T, S) : Γ → G and then

its 2-limit LΓL∆Hom(T, S). To see what is required let kL → S be an h-limit

cone. This induces kN → LΓHom(T, S) where N = LΓHom(T,L) and then

an induced map χ : N → LΓHom(T, S); we must show that χ is π0-surjective.

We note that Hom(T, S) can itself be ascribed an obvious meaning through

the various induced maps as a diagram (T, S) : Γopp ×∆ → G. We note that

for any diagram U : Γopp × ∆ → G we can form in addition to its 2-limit

directly first the iterated partial 2-limits that are diagrams LΓU : ∆ → G,

L∆U : Γ → G and then the iterated 2-limit groupoids L∆LΓU , LΓL∆U and
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this iterated procedure when applied to (T, S) gives these L∆LΓ, LΓL∆ on

the symbol Hom(T, S).

In the following Lemma 5.11 we shall show that L∆LΓU , LΓL∆U are

isomorphic. Through this isomorphism we shall also show that χ appears

as the induced map, under LΓ of Hom(T,L) → L∆Hom(T, S) which is an

induced map of limits under Hom(T,−). The result will then follow by

Corollary 5.2 (and this also explains why it is not sufficient to suppose merely

weak h-limits).

To introduce Lemma 5.11 we first define for graphs Γ, ∆ the graph

Γopp ×∆; this comprises points (i, j) with i ∈ Γ0, j ∈ ∆0 and paths that are

of two kinds (i, b) : (i, k) → (i, l) for i ∈ Γ0, b : k → l and (a, k) : (i, k) →

(j, k) for a : i → j, k ∈ ∆0. Thus for U : Γopp × ∆ → G and for each

i → j, k → l we suppose that U(−, l)U(i,−) = U(j,−)U(−, k). We form

for each i ∈ ∆0 the 2-limit L∆U(i,−) of U(i,−) : ∆ → G comprising points

((xi,k), (αi,g)), k ∈ ∆0, g ∈ ∆, αi,g : U(i, g)(xi,k) ' xi,l for g : k → l and

paths (γi,k) : ((xi,k), (αi,g)) ' ((x′i,k), (α
′
i,g)), k ∈ ∆0, g ∈ ∆, γi,k : xi,k ' x′i,k

for g : k → l, α′
i,g · U(i, g)(γi,k) = γi,l · αi,g.

For S, T : Ω → G and θ : S → T the canonical limit map Lθ : LS → LT

is defined as follows: for f : i→ j, ((xi), (αf )) 7→ ((θi(xi)), (θj(αf ) · θf (xi))),

(γi) 7→ (θi(γi)). Also for f : i → j and the diagram U : Γopp × ∆ → G the

maps U(f, k) : U(i, k) → U(j, k) define a strict map U(f,−) : U(i,−) →

U(j,−) and we obtain the induced L∆U(f,−) : L∆U(i,−) → L∆U(j,−)

and these maps go together to give a map L∆U : Γopp → G. The 2-

limit LΓL∆U of this comprises for its points: ((xi,k), (αi,g), (αf,k)), αi,g :

U(i, g)(xi,k) ' xi,l, g : k → l and for f : i → j, αf,k : U(i, k)(xi,k) ' xj,l

describes a path ((U(f, k)(xi,k)), ((U(f, l)(αi,g))g:k→l)) ' ((xj,k), (αj,g)) pro-

vided the corresponding limit path condition is satisfied and this is eas-

ily seen to be for points αf,l · U(f, l)(αi,g)) = αj,g · U(j, g)(αf,k), and for

paths γi,k : ((xi,k), (αj,g), (αf,k)) ' ((x′i,k), (α
′
i,g), (α

′
f,k)), for each i, (γi,k) :

((xi,k), (αj,g)) ' ((x′i,k), (α
′
i,g)) with α′

i,g · U(i, g)(γi,k) = γi,l · αj,g together
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with a path collecting (with respect to Γopp) condition of its own, which

reduces to: α′
f,k · U(f, k)(γf,k) = γj,k · αf,k.

