
A Novel Bit Stuffing technique for Controller Area

Network (CAN) Protocol

Abstract—Control area network (CAN) is a two- wired, half

duplex, high-speed network system that is far superior to

conventional serial communication protocol such as RS232 in

terms of functionality and reliability. CAN implementation are

also cost effective. All CAN controllers in a network operate at

the same frequency for safe and proper data transfer. As CAN

uses Non Return to Zero (NRZ) bit encoding, long sequence of

same polarity bit will cause the losses of synchronization among

the CAN controller. CAN provides an effective mechanism for

clock synchronization known as “bit-stuffing”. It is very difficult

to predict the precise transmission time of message which leads to

an adverse impact on many time critical applications. To mitigate

above problem different “bit-stuffing” techniques such as XOR

masking and Software Bit Stuffing (SBS) is available in the

literature. In this paper a novel alternative method known as

Eight-to-Eleven Modulation (EEM) technique is used for “bit-

stuffing” and a comparison is brought with existing SBS

technique and the superior features of EEM is established. The

proposed technique is validated through FPGA implementation.

Keywords—Controller Area Network, Bit stuffing, EEM

I. INTRODUCTION

Controller Area Network (CAN) [1] is a serial
communication protocol technology that was originally
designed for the automotive industry, especially for European
cars, but has also become a popular bus in industrial
automation as well as other application [1] – [5].

CAN protocol is designed for short message, no more than
eight bytes long [6]. CAN afford a maximum transmission rate
of 1 Mbps. CAN uses “Non Return to Zero” (NRZ) coding. In
Manchester encoding for sending one symbol it required two
bit of information whereas NRZ encoding required only one
bit. As compared to Manchester coding, NRZ coding
decreases the signal transition for every “0” or “1” bit
transmission and also increases the band width utilization. But
in NRZ coding there is no easy way to tell where each bit starts
or ends when there is continuous “0” or “1”. When this type of
situation arises it may happen that transmitter and receiver
loses synchronization. That means whatever the data bit send
by the transmitter would not be properly received by the
receiver. To avoid this type of situation CAN provides a
mechanism called “bit-stuffing”, in which no more than five
consecutive bits (with the same polarity) to transmit on the bus
[4]. Transmitted bits are checked before transmission, if a long

sequence of same polarity bit come it add an opposite polarity
bit with a regular interval. The added bit will give an extra
transition for the synchronization of receiver and transmitter.

Fig.1 shows the basic operation of the bit-stuffing
mechanism carried out in the sending end of CAN controller.

Fig. 1.The basic operation of bit-stuffing in the sending CAN controller

In this bit-stuffing process the number of stuffed bit
required completely depends on the incoming bit pattern. So
the output frame length is a complex function of incoming bit
pattern. Consequently, it is difficult to predict the precise
transmission time of bit pattern when we have a time critical
design.

It may be noted that once transmission starts, a CAN message
cannot be interrupted, and the variation in transmission time
therefore has the potential to cause a significant impact on the
real-time behavior of systems employing this protocol. A
number of studies have considered ways for bounding the
response time of message frames in CAN-based networks [7] –
[9]. The variation in message response time is referred to as
“jitter”. Jitter has a key impact on the performance of many
applications, particularly those involving data acquisition, data
processing and control. Impacts of jitter on various applications
are given in [10] – [12]. Further possible sources of jitter and
proposed solutions to limit this jitter in CAN networks are
presented in [13] – [15]. This paper only deals with jitter
caused by bit stuffing.

In this paper our aim is to reduce the timing variation due to
variable message length causes by bit-stuffing in CAN
protocol. Initially we develop a module by using “Software Bit
Stuffing” (SBS) and then by using a new technique called
“Eight-to-Eleven Modulation” (EEM). For both the logic we
made a logic utilization comparison as well as frequency of
operation.

The rest of this paper comprises the following. A brief
background discussion of the previous different “bit-stuffing”
technique developed in [16] and [17] is discussed in section II.
“Eight-to-Eleven Modulation” (EEM) is discussed in the

Tapas Ranjan Jena

Dept. of ECE

NIT Rourkela, Odisha, India

tapasranjanjena@gmail.com

Kamalakanta Mahapatra

Dept. of ECE

NIT Rourkela, Odisha, India

kkm@nitrkl.ac.in

Ayas Kanta Swain

Dept. of ECE

NIT Rourkela, Odisha, India

swain.ayas@gmail.com

section III. Implementation of the EEM algorithm is discussed
in the section IV. Result and analysis is discussed in section V.
System implementation in FPGA is discussed in section VI.
Finally a conclusion is drawn in section VII.

