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Abstract--In the present study the SERR technique has been reformulated to deal with extrusion of sections 
with/without re-entrant corners. A comprehensive computational model has been developed for this refor- 
mulated technique. The model has been used to analyse extrusion of I-section bars and the computed results 
have been compared with experimental values available in literature. ~ 1997 Elsevier Science Ltd. 
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coefficients in the equation to the plane containing the ith triangular face of a tetrahedron 
area of the ith triangular face in the assembly of tetrahedrons 
cross-sectional area of the billet 
total number of faces in the assembly of tetrahedrons 
average extrusion pressure 
prescribed velocity of the billet 
yield stress in uniaxial tension 
function representing the equation of a plane 
absolute velocity discontinuity at the ith face 
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1. I N T R O D U C T I O N  

Upper bound analysis of three-dimensional metal forming processes in general and extrusion in 
particular attracted great attention in the late 1960s and early 1970s. A number of techniques have 
since then been proposed to generate kinematically admissible velocity fields for such analyses. 
These include the Dual Stream Function method of Nagpal and Altan [1], and Nagpal [2], the 
Conformal Transformation technique and the Generalized Velocity Field technique of Yang et  al. 
[3-6] and the method of proportional deformation developed by Gunasekara and Hoshino [7, 8]. 
However, all these techniques have been used to-date to analyse problems where any intermediate 
section in the deformation zone can be expressed as a continuous function of the space co-ordinates. 
When the extruded product involves singularities in the form of re-entrant corners (such as I- and 
T-sections), applying these methods may lead to considerable difficulties. 

In a later paper, Gatto and Giarda [9] proposed a method for constructing kinematically 
admissible discontinuous velocity fields for upper bound analysis of three-dimensional plastic 
deformation problems. This method, known as the SERR (Spatial Elementary Rigid Regions) 
technique, is a generalization of the PERR (Planar Elementary Rigid Regions) method devised to 
analyse plane strain deformation problems [9]. The SERR technique envisages the deformation 
zone to consist of elementary rigid blocks separated by planes of velocity discontinuity. This process 
of discretisation into rigid blocks allows the spatial components of the internal velocity vector to be 
determined from the mass continuity condition applied at the bounding faces of the rigid blocks. 
Therefore the blocks must be necessarily tetrahedral in shape. This procedure was used by the above 
authors to find upper bound solutions for extrusion of polygonal bars from corresponding poly- 
gonal billets. However, their formulation appears to be unsuitable for analysing extrusion processes 
when the product and the billet have different sections, especially when the product section has 
re-entrant corners. The purpose of the present study is to reformulate the SERR technique so that it 
can be applied to analyse extrusion of bars of any cross section from billets of any other cross section 
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when the product and billet boundaries are defined by planar surfaces. The new formulation is then 
used to analyse the extrusion of 1-section bars from square or rectangular billets. However, round 
billets have been excluded from this study because of the difficulty in having planar bounding faces 
for the SERR blocks in this case unless simplifying approximations are made. 

2. T H E  V E L O C I T Y  F I E L D  I N  A N  S E R R  

We consider a tetrahedral block (Spatial Elementary Rigid Region) ABCD as shown in Fig. 1 with 
velocity vectors V,, V:, and 173 prescribed on the planar faces ABC, ACD, and ABD respectively. Let 
the velocity vector internal to this block be 17. According to Gatto and Giarda I-9], 17 can be 
determined by a simple graphical construction. Alternatively, I7 can be determined by applying the 
mass continuity condition to the bounding faces of the tetrahedron and then simultaneously solving 
the resultant set of velocity equations outlined. 

Let the equation of the plane containing the ith face of the tetrahedron ABCD be 

Oi =-- a i x  + biy + ciz + 1 = 0 (1) 

Then the mass continuity condition can be applied to this face in the form 

171" di = 17" Jq~, i = 1, 2, 3 (2) 

where di is the unit normal vector associated with the ith face given by 

Vq~ 
t~, = I V4)il (3) 

The coefficients a~, b~, and ci in Eqn (1) for the plane containing the ith face can be obtained using the 
co-ordinates of the vertices of the tetrahedron. Then the three velocity equations generated by 
applying the continuity relation [Eqn (2)] give the three components of 17 on solution. This analytic 
procedure is well-suited for implementation on a digital computer. 