5.11 Lemma. LΓL∆U ' L∆LΓU .

Proof. This follows by symmetry.

Proof of Theorem 5.10 continued: For the final point, we examine

the structure of the mapping χ. From the limit cone ((hi), (hf )) : kL →

S(hk : L→ S(k), hg : S(g)hk ' hl, for all k ∈ Γ0 and g : k → l) the mapping

χ collects the assignments (di : T (i) → L, df : djT (f) ' di) → (hkdi :

T (i) → S(k), hk ∗ df ), (δi : di ' d′i) → (hk ∗ di). The first part (i.e., point

part) puts itself into (i.e., in the language of the Lemma 5.11) a point of

L∆LΓ(T, S) by (A) : ((di), (df )) → ((hkdi), (hk ∗ df ), (hg ∗ di)) (through the

correspondence of the Lemma 5.11 which is ultimately symbolized as an iden-

tity) which is same as the result of applying LΓ to Hom(T,L) → L∆(T, S)

because this map itself is merely (A) with the indices from Γ individual-

ized. By contrast the second part (i.e., path part) is already presented in

L∆LΓ(T, S).

6. Smallness conditions. We call a g.e. category C, h-complete

(weakly h-complete) if it admits all h-limits (all weak h-limits) i.e., for any

diagram S : Γ → C, Γ an arbitrary graph, the h-limit (weak h-limit) of S

exists in C. In this section our aim is to find appropriate “smallness con-

ditions” (as they are called) for an h-complete g.e. category to admit an

h-colimit or a weak h-colimit of a given diagram S : Γ → C. We shall fit this

into a general scheme. Let C be h-complete. First we consider a π0-limit

preserving pseudo functor T̃ : C → G. Let πT̃ = T : πC → S (category of

sets and functions). Our aim is to discuss smallness conditions on certain

classes for T̃ to be π0-representable, i.e., T to be representable. In fact we
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discuss conditions for the existence of h-colimits assuming always the exis-

tence of h-limits. By the previous work of this paper, this problem reduces

to the discussion of the π0-representability of the functor Hom(S, k−) = T̃ ,

S : Γ → C where the condition of π0-limit preservation is to be relaxed.

The smallness conditions appearing as (S1) and (S2) below are already

familiar enough in ordinary category theory as representability conditions for

T . In such contexts in ordinary category theory we suppose the category to

be closed to limits (especially to products and equalizers, which are the limits

the analysis reduces to). But here we suppose, instead, closure to h-limits

in C. The puzzles, alluded to above, stem from this shift: limits to h-limits.

Namely, we work on how h-limits, which fundamentally involve the structure

of C itself (in fact the homotopies, which disappear in the formation of πC),

can leave anything more than indistinct traces of themselves on πC; in fact

these traces reduce to what we have pointed out already that h-products in

C become products in πC and that h-limits in C become quasi-limits in πC.

However as we shall see, below, there is one more effect of h-limits on πC

which is possibly more significant. But for the moment we shall dwell a little

on quasi-limits and quasi-equalizers.

Firstly we note that an h-equalizer is a quasi-equalizer. Secondly if T̃ is

π0-limit preserving, T applied to an h-equalizer diagram E → Y ⇒ Z gives a

quasi-equalizer diagram T (E) → T (Y ) ⇒ T (Z). Moreover if a functor (still

denoted T , for brevity) sends one quasi-equalizer of a pair of maps Y ⇒ Z

to a quasi-equalizer then it does so to all quasi-equalizers of Y ⇒ Z. Indeed

if E → Y , E′ → Y are quasi-equalizers of the pair, we get a factorization

E → E′ → Y of the first through the second (to within homotopy in C).

Hence if the image of the first T (E) → T (Y ) is an equalizer of the image

pair so is the image of the second T (E ′) → T (Y ) because when M → T (Y )

equalizes the image pair then it factorizes as M → T (E) → T (E ′) → T (Y )

to within homotopy. Thus if we forget how T arises through h-limits in C

there nevertheless remains the crucial fact that it sends quasi-equalizers to
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quasi-equalizers. The following result is worthy of notice in any discussion

involving quasi-equalizers (and corresponding results are easily obtained for

quasi-limits).