II. PREVIOUS WORK IN THIS AREA

A. Selective XOR masking

XOR masking was first proposed by Nolte et al.[18,19]. In
this technique transmitted bytes are XOR-ed with the masking
bit “101010…” for removing stuff-bits in particular sets of data
(which tend to have long sequences of 1s and 0s). Again the
received bytes are XOR-ed with the same masking bit to get
the original data bytes. This technique reduces CAN message-
length variations (i.e. jitter) to low levels and also reduces large
computational or memory overheads. These techniques are
described in-detail in [18] and [19].

In a more general case, the transmitted data bytes may not
have continuous 0 or 1. It may contain random 0 or 1. When
the data sets are random, directly using Nolte XOR masking
[16] level of bit-stuffing cannot be reduced significantly. In this
case the data bytes are tested and the Nolte XOR masking is
applied to the selected data byte. Such a technique was referred
as “Nolte C” or “selective XOR masking”.

B. Software Bit Stuffing (SBS)

In selective XOR masking the levels of message length
variation was reduces significantly, but few conditions remain
unsolved like the boundaries of the adjacent bytes are
processed individually. So the continuous 0 or 1 at the end of
one frame and the same continuous 0 or 1 at the start of the
next frame give a long sequence of 0 or 1. To eliminate this
type of condition “Software Bit Stuffing” (SBS) technique was
proposed[17] and was implemented in [22].

In this technique data frames are checked before
transmitting. If a sequence of four consecutive bits is detected,
SBS adds an additional bit of opposite polarity. Here at most
five consecutive bit of same polarity is allowed (one stuff bit
and four in coming data bit).

III. EIGHT-TO-ELEVEN MODULATION (EEM)

In SBS data encoding / decoding are performing at run-time
(while the system is operating) using a function call approach
[17]. Due to run time processing the CPU overheads of the
processor increased.

To achieve the high processor utilization as well as to
reduce the effect of bit stuffing a new X-to-Y modulation
approach is used. In X-to-Y modulation approach “X” signifies
the number of original data bit and “Y” signifies the number of
encoded data bit. A most known example of X-to-Y
modulation is Eight-to-Fourteen Modulation (EFM) which is
used in compact discs (CDs) [20].

Eight-to-Eleven Modulation (EEM) [21] is another type of
X-to-Y modulation where “X” equals to 8 (the number of bits

per byte) and “Y” equals to 11(the number of encoded data
bits).

(1)

As given in [18], the number of stuffed bits necessary to
avoid CAN bit-stuffing is found as follows:

Where the symbol └ ┘ denotes the floor function to make
the number of stuffed bit to integer. In our case we have 8 bits
that are subjected to bit-stuffing and maximum 4 consecutive
bits are allowed for bit-stuffing, then the number of stuffed bits
required in each byte is 2 bits.

The worst case “bit-stuffing” for a CAN controller will be
five consecutive bits followed by a opposite polarity bit and so
on [18]. In software level to avoid hardware “bit-stuffing”
consecutive bit with same polarity should not be more than
four. The worst case condition for 8 bit of data will be four “0”
followed by three “1” and one“0” (i.e. 00001110). From the
previous discussed formula the number of required stuff bit
will be two. After addition of these two stuff bit we found that
the sequence will be like “0000111100”. Here the bold bits are
the stuffed bits. When two bit pattern of the above type
transmitted consecutively, we found five consecutive same
polarity bit at the boundary.

To avoid such boundary condition we need to add another
extra stuff bit. After adding the extra stuff bit the total number
of stuff bit will be three for a set of 8 bit data. So the total
number of bit encoded bit will be 11 bit. Fig. 2 shows the 11 bit
encoded format of the 8 bit input data, where we have one stuff
bit at the middle of the input data sequence, one near most
significant bit and one near least significant bit.

Fig. 2 Encoding data byte in EEM method (SB stands for “stuffed bit”)

In Fig. 2 SB are the stuff bit, bit 1 to 8 are the original 8 bit
input data. Stuff bits values are the negation of the previous bit.
In this encoding format the worst case data frame will not
exceed 4 consecutive same polarities. For example let the input
sequence will be “11110001”. After encoding the result will be
“10111000011” that satisfy the “bit-stuffing” condition and
also solve the boundary condition problem.