3. T H E  D I S C R E T I S A T I O N  P R O C E S S  

The deformation zone in case of metal forming that occurs in a closed channel (like extrusion) may 
be subdivided into regions that are prismatic, pyramidal or tetrahedral in shape or a combination of 
these shapes. Since the elementary blocks are to be tetrahedral, the prismatic or pyramidal subzones 
are ultimately discretised into tetrahedrons. A pyramid can be discretised into two tetrahedrons by 
dividing the quadrilateral base into two triangles. Thus there are two ways of discretising the 
pyramid into tetrahedral blocks. The two tetrahedrons of a pyramid together have seven planar 
faces Crepresented by equations such as Eqn (1)] and hence seven velocity equations can be 
generated by applying the mass continuity condition to these faces. The number of unknown 
velocity components is also seven, six for the two internal velocity vectors associated with the two 
tetrahedrons and one for the exit velocity (whose direction is known from the physical description of 
the problem). In the same way, a prismatic subzone can be discretised into three tetrahedrons in six 
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different ways. The prismatic subzone has three internal velocity vectors and 10 independent faces 
that generate 10 velocity equations to uniquely establish the 10 velocity components (nine for the 
three internal velocity vectors and one at the exit) for this subzone. 

4. D I S C R E T I S A T I O N  O F  T H E  D E F O R M A T I O N  Z O N E  O F  T H E  I - S E C T I O N  

The geometry for the extrusion of an I-section from a square or rectangular billet through a 
rough square die is shown in Fig. 2. The die faces being rough, dead metal zones are assumed to form 
on the die faces in the manner shown in the figure. From the consideration of symmetry only 
one-quarter of the deformation volume is taken as the domain of interest for the present analysis as 
shown in Fig. 3. 

To visualise the way the deformation zone is discretised in the present analysis, we refer to the 
discontinuous velocity fields used for computing upper bound loads for the corresponding plane 
strain problem [10]. These are shown in Figs 4(a,b). The deformation zone shown in Fig. 4(a) 
consists of a single rigid triangle ABC obtained by joining the dead metal boundary AB with point 
C on the axis of symmetry. The deformation zone in Fig. 4(b) consists of two rigid triangles ABD and 
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ADC where AB is the dead metal boundary, C is a point on the axis of symmetry and D is a point on 
the plane of extrusion as shown. The co-ordinates of the points B and C in Fig. 4(a) and points 
B,C, and D in Fig. 4(b) are the optimisation parameters with respect to which the extrusion pres- 
sure is minimised. In the present three-dimensional analysis, points like C and D are referred 
to as floating points, while co-ordinates of points such as B represent the height of the dead metal 
zone. 

The above approach is extended to formulate kinematically admissible velocity fields for the 
present three-dimensional problem by suitably choosing floating points on the extrusion axis and 
elsewhere in the deformation cavity as demonstrated in Figs 5(a,b,c). 

The velocity field shown in Fig. 5(a) is obtained when a single floating point on the extrusion axis 
is joined with dead metal boundaries as shown (Single Point Formulation). It is clear from this figure 
that the deformation zone in this case consists of two pyramidal subzones and two tetrahedral 
subzones. Since each pyramid can be discretised into two tetrahedrons, the entire deformation zone 
is discretised into six tetrahedral rigid blocks (or SERR) in four ways (2 x 2 x 1 x 1). The best 
discretisation scheme is obviously the one that gives the lowest upper bound. 

When two floating points (Double Point Formulation) are used as in Fig. 5(b), the deformation 
zone is subdivided into three pyramids and one tetrahedron. Thus there are seven tetrahedral rigid 
blocks which can be chosen in eight different ways (2 × 2 x 2 x 1). As before the best discretisation 
scheme is the one giving the lowest upper bound. 

When three floating points (Triple Point Formulation) are taken as shown in Fig. 5(c), the 
deformation zone gets subdivided into one prismatic and three pyramidal subzones. These subzones 
can be discretised into nine tetrahedral rigid blocks in 48 different ways (6 x 2 x 2 × 2) and the best 
discretisation scheme is that which gives the lowest upper bound. Table 1 gives the summary of the 
discretisation details for the three formulations discussed above. 

In the above model it has been assumed that the dead metal surface corresponding to the web of 
the I-section diverges from a single point, T3-  4. In order to make the model more general, the triple 
point formulation was modified by taking two extra points Txl and T~2 on the line segment 
T 3 - , *  T 3 .  It was assumed that points T~ ,  Tx2 and T3-4 corresponded to points I8, 19 and 
I9 - t 0 respectively on the die orifice. As a result of this modification in the model, the shapes of the 
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subzones of deformation changed and the number of SERR blocks increased as shown in Fig. 5(d) 
and summarised in Table 1. For the 11 tetrahedral blocks that resulted due to this modification, 
there were 34 independent bounding faces generating 34 velocity equations. 

