STEADY REVOLVING FLOW OF A REINER-RIVLIN FLUID

Bikash Sahoo
Department of Mathematics
National Institute of Technology, Rourkela
Odisha, INDIA
bikashsahoo@nitrkl.ac.in

ABSTRACT

In this paper the steady revolving flow, otherwise
known as the Bodewadt flow of a non-Newtonian Reiner-
Rivlin fluid is considered. A second order finite difference
method (FDM) has been adopted to solve the resulting fully
coupled and highly nonlinear system of differential equa-
tions. The effects of non-Newtonian cross-viscous param-
eter (K) on the velocity field has been studied in detail and
shown graphically. It is interesting to find that an increase in
K decreases the torque required to maintain the disk at rest.
One of the important findings of the present investigation
is that when the non-Newtonian parameter K is increased,
solutions to the boundary value problem tend to approach
their far-field asymptotic boundary values more rapidly.

Introduction

Both Newtonian and non-Newtonian flows past rotat-
ing disks have drawn the attention of many researchers due
to their fundamental and immense engineering and indus-
trial applications. Von Kédrmdn (11) considered the steady
flow of a viscous incompressible fluid due to a rotating disk.
The inverse problem arising when a viscous fluid rotates
with a uniform angular velocity at a larger distance from a
stationary disk (revolving flow) is one of the few problems
in fluid dynamics for which the Navier-Stokes equation ad-
mits an exact solution. This problem was initially studied by
Bodewadt (1) by making boundary layer approximations.
That is why the flow is well known as Bodewadt flow. In
this case it is observed that the fluid particles near a disk
flow radially inwards and for reasons of continuity this flow
is compensated by an axial flow upwards, away from the
disk (Fig. 1). The general problem of an infinite rotating
disk in fluid of which the above two problems are particular
cases has been later investigated by Hannah (3), Rogers and
Lance (7; 8). A comprehensive review of earlier works on
flow and heat transfer due to a single and two parallel rotat-
ing disks up to 1989 has been included in a monograph by
Owen and Rogers (4).

In all of the above studies the fluid is assumed to be
Newtonian. Many materials such as polymer solutions or
melts, drilling mud, clastomers, certain oils and greases and
many other emulsions are classified as non-Newtonian flu-
ids. For these kind of fluids, the commonly accepted as-
sumption of a linear relationship between the stress and the
rate of strain does not hold. Most of the fluids used in in-
dustries are non-Newtonian fluids. The non-Newtonian flu-
ids have been modeled by constitutive equations which vary
greatly in complexity. The non-Newtonian fluid considered

in the present paper is that for which the stress tensor T; is

related to the rate of strain tensor e; as (6;2)

T, = —p8+2ue +2ucepel, el =0 (1)

where p denotes the pressure, U is the coefficient of viscos-
ity and U, is the coefficient of cross viscosity. This model
was introduced by Reiner (6) to describe the behavior of wet
sand, but was at one time considered as a possible model
for non-Newtonian fluid behavior. A detailed discussion
up to 1991 regarding the flow of non-Newtonian fluids due
to rotating disks can be found in the review paper by Ra-
jagopal (5). Further one can refer the work of Sahoo (9) and
the references therein regarding the Karman flow and heat
transfer of Reiner-Rivlin and other non-Newtonian fluids.
A thorough survey shows that though literature on Kdrman
flow of different non-Newtonian fluids is abundant, very lit-
tle information exists on Bodewadt flow of non-Newtonian
fluids.

In this paper the steady flow of a non-Newtonian
Reiner-Rivlin fluid (presented by (1)), which rotates with
a uniform angular velocity at a larger distance from a sta-
tionary disk (known as the Bodewadt flow) is studied. The
resulting system of highly nonlinear differential equations
for the velocity field is solved by a second order finite dif-
ference method.

Governing equations

We consider a non-Newtonian Reiner-Rivlin fluid oc-
cupying the space z > 0 over an infinite stationary disk, co-
inciding with z = 0 (see Figure 1). The motion is due to
the rotation of the fluid like rigid body with constant angu-
lar velocity Q at large distance from the disk. It is natu-
ral to describe the flow in the cylindrical polar coordinates
(r9,2).

