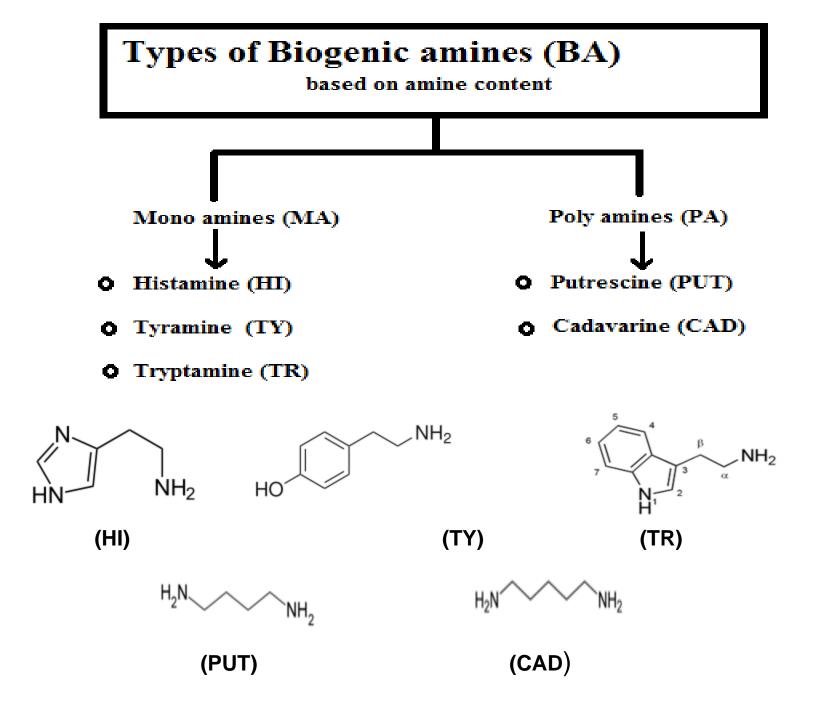


SCREENING FOR BIOGENIC AMINE PRODUCTION BY LACTOBACILUS SPECIES AND DEVELOPMENT OF FUNCTIONAL FOOD, TEA CURD.

Dr. R. JAYABALAN Assistant Professor Food and Bioprocess Technology Laboratory Department of Life Science National Institute of Technology, Rourkela Odisha -769008, INDIA.



INTRODUCTION

- Tea most popular beverage in the world next to water
- Antioxidants tea polyphenols tea catechins
- Reduction of cholesterol, protection against cardio-vascular disease, and cancer
- Curd Indian Yoghurt, home made, inoculum from previous curd
- Daily food
- Tea curd functional food tea polyphenols biologically active compounds – health benefits

INTRODUCTION

- Biogenic amines organic, basic nitrogenous compounds with one or more amine groups
- Removal of carboxyl group from amino acids by amino acid decarboxylase enzyme
- Alkaline in nature

INTRODUCTION

- Excessive levels Hypotension, hypertension, nausea, respiratory distress, heart palpitation
- Histamine vaso active effects
- Tyramine rise in blood pressure, mutagen precurson
- Putrescine, cadaverine : can be converted into nitrosamines potential carcinogens

OBJECTIVES

- To isolate probiotic bacteria from locally available curd (OMFED, Rourkela, Odisha, India and home made)
- To characterize the bacteria for biogenic amine production and tolerance to acidic pH
- To utilize the non biogenic amine producing bacteria for the development of green tea and black tea curd

