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Abstract: The problem of decentralized stabilization of interconnected systems that are delay-
dependent for some delays and delay-independent for the remaining ones is addressed in this
paper. For the purpose, some of the subsystems are grouped to form new larger subsystems.
Such a grouping allows all the interconnection delays present among the smaller subsystems
to be divided into two groups in the new subsystem description — (i) intraconnection delays,
within the larger subsystem, and (ii) interconnection delays, among the larger subsystems.
This facilitates delay-dependent stabilization for the intraconnection delays and delay-dependent
stabilization for the interconnection delays. An LMI based stabilization criterion is derived for
such mixed delay-dependent/delay-independent stabilization of the overall system. A numerical
example is presented demonstrating the effectiveness of the developed criterion.
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1. INTRODUCTION

Large-scale systems comprising of several interconnected
systems inherits interconnection delays that are often
time-varying in nature [Bakule, 2008]. Since analysis of
even a simpler system with time-varying delays is complex
and only sufficient conditions exist for them in the sense of
Lyapunov, it is difficult to analyze large-scale systems with
several delays. Mostly, for such systems, delay-independent
stability analysis that does not require information on the
size of the delay has been carried out based on Lyapunov-
Krasovskii approach [Hmamed, 1986, Lee and Radovic,
1988, Hu, 1994, Trinh and Aldeen, 1995, Oucheriah, 2000,
Nian and Li, 2001, Ghosh et al., 2009]. It may, however,
be the case that some of these interconnection delays
are small and then the above delay-independent methods
may yield conservative results. The cases when all the
interconnection delays are known have been analyzed by
employing delay-dependent analysis in Tsay et al. [1996],
de Souza and Li [1999], Fernando et al. [2012]. Note that,
in such cases all the delays are required to be bounded.

The delay-dependent and delay-independent stability of
large-scale systems can be interpreted corresponding to its
cooperative and competitive stability [Šiljak, 1978]. The
cooperative stability is encountered when subsystems co-
operatively stabilize the overall system, e.g., in formation
control of autonomous vehicles [Stipanovic et al., 2004].
On the other hand, the competitive (also see connec-
tive controllability [Sezer and Huseyin, 1981]) for which
any combinations of interconnected subsystems are stable.

Such connective stability can be inferred to the delay-
independent stability for the interconnection delays.

For connective stability analysis, the decomposition and
aggregation principle of Lyapuov functions are followed
[Šiljak, 1978]. However, the same does not apply to co-
operative stability problems since individual subsystems
may be unstable for such cases. Analysis of systems using
delay-dependent stability method developed by following
the decomposition and aggregation principle in de Souza
and Li [1999] and Fernando et al. [2012] does not work for
some cooperative stability problems that involves unstable
subsystems. To this end, it is shown in Ghosh et al. [2010]
that grouping of subsystems beforehand on the basis of
delay-dependent/independent features and then employ-
ing analysis is useful for stability analysis of such systems.

This paper considers the problem of decentralized state
feedback stabilization of linear large-scale systems sub-
jected to both finite and arbitrary interconnection delays.
For the purpose, the subsystems with finite delays among
themselves are grouped to form larger subsystems that
contain multiple finite intraconnection delays within them
but have multiple arbitrary interconnection delays among
themselves. It is considered that the smaller subsystems
within the larger ones share their state information for con-
trol. Based on stability criterion developed in Ghosh et al.
[2010], a stabilization criterion is derived with appropriate
linearization of the resulting nonlinear matrix inequality.
A numerical example is presented to show the effectiveness
of the proposed criterion in terms of exploiting the delay-
dependent information for some delays and, at the same
time, being delay-independent for the others.

13th IFAC Symposium on Large Scale
Complex Systems: Theory and Applications
Shanghai Jiao Tong University
Shanghai, China, July 7-10, 2013

MoA02.4

51



2. STABILITY ANALYSIS

Stability analysis of large-scale systems in a generalized
framework with respect to the interconnection delays has
earlier been developed in Ghosh et al. [2010]. In this
section, we briefly introduce this result retaining the
notation used in Ghosh et al. [2010] which is further
used to derive the stabilization result of this paper. It
may be noted that such analysis requires grouping of the
smaller subsystems to form larger subsystems that would
be conducive to the desired analysis as presented in the
following subsection.