6.1 Lemma. If E
u
→Y ⇒ Z is a quasi-equalizer diagram in the homo-

topy class category πC then any other quasi-equalizer in πC is of the form

E′ v
→E

v
→Y and uv is itself a quasi-equalizer if and only if u can be factored

as E
w
→E′ v

→E
u
→Y .

Proof. Clearly if E ′ t
→Y ⇒ Z is a quasi-equalizer then t = uv for some

v : E′ → E. If uv is a quasi-equalizer then uv = uvw for some w : E → E ′.

Conversely if the factorization of u exists and s equalizes the pair of maps

Y ⇒ Z then s = uk for some k : U → E because u is a quasi-equalizer.

Thus s = uvwk = (uv)(wk). Hence uv is a quasi-equalizer.

A more significant effect of h-limits on πC appears in [3] in a rather

hidden form as a lemma to the effect that if r : X → X is a homotopy

idempotent (i.e., rr ' r) then there exist maps u : Y → X and v : X → Y

such that r = uv, vu = 1Y . In this context in ordinary category theory (i.e.,

in πC) u : Y → X is called a retract for or associated to r and v : X → Y

the corresponding retraction. In ordinary category theory, in the presence

of equalizers the existence of a retract for an idempotent r is abundantly

clear as it appears as the equalizer of r and 1X . In [3] the retract is provided

through the h-limit cone of the sequential diagram · · · → X
r
→X

r
→X. This

h-limit cone is defined by a family of maps Y → X labelled over the integers;

these maps are evidently homotopic to each other and may be replaced (via.,

the homotopy of their limit cones) by a single map u : Y → X with u ' ru.

However all we need as given in [3] is that: Idempotents in πC admits retracts.

6.2 Smallness conditions. The conditions on T̃ (or T ) for π0-repre-

sentability (or on T for representability) referred to above are:

(S0). T̃ is π0-limit preserving.
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From the above discussion this can be replaced by its effect on T , namely,

that T preserves products and sends quasi-equalizers to quasi-equalizers. To

be as general as possible we temporarily replace πC by an ordinary category

D and T by U : D → S and then in place of (S0) we suppose that:

(S′
0). D admits quasi-products and quasi-equalizers and its idempotents

admit retracts; furthermore, U sends quasi-products to quasi-products and

sends quasi-equalizers to quasi-equalizers.

One advantage of this more general form is that it covers the case

T = πT̃ = Hom(S, k−), for a diagram S : Γ → D = πC where D ad-

mits actual products, which are preserved by T . Also the condition of π0-

equalizer surjectivity of T̃ obviously implies that T sends h-equalizers to

quasi-equalizers. Expressed in terms of the original T , the next condition

appears as:

(S1). There is a set-indexed family yi ∈ T (Yi), i ∈ I, such that for any

X and for any x ∈ T (X), there is an i ∈ I and a map f : Y → X with

T (f)(yi) = x.

We note that if we replace set-indexed family here by class then we can

say that the class generates the functor T . We note that the class which is

the union of all Y in C is clearly a generating class. Hence we may interpret

(S1) by saying that among the various generating classes there is one that is

a set.

By (S′
0) we consider a quasi-product Y of {Yi : i ∈ I} with quasi-

projections pi and y ∈ T (Y ) with T (pi)(y) = yi, for all i ∈ I. By factorizing

through the various projections for each x ∈ T (X), we have a map f : Y → X

such that T (f)(y) = x. This means that the generating family is replaced

by a single element — a generator of T , as we shall call it. If we write all

this relative to U : D → S this may be expressed (equivalent to (S1)) by

(S′
1). The Yoneda transformation τ . HomD(Y,X) → U(X) generated by

a certain y ∈ U(Y ) is a surjection.
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Hence we envisage U(X) as a quotient of HomD(Y,X) through the re-

lation f ≡ f ′: Y → X meaning U(f)(y) = U(f ′)(y). The role of further

condition - (S2) below, is to replace Y so that the surjection becomes a bi-

jection and by this way we may say that the relation f ≡ f ′ is representable.