METHODS

• ISOLATION OF PROBIOTIC MICROBES

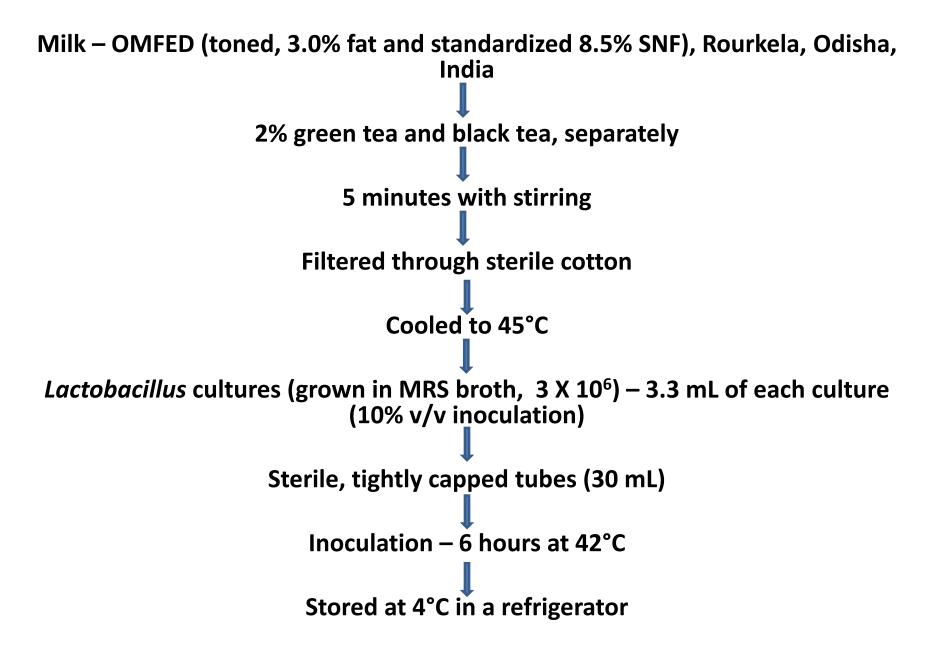
- OMFED curd, Rourkela, Odisha, India and home made
- Handia home made rice fermented with inoculum from previously fermented obtained from local seller
- MRS agar, standardized procedure
- 37°C for 24 hours
- Morphological identification simple staining
- Grown cultures repeatedly subcultured for 5 times in MRS broth
- SCREENIGN FOR BIOGENIC AMINE PRODUCTION
- Decarboxylase media with different amino acids
- Wells 0.5 cm in agar plate
- 250 µl cultures in MRS broth inoculated
- ACID TOLERANCE TEST
- MRS broth cultures centrifuged at 10,000 rpm for 5 minutes pellet resuspended in PBS buffer with pH 7.4, 5.5, 4.0, 3.0 and 2.0
- 24 hours incubation at 37°C
- Plated on MRS agar to check viability

Composition of MRS agar

Components	(grams / litre)
Components	
Proteose peptone	10.000
Beef extract	10.000
Yeast extract	5.000
Dextrose	20.000
Polysorbate 80	1.000
Ammonium citrate	2.000
Sodium acetate	5.000
Magnesium sulphate	0.100
Manganese sulphate	0.050
Dipotassium phosphate	2.000
Agar	15.000
рН	6.5±0.2

Composition of decaboxylase media

Components	(grams / litre)
Tryptone	5.0
Yeast extract	5.0
Meat extract	5.0
Sodium chloride	2.5
Glucose	0.5
Tween 80	1.0
Magnesium sulphate	0.2
Manganese sulphate	0.05
Ferrous sulphate	0.004
Ammonium citrate	2.0
Thiamine	0.001
Di-Potassium	2.0
phosphate	
Calcium carbonate	0.10
Pryridoxal-5-	0.05
phosphate	
Amino acid*	1.0
Bromocresol purple	0.06
Agar	20
рН	5.3


*Control media lacks amino acid. Amino acids ornithine, tyrosine, lysine and histidine added separately

METHODS

• **PREPARATION OF TEA INFUSIONS**

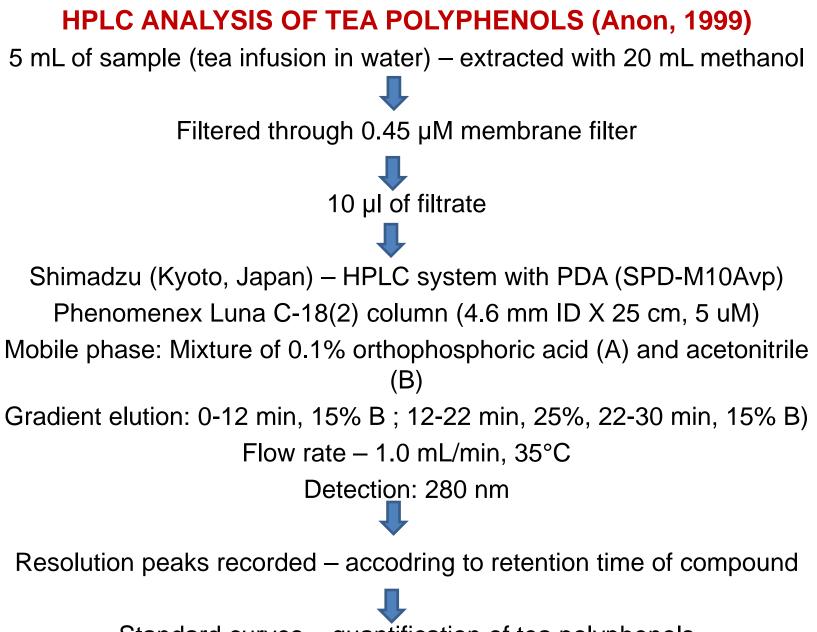
- Green tea and Black tea Camellia sinensis (L) O. Kuntze Parry Agro Industries Ltd., Valparai, Tamil Nadu, India
- 2% (strength of normal cup of tea) boiled water 5 minutes infusion
- Curd manufacture tea infusions in milk
- HPLC analysis tea infusions in water