2.1 Grouping of subsystems

Consider a system having N∗ number of interconnected
subsystems, the ith one of which is described as:

S∗

i : ẋ∗

i (t) = Gix
∗

i (t) +

N∗

∑

j=1

Hijx
∗

j (t − τ∗

ij),

i = 1, 2, . . . , N∗, (1)

where x∗

i (t) ∈ ℜn∗
i is the state vector of S∗

i ; τ∗

ij ≥
0, j = 1, 2, ..., N∗ represent the interconnection delays
present in the system and Gi, Hij , j = 1, 2, ..., N∗ are
appropriate dimensional matrices. The overall system can
alternatively be represented using larger subsystem (Si),
each of which may contain several S∗

i that shares finite
interconnection delays among themselves. However, the
delays among these Si may be arbitrary. As a result,
the subsystems Sis are having several finite intraconnec-
tion delays within themselves whereas the interconnection
delays among them are arbitrary. Letting that the total
number of such Sis is N , the ith one consisting of qi number
of S∗

i of (1), the new subsystem description becomes

Si : ẋi(t) = Aixi(t) +

q2

i
∑

k=1

Cikxi(t − ηik)

+

N
∑

j=1

j 6=i

qiqj
∑

k=1

Dijkxj(t − τijk),i = 1, 2, . . . , N,(2)

where xi(t) ∈ ℜni with ni =
∑ri

k=(ri−1+1) n∗

k; Ai, Cil

and Dijk are matrices with proper dimensions. Note that,
ηik, k = 1, 2, . . . , q2

i , are the finite intraconnections delays
and τijk , j = 1, 2, . . . , N , k = 1, 2, . . . , qiqj , are arbitrary
interconnection delays. Further, ηik satisfies 0 ≤ ηik ≤ η̄ik

and τijk satisfies 0 ≤ τijk < ∞. For stability, it is necessary

that
(

Ai +
∑q2

i

k=1 Cik

)

, i = 1, 2, . . . , N , are Hurwitz.

It may be noted that the above grouping of subsystems di-
vides all the delays into two groups in the system represen-
tation (2). The intraconnection delays appear as the local
delays in the larger subsystems whereas interconnection
delays appear as it is for the smaller subsystems but with
multiple delays in between two larger subsystems. The
former one is important since treating the interconnection
delays of the smaller subsystems as the local delays of the
larger subsystems provides the benefit of exploiting the
delay-dependent analysis with respect to the local delays
in (2) since the decomposition and aggregation principle
is now applied on the larger subsystems.

2.2 Criterion for Analysis

The following lemma presents a stability condition follow-
ing the result in Ghosh et al. [2010] (equation (23) therein).

Lemma 2.1. System (2) is asymptotically stable if Qijk =
QT

ijk > 0, j = 1, 2, ..., N , k = 1, 2, ..., (qiqj), can arbitrarily

be chosen such that there exist (i) positive definite sym-
metric matrices Pi, Qik and Rik, (ii) matrices L1i, L2i,
Mil, N1il, N2il and N3il, l = 1, 2, . . . , q2

i , that satisfy the
following LMI:





Ω11
i Ω12

i Ω11
i

∗ Ω22
i Ω23

i

∗ ∗ Ω33
i



 −





Ω14
i

Ω24
i

Ω34
i





(

Ω44
i

)

−1





Ω14
i

Ω24
i

Ω34
i





T

+

N
∑

j=1

qiqj
∑

k=1

MiDijkQ−1
ijkDT

ijkM
T
i < 0, (3)

where

Ω11
i = L1iAi+AT

i LT
1i+

q2

i
∑

k=1

(Qik+N1ik+NT
1ik)+

N
∑

j=1

j 6=i

qiqj
∑

k=1

Qjik;

Ω12
i = Pi − L1i + AT

i LT
2i +

q2

i
∑

k=1

NT
2ik;

Ω22
i =−L2i − LT

2i +

q2

i
∑

k=1

η̄ikRik;

Ω13
i =

[

Ω13
i1 Ω13

i2 . . . Ω13
iq2

i

]

,

Ω13
ik = L1iCik + AT

i MT
ik − N1ik + NT

3ik;

Ω23
i =

[

Ω23
i1 Ω23

i2 . . . Ω23
iq2

i

]

, Ω23
ik = L2iAi − MT

ik − N2ik;

Ω33
i =













Ω33
i11 Ω33

i12 . . . Ω33
i1q2

i

∗ Ω33
i22 . . . Ω33

i2q2

i

∗ ∗
. . .