In view of the rotational symmetry, % = 0. Taking
V = (u,v,w) for the steady flow and using the following
well known Karman transformations (11)

u=rQF(C), v=rQG(L), w=vVQvH((), z= ég

the equations of continuity and motion are reduced (4; 9) to
the following system of fully coupled and highly nonlinear



Figure 1.

differential equations:
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which has to be solved subject to the following no-slip
boundary conditions:

{=0: F=0, G=0, H=0, (7a)

{—sw: F—0, G—1 (7b)

where F, G, H and P are non-dimensional functions of {, v
is the kinematic viscosity (v = &y of the fluid and K = %
is the parameter that describes the non-Newtonian charac-
teristic of the fluid. The above system (2)-(5) with the pre-
scribed boundary conditions (7a)-(7b) are sufficient to solve
for the three components of the flow velocity. Equation (6)
can be used to solve for the pressure distribution at any
point.

Numerical Solution

A finite value, large enough, has been substituted for
., the numerical infinity to ensure that the solutions are not
affected by imposing the asymptotic conditions at a finite
distance. The value of {. has been kept invariant during the
run of the program.

Now we introduce a mesh defined by

G=ih(i=0,1,...n), @®)

h being the mesh size, n is a sufficiently large finite value.
The equations (2)-(5) are discretized using the central dif-
ference approximations for the derivatives, then the follow-
ing equations are obtained.
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Rest part of the solution scheme can be seen in our pub-
lished work on Karman flow (9).

Results and Discussions

The value of {., the numerical infinity has been taken
larger as compared to the Karmén flow problem (9; 10) and
kept invariant through out the run of the program. Although,
the results are shown only from the disk surface { =0 to
{ = 14.0, the numerical integrations were performed over
a substantially larger domain in order to assure that the
outer asymptotic boundary conditions are satisfied. To see
if the program runs correctly, the values of F', G and H are
compared with (see Table 1) those reported by Owen and
Rogers (4) for a viscous fluid (K — 0), and have been plot-
ted graphically in Figure 2.
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Figure 2. Velocity profile for the Newtonian flow.

Figures 3-5 present, respectively, the steady state pro-
files of F, G, and H, plotted against { for various values of
K. Figure 3 depicts that the radial component of velocity is
negative near the disk and reverses direction away from the
disk. It is clear that the increase in the values of K decreases
the radial component of velocity F' in magnitude up to a sig-
nificant distance from the disk and then increases and even-
tually reaches the asymptotic value 0. Figure 4 presents, the
steady state profile of the transverse component of velocity
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G with K. Itis interesting to find that the magnitude of G de-
creases with increasing K near the disk and increases away
from the disk. This accounts for a crossover of the profiles
of G. The steady state profile of the axial component of ve-
locity H with various values of K is shown in figure 5. It is
observed that increasing K, decreases H for all values of {.
Itis also clear that the profiles of F', G and H becomes flatter
as K is increased. In other words, when the non-Newtonian
parameter K is increased, solutions to the momentum equa-
tions tend to approach their far-field boundary values more
rapidly.

Another interesting quantity is the turning moment for
the disk. The expression of the dimensionless moment co-
efficient Cyy is given by:

_ -G (0)

C
M v Re

12

with Re = QR? /v the rotational Reynolds number based on
the disk radius R and the maximum velocity (QR). This
definition of Cjy is the extension of the finite disk problem,
which supposes that the disk radius is large enough. Fig-
ure 6 shows the variation of Cy; with K for Re = 1. It’s
clear that whatever the flow parameters, Cys exhibits nega-
tive values. The value of Cjs decreases in magnitude with an
increase in K and approaches the asymptotic value zero for
sufficiently high value of the non-Newtonian parameter K.
The Von Karman flow considered by Sahoo (9) is precisely
the inverse problem, which explains the different sign.
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Figure 3. Variation of F' with K.
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Figure 4. Variation of G with K.
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Figure 5. Variation of H with K.
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Figure 6. Variation of Cy; with K.
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Conclusions

In the present paper the steady revolving flow of a non-
Newtonian Reiner-Rivlin fluid has been considered. The
constitutive equation of the fluid gives rise to momentum
equations, which, when transformed using the similarity
variables, reduce to highly non-linear system of boundary
value problem. A second order finite difference technique
has been used to solve the system of resulting equations.
The effects of non-Newtonian fluid parameter K on the ve-
locity field has been studied in detail. It is interesting to find
that the parameter K results in a crossover of the transverse
velocity profile. One of the important findings of the present
investigation is that when the non-Newtonian parameter K
is increased, solutions to the boundary value problem tend
to approach their far-field asymptotic boundary values more
rapidly. The profiles of the moment coefficient Cy; for the
revolving (Bodewadt) flow and the Kdrman flow (9) are just
opposite to each other as was expected.
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