PREPARATION OF TEA CURD (Jaziri, 2009)

SAMPLING

- Periodic sampling
- Each tube only once to avoid contamination
- After 6 hours considered as 0 day
- Kept in refrigerator
- Sampling done at the end of 1, 7, 14, and 21 days **MICROBIOLOGICAL ANALYSIS**
- Aseptic removal of sample
- serial dilution in 0.1 % peptone water
- Standard spread plate technique using MRS agar
- 37°C incubation for 48 hours under aerobic conditions.

DETERMINATION OF pH


• Electronic pH meter (Orion model 290A)

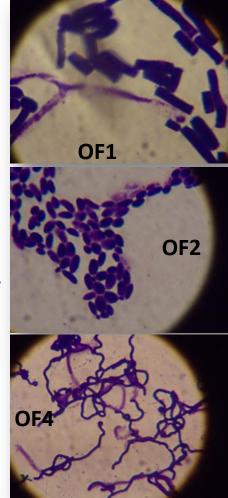
DETERMINATION OF TITRATABLE ACIDITY

- 10 g sample titrated against 0.1 N NaOH
- % of lactic acid = ml of alkalix normality of NaOHx9/weight of sample (g)

HPLC ANALYSIS OF TEA POLYPHENOLS

Tea infusion prepared in water and inoculated with microbial cultures

Standard curves – quantification of tea polyphenols


RESULTS AND DISCUSSION

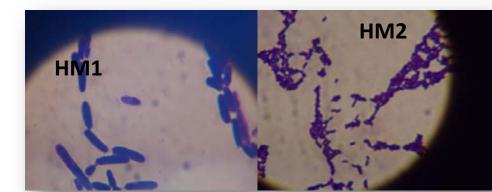

ISOLATION OF PROBIOTIC BACTERIA

Table 1: Morphology of bacteria isolatedfrom OMFED curd, home made curd andHandia

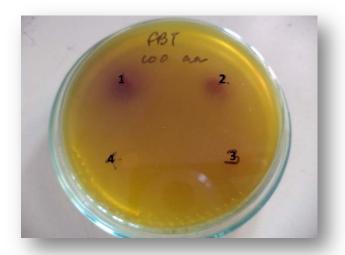

Number	Morphology	Bacteria / Yeast
1.OF1	Long rod	Bacteria
2.OF2	Oval shape	Yeast
3.OF3	Long rod	Bacteria
4.OF4	Long rod	Bacteria
5.HM1	Long rod	Bacteria
6.HM2	Long rod	Bacteria
7.HN1	Oval shape	Yeast
8.HN2	Oval shape	Yeast

Figure 1: Morphology of bacteria isolated from OMFED curd and home made curd

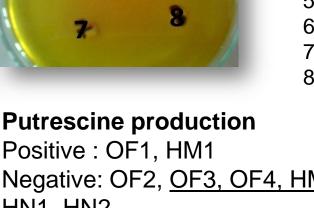
SCREENING FOR BIOGENIC AMINE PRODUCTION

1.OF1 2.OF2 3.OF3 4.OF4 5.HM1 6.HM2 7.HN1 8.HN2

Figure 2: Screening for biogenic amine production decarboxylase media control lacks amino acid Cont

Control media : color production due to amino acids in proteins




Figure 3: Screening for biogenic amine production in decarboxylase media with tyrosine