...
∗ ∗ ∗ Ω33

iq2

i
q2

i













,

Ω33
ikk = MikCik+CT

ikMT
ik

−N3ik−NT
3ik−Qik,

Ω33
ilk = MilCik + CT

il M
T
ik,

l 6= k;

Ω14
i =

[

N1i1 N1i2 . . . N1iq2

i

]

; Ω24
i =

[

N2i1 N2i2 . . . N2iq2

i

]

;

Ω34
i = diag

{

N3i1, N3i2, . . . , N3iq2

i

}

;

Ω44
i = diag

{

−η̄−1
i1 Ri1,−η̄−1

i2 Ri2, . . . ,−η̄−1
i(q2

i
)
Riq2

i

}

,

Mi =
[

LT
1i LT

2i MT
i1 MT

i2 . . . MT
iq2

i

]T

.

3. THE STABILIZATION PROBLEM

In this section, the problem of decentralized state feedback
stabilization of interconnected systems with both finite
and arbitrary interconnection delays is considered. For
this, consider system (2) with each subsystem having a
local control input. Then the ith subsystem dynamics,
i = 1, . . . , N , may be written as:

Ŝi : ẋi(t) = Aixi(t) +

q2

i
∑

k=1

Cikxi(t − ηik)
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+

N
∑

j=1

j 6=i

qiqj
∑

k=1

Dijkxj(t − τijk) + Biui(t), (4)

where all the terms are as defined in (2) with, in addition,
ui(t) ∈ ℜmi is the local control input to the ith subsystem
and Bi ∈ ℜni×mi is the control input matrix.
The objective of this section is to design a stabilizing
decentralized state feedback controller in the form of

ui(t) = Kixi(t), (5)

where Ki ∈ ℜmi×ni , i = 1, . . . , N . Note that, designing
the control gains of (5) is equivalent to the synthesis of Ki

for the ith subsystem (4). For the existence of a stabilizing
controller (5), it is assumed that (i) all subsystem states
xi(t), i = 1, 2, . . . , N , are locally measurable, and (ii) the

pair
{(

Ai +
∑q2

i

k=1 Cik

)

, Bi

}

, i = 1, 2, ..., N , are control-

lable. The latter assumption arises from the particular
consideration of ηik = 0, k = 1, 2, . . . , q2

i and τijk = ∞,
j = 1, 2, ..., N , k = 1, 2, ..., qiqj for the ith subsystem.

The controllability criterion above plays an important role
in selection of qis for grouping the smaller subsystems.
An approach for this selection would be to start with a
smaller subsystem and checking its controllability. If un-
controllable then it may be grouped with other subsystems
still the criterion is satisfied for the whole system with
minimum possible smaller subsystems in each group.

4. STABILIZATION CRITERION

Theorem 1. System (4) is stabilizable with the feedback
(5) if δi1, δi(k+1), k = 1, 2, . . . , q2

i and Qijl = QT
ijl > 0, j =

1, 2, ..., N , l = 1, 2, ..., qiqj , can first be arbitrarily chosen
such that there exists (a) positive definite symmetric

matrices P̂i, Q̂ik and R̂ik, (b) invertible matrix M̂i, (c)

matrices N̂1ik, N̂2ik, N̂3ik and Ŷi that satisfy the following
LMI:













Ξ11
i Ξ12

i Ξ13
i Ξ14

i Ξ15
i

∗ Ξ22
i Ξ23

i Ξ24
i 0

∗ ∗ Ξ33
i Ξ34

i 0
∗ ∗ ∗ Ξ44

i 0
∗ ∗ ∗ ∗ Ξ55

i













< 0, (6)

where

Ξ11
i = AiM̂

T
i + M̂iA

T
i + BiŶi + Ŷ T

i BT
i

+

q2

i
∑

k=1

(

Q̂ik + N̂1ik + N̂T
1ik

)

+ Di;

Ξ12
i = P̂i − M̂T

i + δi1M̂iA
T
i + δi1Ŷ

T
i BT

i +

q2

i
∑

k=1

N̂T
2ik + δi1Di;

Ξ22
i = −δi1M̂

T
i − δi1M̂i +

q2

i
∑

l=1

η̄ikR̂ik + δi1δi1Di;

Ξ13
i =

[

Ξ13
i1 Ξ13

i2 . . . Ξ13
iq2

i

]

,

Ξ13
ik = CikM̂T

i + δi(k+1)M̂iA
T
i + δi(k+1)Ŷ

T
i BT

i

−N̂1ik + N̂T
3ik + δi(k+1)Di;

Ξ23
i =

[

Ξ23
i1 Ξ23

i2 . . . Ξ23
iq2

i

]T

,

Ξ23
ik = δi1AiM̂

T
i + δi1BiŶi − δi(k+1)M̂i − N̂2ik

+δi1δi(k+1)Di;

Ξ33
i =













Ξ33
i11 Ξ33

i12 . . . Ξ33
i1q2

i

∗ Ξ33
i22 . . . Ξ33

i2q2

i

∗ ∗
. . .