For easy visualisation of the metal flow and the relation existing among the various internal 
velocity vectors, the prismatic subzone T2-3 T6- 7DT3ITE is isolated from Fig. 5(c) and redrawn in 
Fig. 6(a). The characteristics of the faces constituting this subzone are explained in the figure itself. 
The discretisation of this subzone into three tetrahedral blocks according to a typical scheme is 
shown in Fig. 6(b). In tetrahedron T2-a T316- 7D, face T2- 316- 7D lies on a plane of symmetry. So 
the internal velocity vector for this SERR block is parallel to the plane T2 3T3D. Secondly, the face 
T2-3T316-7 is a dead metal face admitting no mass flow in direction normal to itself. Hence the 
internal velocity vector is also parallel to this face. These conditions are enforced by taking the right 
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Table 1. Summary of discretisation schemes 

Formulation 

Single Double Triple M odified 
Item point point point triple point 

Types of 2 pyramids, 3 pyramids, 1 prism, 3 prism, 
subzones 2 tetrahedron 1 tetrahedron 3 pyramids 1 pyramid 
Total No. 2 + 2 + 1 + 1 = 6  2 + 2 + 2 + 1 = 7  3 + 2 + 2 + 2 = 9  3 + 2 + 3 + 3 = 1 1  

of rigid 
blocks 
No. of 2 × 2 × 1 x 1 = 4  2 × 2 x 2 x l = 8  6 × 2 x 2 x 2 = 4 8  6 × 2 × 6 x 6 = 4 3 2  

discretisation 
schemes 
No. of 19 22 28 34 

trianglular 
faces 

No. of 6×3 = 18for 7×3=21  for 9×3 =27 for 11×3=33 for 
velocity 6 SERR and 7 SERR and 9 SERR and 11 SERR and 

components 1 at exit 1 at exit 1 at exit 1 at exit 
Total = 19 Total = 22 Total = 28 Total = 34 
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h a n d  side equal  to  zero when Eqn  (2) is app l ied  to these faces. Thi rd ly ,  the face T2-3T3D is one of  
the p lanes  t h rough  which the bil let  enters  the  de fo rma t ion  zone. So the in ternal  veloci ty  vector  is 
re la ted  to the bil let  veloci ty by app ly ing  Eqn  (2) to  this face. Final ly ,  the p lane  DIr-  7 T3 is an in terna l  
p lane  sepa ra t ing  the first and  second  t e t r ahedrons  of the subzone  under  cons idera t ion .  Thus  the 
in terna l  veloci ty vector  of  the first t e t r ahed ron  is re la ted to  tha t  of  the second by app ly ing  Eqn (2) to  
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the connecting face DT316 v. Similarly, the internal velocity vector for the second tetrahedron is 
related to that of the third by applying Eqn (2) to the connecting plane I6-  ~ T3E. Continuing in this 
way, the internal velocity vector for the first tetrahedron of the second subzone (pyramid 
T3 T3-41817E) is related to that of the third tetrahedron of the first subzone by applying Eqn (2) to 
the connecting face T3IvE. In this manner all internal velocity vectors are inter-related through 
application of Eqn (2) to different faces of all the SERR blocks in the global system. The exit velocity 
is related to the internal velocity vector of a tetrahedron if an exit plane contains one of the faces of 
this tetrahedron. 

5. COMPUTATION 

A comprehensive computational model was developed to make an upper bound analysis of 
extrusion of I-sections using all the formulations discussed in the last section. The computation 
consisted of the following steps: 

(1) determination of the equations of the planes containing the triangular faces of all the global level 
tetrahedrons using the co-ordinates of the respective vertices. [This amounted to determining the 
coefficients ai, bi and cl in Eqn (1) for all the faces]; 

(2) determination of the velocity equations by applying the mass continuity condition to all the 
faces; 

(3) simultaneously solving the velocity equations to determine all the internal velocity components 
with the billet velocity as an input data. (The solution also determined the exit velocity. This 
served as a check on computation since exit velocity can be independently calculated using the 
billet velocity and the area reduction); 

(4) calculation of the non-dimensional average extrusion pressure from the relation 

P~v 1 1 s 
ao ~ x Ab x Vb i :  Ai x IAVJ (4) 

where: N = no of global level triangular faces, 
]AV~] = velocity discontinuity at the ith face 

A~ = area of the ith face, 
~o = yield stress in uniaxial tension, 
A b - area of billet cross section, and 
Vb = billet velocity; 

(5) optimisation of the average extrusion pressure using a multivariate unconstrained optimisation 
routine. 

6. THE OPTIMISATION PARAMETERS 

For  the single point formulation, the floating point lies on the extrusion axis (taken as the z-axis). 
Thus it has a single undetermined co-ordinate. Further, the height of the dead metal zone (which is 
the z-coordinate of the points of intersection of the dead metal faces and the container wall) is 
another undetermined parameter. These two undetermined quantities serve as the optimisation 
parameters to minimise the extrusion pressure for this formulation. 

In case of the double point formulation, there are two floating points, one on the extrusion axis 
(z-coordinate undetermined) and the other on the plane of symmetry (y- and z-coordinates undeter- 
mined). These three undetermined coordinates along with the height of the dead metal zone serve as 
the four optimization parameters for this formulation. 