IV. IMPLEMENTATION OF EEM ALGORITHM

EEM technique can be implemented by Lookup table
approach or by Function call approach. Look up table approach
again can be implemented by Explicit EEM table or by Implicit
EEM table. Function call approach again can be implemented
by Algorithmic coding or by Mathematical coding.

Here we are following algorithmic approach to implement
EEM technique. The flow chat of the coding is presented in the
Fig. 3 and is self-explanatory.

Fig. 3 EEM Algorithm Implementation

V. RESULTS AND ANALYSIS

Fig. 4 shows the simulation result of the de-stuffing unit of
the CAN Module. From the EEM generation algorithm we
found that 8 bit data is converted in to 11 bit encoded data.

While converted in to 11 bit encode data, it copy bit 1
followed by 1 stuff bit, again copy bit 2 to 4 followed by1 stuff
bit , again copy bit 5 to t followed by 1 stuff bit and at last copy
the bit 8. So the copy sequence is 1 3 3 1 for a particular byte
of data. When a sequence of byte is processed then the bit copy
sequence will be 1 3 3 2 3 3 2 3 3 .. and so on .In the Fig. 5 we
can able to see the state transition, in which state 2 is for copy 2
bit data and state 4 is for copy 3 bit data in between these two
state 3 and 5 are stuff 0 and stuff 1 respectably.

After getting the RTL simulation result we dump the code
in to Vertex 2 pro board and the result is also verified in
hardware level. The result of the FPGA board is analyzed with
the help of chip scope pro which is shown in the Fig. 5.

VI. SYSTEM IMPLEMENTATION IN FPGA

The System Implementation and verification were done
using Xilinx ISE Simulator with VIRTEX-II Pro FPGA kit.
Both SBS as well as EEM architecture implemented and tested.
The logic utilization and frequency of operation calculated and
listed as in table 1.

Table I

Bit-Stuffing
Technique

SBS EEM

No. of Slices 184 191

No. of Slice
Flip Flops

139 146

No. of 4 input
LUTs

359 374

No. of Bonded
IOBs

122 122

Max.
Frequency

223.330MHz 237.225MHz

Fig. 4 Simulation Result of Bit-Stuff unit

Fig. 5 Board Level Verification Result of Bit-Stuff unit

VII. EEM IMPLEMENTATION IN CAN CONTROLLER DESIGN

From Table I it is observed that due to the reduction of jitter
in EEM, frequency of operation increases as compared to SBS
technique. EEM technique is implemented for both bit-stuffing
and de-stuffing operation of CAN controller design. EEM
implemented design is tested and verified in Xilinx[23] ISE
Simulator.

After designing the CAN controller by using EEM
technique, four CAN controllers are connected in a network to
test how CAN message supports “Carrier Sense Multiple
Access with Collision Avoidance” (CSMA/CA). CSMA/CA is
known as non-destructive bit-wise arbitration. In CSMA/CA
method the node will monitor the network and wait for the bus
to ideal. Once the bus is ideal the node can transmit the
message. If at a time multiple node will request the bus access
the node sending higher priority message will get the access of
the bus first.

Fig. 6 shows the result where four CAN nodes are
connected in a network through a commonly shared bus.
Can_bus_out_0, 1, 2, 3 are indicated the output of the four can
connected through the CAN bus. All nodes start transmitting
the message frame at the same time but the node sending
higher priority message frame will get the bus access first. Here
node 2 is in an ideal state. Node 1 sends a message frame
having less priority as compared to other so it stops
transmitting first. Node 0 and Node 3 both are sending the
message frame having same message id but node 0 is a data
frame and node 3 is a remote frame. So node 0 get the access
of the bus as the data frame has a higher priority as compared
to the remote frame.

Fig. 6 : CAN wire-anding 4 node structure.

VIII. CONCLUSION

Bit-Stuffing unit for a CAN controller is designed by both
Software Bit Stuffing (SBS) technique and Eight-to-Eleven
Modulation (EEM) technique. The verification of the design is
done using XILINX ISE simulator. Finally, by using Xilinx
Chip Scope Pro the design is verified in hardware level after
dumping the code in to Virtex-II Pro kit. From the logic
Utilization summery we found that, both the technique uses
almost equal logic blocks whereas due to reduction in “jitter”
in EEM technique the operating frequency increases.

REFERENCES

[1] R. Bosch, CAN Specification 2.0. Robert Bosch GmbH,
Postfach,Stuttgart, Germany, 1991.

[2] L.B. Fredriksson, “Controller Area Networks and the protocol CAN
formachine control systems”, Mechatronics, Vol. 4, No. 2, 1994, pp.
159-192.