Tyramine production Positive : OF1, OF2, HM1, HN1 Negative: <u>OF3, OF4, HM2</u>, HN2

in

1.0F1 2.0F2 3.0F3 4.0F4 5.HM1 6.HM2 7.HN1 8.HN2

6

Figure 4: Screening for biogenic amine production in decarboxylase media with ornithine

Negative: OF2, OF3, OF4, HM2, HN1, HN2

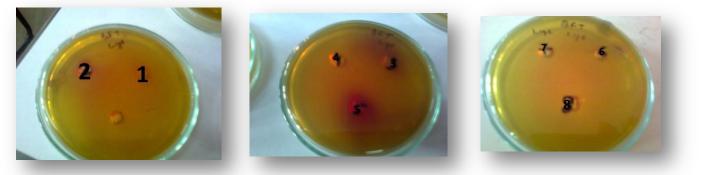
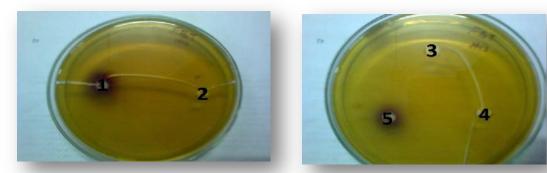



Figure 5: Screening for biogenic amine production in decarboxylase media with lysine

Cadaverine production Positive : HM1 Negative: OF1, OF2, OF3, OF4, HM2, HN1, HN2

Histamine production

Positive : OF1, HM1 Negative: OF2, <u>OF3, OF4, HM2,</u> HN1, HN2 1.OF1 2.OF2 3.OF3 4.OF4 5.HM1 6.HM2 7.HN1 8.HN2

Figure 6: Screening for biogenic amine production in decarboxylase media with histidine

Table 2: Summary of screening for biogenic amine production

	Tyrosine (Tyramine)	Ornithine (Putrescine)	Lysine (Cadeverine)	Histidine (Histamine)	Selection
OF1	Yes	Yes	No	Yes	
OF2	Yes	No	No	No	No
OF3	No	No	No	No	Yes
OF4	No	No	No	No	Yes
HM1	Yes	Yes	Yes	Yes	No
HM2	No	No	No	No	Yes
HN1	Yes	No	No	No	N
HN2	No	No	No	No	No

Acid tolerance test

Table 3: Effect of pH on growth of selected non-biogenic amine producing probiotic bacteria

Bacteria	pH 7.4	pH 5.5	рН 4	рН 3	рН 2
OF3	GROWTH	GROWTH	GROWTH	GROWTH	NO GROWTH
OF4	GROWTH	GROWTH	GROWTH	GROWTH	NO GROWTH
HM2	GROWTH	GROWTH	GROWTH	GROWTH	NO GROWTH

Green tea curd

Black tea curd

Figure 7: Green tea curd and black tea curd

Table 4: Effect of time on pH, titratable acidity and number of bacteria of green tea curd

Refrigerated storage (day)	рН	Titratable acidity (gram lactic acid / liter)	Number of bacteria (CFU/mL)
0	4.10	1.26	2.27 X 10 ⁶
1	4.04	1.35	1.84 X 10 ⁶
7	4.00	1.71	1.36 X 10 ³
14	3.80	1.17	1.11 X 10 ³
21	4.10	1.62	contamination

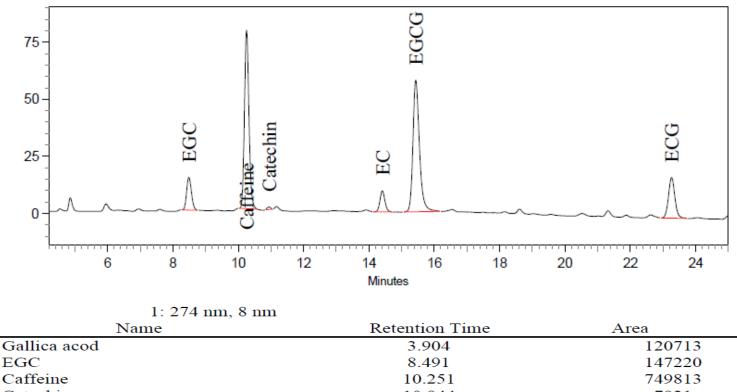

Reduction of bacterial number after 7 days. Study required after 1 day.