In case of the triple point formulation, the first two floating points (located as in double point 
formulation) together have three undetermined coordinates while the third floating point arbitrarily 
located in the deformation cavity has three undetermined coordinates. These six coordinates along 
with the height of the dead metal zone serve as the seven optimisation parameters for this 
formulation. 

In case of the modified triple point formulation of Fig. 5(d), the number of optimisation para- 
meters is nine since the points Txl and Tx2 have only one undetermined coordinate each (the 
y-coordinate) and these two are included in the list of parameters of the triple point formulation. 
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7. RESULTS AND DISCUSSION 

Computat ions were carried out for all the four global discretisation schemes of the single point 
formulation and the scheme giving the least upper bound was identified. The discretised deformation 
zone corresponding to the least upper bound is named here as the opt imum configuration. The 
opt imum configurations in case of double point and triple point formulations were similarly 
determined. Table 2 gives a comparison of the computed results of the three formulations for their 
respective opt imum configurations. It is obvious from this table that the triple point formulation 
gives the best results. Therefore this formulation only is used for further computation. 

Assuming the product aspect ratio (overall length of the I-section divided by its overall breadth) to 
be one, computat ions were made to study the effect of billet aspect ratio on the average extrusion 
pressure. The results are presented in Table 3 for four billet aspect ratios. It  is seen that the extrusion 
pressure slightly decreases with increase in billet aspect ratio. This is probably due to the fact that at 
higher billet aspect ratios, the dead metal zones are thinner on the sides having the re-entrant corners 
which in turn reduces the redundant work. 

Provision was made in the present model to study the effect of the inherent asymmetry of the 
I-section by taking unequal heights for the corner points like T2-3,  Ta, T3-4  [Fig. 5(c)]. These 
heights were included in the list of optimisation parameters. However, it was seen that introduction 
of unequal corner heights had marginal effect on the non-dimensional average extrusion pressure as 
shown in Table 4. 

When the modified triple point formulation of Fig. 5(d) was implemented, it was observed that the 
distances T3-4Txl and T3-4Tx2 (which happen to be the y-coordinates of points Txx and 
Tx2 respectively) became negligibly small corresponding to minimum extrusion pressure. These 
distances, for a typical global scheme of discretisation, became of the order of 10- 3 when the billet 
dimension was of the order of 20. Also, there was no significant reduction in the value of the 
non-dimensional average extrusion pressure. For some optimisation schemes, these distances 
became so small that the points Txl and Tx2 converged to T3-4  and triangular faces like ET~zTxx 
and ETa-4Tx2 became straight lines giving rise to breakdown of the procedure since spatial 
tetrahedrons degenerated to planar triangles. So this modification was not pursued any further. 

Table 2. Comparison of results for the three formulations 

Area 
Non-dimensional average extrusion pressure, P.,/ao 

reduction (%) Single point Double point Triple point 

70 6.980 3.648 3.289 
75 7.680 4.044 3.681 
80 8.779 4.569 4,215 
85 10.414 5.304 4.968 
90 13.162 6.440 6.137 

Table 3. Effect of billet aspect ratio on non-dimensional average extrusion pressure, 
Pa,/ao 

Non-dimensional average extrusion pressure, Pav/ao 

Area Billet aspect Billet aspect Billet aspect Billet aspect 
reduction (%) ratio = 1.0 ratio = 1.1 ratio = 1.2 ratio = 1.25 

60 2.832 2.689 2.638 2.784 
65 3.008 2.883 2.814 2.802 
70 3.289 3.174 3.108 3.094 
75 3.681 3.578 3.521 3.508 
80 4.215 4.128 4.081 4.070 
85 4.968 4.896 4.858 4.849 
90 6.137 6.075 6.004 6.088 
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Table 4. Effect of unequal corner heights on non-dimensional 
average extrusion pressure, eav/'ao 

P.~/~o 

Area Equal corner Unequal corner 
reduction (%) height height 

70 3.289 3.261 
75 3.681 3.666 
80 4.215 4.205 
85 4.968 4.957 
90 6.137 6.121 
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Finally, the average extrusion pressures computed in this study are compared with the experi- 
mental results of Chitkara and Adeyemi [11] in Fig. 7. It is seen that there is good agreement 
between the two. The slightly higher values obtained by this study may be due to the fact that the 
computed results give upper bounds rather than the exact. 

In conclusion it can be stated that: 

(1) among the three SERR formulations carried out in this study, the triple point formulation gives 
the lowest upper bound to the extrusion pressure for extruding I-section bars; 

(2) the least upper bounds computed agree well with experimental results available in literature; 
(3) the extrusion pressure reduces marginally if billet aspect ratio is slightly higher than the product 

aspect ratio. 
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