By condition (S′
1) there exists of a single generator S → kY ; in general this

cone precisely refers to condition (S′
1) as the quasi-representability of U . As-

suming (S′
1), we now require that the class of equivalent pairs as described

above is generated through composition by a class of such pairs.

(S2). There is a family fi, gi : Y ⇒ Zi with fi ≡ gi and such that if

h ≡ k then for some i ∈ I, there is a factorization h = mfi, k = mgi.

As we reduced (S1) to (S′
1), we may take Z a quasi-product of {Zi : i ∈ I}

and replace the family {fi, gi : i ∈ I} by a single generating equalizing pair

Y ⇒ Z (say). Thus we have a diagram HomD(Z,X) ⇒ HomD(Y,X) →

U(X) in which U(X) appears as the coequalizer of the maps f ∗, g∗ on

the left. We note that this coequalizer is obtained from the second set

HomD(Y,X) by an equivalence relation which is merely x ≡ y ⇔ x = f ∗(z),

y = g∗(z) and not as we might expect in general, its transitive, symmetric,

reflexive closure. We prove the next result essentially following an argument

of [3].

6.3 Theorem. Under the above smallness conditions U is representable.

Proof. Since U sends quasi-equalizers to quasi-equalizers and U(f)(y)

= U(g)(y) it follows that there is y ∈ U(E) such that U(q)(y) = y. Thus

there is s : Y → E with U(s)(y) = y (because y generates U). The

maps s∗ : HomD(E,X) → HomD(Y,X), τ : HomD(Y,X) → U(X), q∗ :

HomD(Y,X) → HomD(E,X), τ ′ : HomD(E,X) → U(X), yield that τ ′ =

τs∗, τ ′q∗ = τ . We observe that q∗s∗ is idempotent. In fact if τ(h) = τ(k)

then U(h)(y) = U(k)(y) (because y generates U) and so hq = kq since

U(hq)(y) = U(kq)(y); this means that if τ identifies two elements, so does

q∗. Hence τ ′ is injective on the image of q∗ and since τ is surjective τ ′ must
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be bijective on this image. Thus τ ′q∗ and q∗s∗ are bijective on the image.

Hence q∗s∗(1E) i.e., sq = r (say) is an idempotent. Thus there is a retract

u : K → E associated to r and if v : E → K is the corresponding retraction

then the composition of τ ′ with v∗ gives a bijection HomD(K,X) → U(X).

6.2 Remarks on the above proof. From the above bijection it is

clear that q′ = qu : K → Y is an equalizer of f , g. Also if we replace the

quasi-equalizer q : E → Y by q′ : K → Y and with s′ corresponding to s we

see that q′s′ is the identity and hence q′ is itself a retract of Y .

The above discussion for a g.e. category C admitting weak h-limits gives,

equally, conditions for the existence of a weak h-colimits in C itself and an

actual colimit in πC. Our discussion above relates (S′
1) to the existence of

a quasi-colimit: We consider a pair of maps u, v : A ⇒ B with a quasi-

coequalizing diagram A ⇒ B → Y together with a homotopy in the h-case.

By condition (S2) we have A ⇒ B → Y ⇒ Z (f, g : Y ⇒ Z, s : B → Y ). In

the h-case we have α : su ' gs and ϕ : fs ' gs with (ϕ∗v)·(f ∗α)·(ϕ−1 ∗u) =

g∗α such that for any h, k with ψ : hs ' ks and (ψ∗v)·(h∗α)·(ψ−1∗u) = k∗α

there is t : Z → X with h = tf , k = tg. In the ordinary case the conditions

on f , g are merely: fs = gs such that if hs = ks then h = tf , k = tg for

appropriate t.

Thus we obtain the existence of any weak h-colimits and these are spec-

ified from a quasi-colimit S → kY via the existence of an appropriate pair

of maps Y ⇒ Z with the coequalizing properties as described above. By the

earlier results (Section 5) we conclude that all such weak h-colimits are actual

h-colimits when C is h-complete rather than merely weakly h-complete.
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