Table 5: Effect of time on pH, titratable acidity and number of bacteria of black tea curd

Time Refrigerated storage (day)	рН	Titratable acidity (gram lactic acid / liter)	Number of bacteria (CFU/mL)
0	4.10	1.35	2.30 X 10 ⁶
1	4.00	1.44	2.00 X 10 ⁶
7	3.60	1.80	1.61 X 10 ³
14	3.50	1.26	contamination
21	4.05	1.53	contamination

Reduction of bacterial number after 7 days. Study required after 1 day.

Figure 8: Liquid Chromatogram of tea polyphenols

Name	Retention Time	Area
Gallica acod	3.904	120713
EGC	8.491	147220
Caffeine	10.251	749813
Catechin	10.944	7921
EC	14.411	96314
EGCG	15.435	794741
ECG	23.264	240513
Totals		
		2157235

mAU

Table 6: Effect of refrigerated storage on content oftea polyphenols in green tea curd

Refrigerated storage (day)	EGCG (mg /L)	EGC (mg /L)	ECG (mg /L)	EC (mg /L)	Catechin (mg /L)	Gallic acid (mg /L)	Caffeine (mg /L)
0	65.2	37.9	11.1	8.5	1.1	5.2	27.1
1	16.7	16.0	2.9	3.7	0.7	2.7	13.9
7	20.9	51.6	2.9	14.8	0.6	7.7	52.1
14	13.3	45.6	0.3	0.1	0.3	6.9	36.5
21	1.5	4.6	0.4	15.7	0.2	2.2	39.5

Varying stability.

Conversion / degradation of complex molecules into simpler molecules Tea polyphenols are stable at acidic pH.

Hence, microbial enzymes may be the reason for observed varying stability

Table 7: Effect of refrigerated storage on content oftea polyphenols in black tea curd

Refrigerated storage (day)	EGCG (mg /L)	EGC (mg /L)	ECG (mg /L)	EC (mg /L)	Catechin (mg /L)	Gallic acid (mg /L)	Caffeine (mg /L)
0	5.3	1.3	1.7	0.1	0.9	2.9	39.2
1	1.5	1.4	0.4	ND	0.4	0.5	16.9
7	5.1	0.1	0.6	0.3	0.3	5.4	73.9
14	3.4	0.1	0.2	ND	ND	3.7	65.4
21	3.4	0.8	0.6	0.2	0.5	4.6	64.2

ND – Not Detected

Varying stability.

Conversion / degradation of complex molecules into simpler molecules Tea polyphenols are stable at acidic pH.

Hence, microbial enzymes may be the reason for observed varying stability

CONCLUSION

Among 8 microorganisms isolated, 3 were selected to produce tea curd (non-biogenic amine producing bacteria)

Tolerant up to pH 3.0 and not at pH 2.0

Green tea curd and black tea curd were prepared

Refrigerated storage – reduction of bacterial number after 7 days.

Tea polyphenols – varying stability

Concentration of tea polyphenols after 1 day – can be

FUTURE WORKS

- Sweet green tea and black tea curd
- Frozen green tea and black tea curd (without liquid)

ACKNOWLEDGEMENTS

NIT Rourkela

Department of Science and Technology, Government of India

Parry Agro Industries Ltd., Valparai, Tamil Nadu, India

<u>Research team</u> Ms. Indira Dash Ms. Moumita Sahoo, Mr. Ajay Dethose, Ms. Banishree Sahoo

References

- Jaziri, I., Slama, M.B., Mhadhbi, H., Urdaci, M.C., Hamdi, M. 2009. Effect of green and black teas (Camellia sinensis L.) on the characteristic microflora on yogurt during fermentation and refrigerated storage. Food Chemistry, 112: 614-620
- Shalaby, A. R. (1996). Significance of biogenic amines to food safety and human health. Food Research International, 29, 675–690.
- Moinard, C., Cynober, L., & de Bandt, J. P. (2005). Polyamines: Metabolism and implications in human diseases. Clinical Nutrition, 24, 184–197.
- Silla Santos, M. H. (1996). Biogenic amines: their importance in foods. International Journal Food Microbiology, 29, 213–231.
- Brink, B. T., Damink, C., Joosten, H., & Huis isn't Veld, J. (1990). Occurrence and formation of biologically active amines in foods. International Journal of Food Microbiology, 11, 73–84.
- Bjeldanes, L. F., Schutz, D. E., & Morris, M. M. (1978). On the etiology of scombroid poisoning: cadaverine potentiation of histamine toxicity in the guinea-pig. Food and Cosmetics Toxicology, 16, 157–159.