[3] J.P. Thomesse, “A review of the fieldbuses”, Annual Reviews inControl,
Vol. 22, 1998, pp. 35-45.

[4] M. Farsi, and M.Barbosa, CANopen Implementation, applications
toindustrial networks, Research Studies Press Ltd, England, 2000.

[5] M. Short, and M.J. Pont, “Fault-Tolerant Time-Triggered

Communication Using CAN”, IEEE Transactions on
IndustrialInformatics, Vol. 3, No. 2, 2007, pp. 13-142.

[6] Daniel Mannisto, Mark Dawson, An Overview of Controller Area
Network (CAN) Technology, mBus, 2003.

[7] K.W. Tindell, A. Burns, and A.J. Wellings, “Calculating Controller
AreaNetwork (CAN) Message Response Times”, Control Engineering

Practice, Vol. 3, No. 8, 1995, pp. 1163-1169.

[8] Navet, N. and Song, Y.Q. (1998) “Design of reliable real
timeapplications distributed over CAN (controller area
network)”,Proceedings of INCOM’98, IFAC Symposium on
Information Controlin Manufacturing, Metz 22–24 June, 1998, pp. 391-
396.

[9] R. Rudiger, “Evaluating the temporal behaviour of CAN based
systemsby means of a cost functional”, Proceedings of the Fifth
International CAN Conference, San Jose, CA, USA, November, 1998,
pp. 10.09-10.26.

[10] A.J. Jerri, “The Shannon sampling theorem: its various extensions
andapplications a tutorial review”, Proceeding of the IEEE, Vol. 65,
1977,

pp. 1565-1596.

[11] S. Hong, “Scheduling Algorithm of Data Sampling Times in
theIntegrated Communication and Control Systems”, IEEE Transactions
onControl Systems Technology, Vol. 3, No. 2, 1995, pp. 225-230.

[12] A. Stothert, and I. MacLeod, “Effect of Timing Jitter on
DistributedComputer Control System Performance”. Proceedings of
DCCS’98 –15th IFAC Workshop on Distributed Computer Control
Systems,September 1998.

[13] P. Verissimo, and L. Rodrigues, “A posteriori Agreement for Fault-
Tolerant Clock Synchronization on Broadcast Networks”, the
22ndInternational Symposium on Fault-Tolerant Computing, Boston,
USA,July, 1992.

[14] L. Rodrigues, M. Guimarães, and J. Rufino, “Fault-Tolerant
ClockSynchronization in CAN”, Proceedings of the 19th IEEE Real-
TimeSystems Symposium, Madrid, Spain, December 2-4, 1998.

[15] J. Barreiros, E. Costa, J. Fonseca, and F. Coutinho, “Jitter reduction in
areal-time message transmission system using genetic
algorithms”,Proceedings of the CEC 2000 – Conference of
EvolutionaryComputation, USA, July 2000.

[16] M. Nahas, and M.J. Pont, “Using XOR operations to reduce variationsin
the transmission time of CAN messages: A pilot study”. In:Koelmans,
A., Bystrov, A., Pont, M.J., Ong, R. and Brown, A. (Eds.),Proceedings
of the Second UK Embedded Forum, Birmingham, UK,October 2005,
pp. 4-17. Published by University of Newcastle uponTyne.

[17] M. Nahas, M. J. Pont, and M. Short, “Reducing message-
lengthvariations in resource-constrained embedded systems
implementedusing the CAN protocol”, Journal of Systems Architecture,
Vol. 55, No.5-6, 2009, pp. 344-354.

[18] T. Nolte, H. Hansson, C. Norström, and S. Punnekkat, “Using
BitstuffingDistributions in CAN Analysis”, IEEE/IEE Real-
TimeEmbedded Systems Workshop (Satellite of the IEEE Real-Time
SystemsSymposium) London, 2001.

[19] T. Nolte, H. Hansson. and C. Norström, “Minimizing CAN
responsetimejitter by message manipulation”, IEEE Real Time
Technology and

Applications Symposium 2002, pp. 197-206.

[20] J. Watkinson, Introduction to Digital Audio, Focal Press, 2002.

[21] MouaazNahas “Applying Eight-to-Eleven Modulation to reduce
message-length variations in distributed embedded systems using the
Controller Area Network (CAN) protocol”, Canadian Journal, Vol. 2,
July 2011.

[22] SreeramKrishnamoorthy, “Design an ASIC Chip fpr a Controlller Area
Network (CAN) Protocol Controller”.

[23] Xilinx ISE Tutorial,www.xilinx.com