...
∗ ∗ ∗ Ξ33

iq2

i
q2

i













,

Ξ33
ikk = δi(k+1)CikM̂T

i + δi(k+1)M̂iC
T
ik − N̂3ik − N̂T

3ik

−Q̂ik + δi(k+1)δi(k+1)Di,

Ξ33
ilk = δi(l+1)CikM̂T

i + δi(k+1)M̂iC
T
il

+δi(l+1)δi(k+1)Di, l 6= k;

Ξ14
i =

[

N̂1i1 N̂1i2 . . . N̂1iq2

i

]

;

Ξ24
i =

[

N̂3i1 N̂3i2 . . . N̂3iq2

i

]

;

Ξ34
i = diag

{

N̂2i1, N̂2i2, . . . , N̂2iq2

i

}

;

Ξ44
i = diag

{

−η̄−1
i1 R̂i1,−η̄−1

i2 R̂i2, . . . ,−η̄−1
iq2

i

R̂iq2

i

}

;

Ξ15
i =

[

Ξ15
i1 Ξ15

i2 . . . Ξ15
iN

]

,

Ξ15
ij =

[

M̂iQji1 M̂iQji2 . . . M̂iQji(qiqj)

]

;

Ξ55
i = diag

{

Ξ55
i1 , Ξ55

i2 , . . . , Ξ55
iN

}

,

Ξ55
ij = diag

{

−Qji1,−Qji2, . . . ,−Qji(qiqj)

}

;

Di =
N

∑

j=1

qiqj
∑

k=1

DijkQ−1
ijkDT

ijk.

Further, the stabilizing control gains for the ith subsystem
can be written as:

Ki = Ŷi

(

M̂T
i

)

−1

. (7)

Proof. The closed-loop system (4) along with the con-
troller (5) can be written as

ẋi(t) = Āixi(t) +

q2

i
∑

k=1

Cikxi(t − ηik)

+
N

∑

j=1

j 6=i

qiqj
∑

k=1

Dijkxj(t − τijk), (8)

where Āi = Ai + BiKi.
Then, following Lemma 1, one may write the stability
criterion for system (8), in view of (3), as:





Ω11
i Ω12

i Ω11
i

∗ Ω22
i Ω23

i

∗ ∗ Ω33
i



 −





Ω14
i

Ω24
i

Ω34
i





(

Ω44
i

)

−1





Ω14
i

Ω24
i

Ω34
i





T

+

N
∑

j=1

qiqj
∑

k=1

MiDijkQ−1
ijkDT

ijkM
T
i < 0, (9)

where
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Ω11
i = L1iĀi + ĀT

i LT
1i +

q2

i
∑

k=1

(

Qik + N1ik + NT
1ik

)

+
N

∑

j=1

j 6=i

qiqj
∑

k=1

Qjik,

Ω12
i = Pi − L1i + ĀT

i LT
2i +

q2

i
∑

k=1

NT
2ik;

Ω22
i = −L2i − LT

2i +

q2

i
∑

k=1

η̄ikRik,

Ω13
i =

[

Ω13
i1 Ω13

i2 . . . Ω13
iq2

i

]

,

Ω13
ik = L1iCik + ĀT

i MT
ik − N1ik + NT

3ik,

and all other terms are as defined in (3). It may be noted
that, (9) involves nonlinear terms since it has multiplica-
tion of L1i, L2i and Mik, k = 1, 2, . . . , q2

i with BiKi. Now,
to take care of this we employ the following procedure.
First, assume M̂i = L−1

1i , M̂iL2i = δi1I, M̂iMik = δi(k+1)I

and define M̂i = diag{M̂i, M̂i,M̃i} ∈ ℜ(2+q2

i )ni×(2+q2

i )ni ,

M̃i = diag{M̂i, M̂i, . . . , M̂i} ∈ ℜq2

i ni×q2

i ni . Next, pre- and

post-multiply (9), respectively, with M̂i and its transpose

and then defining P̂i = M̂iPiM̂
T
i , Yi = KiM̂

T
i , N̂1ik =

M̂iN1ikM̂T
i , N̂2ik = M̂iN2ikM̂T

i , N̂3ik = M̂iN3ikM̂T
i ,

Q̂ik = M̂iQikM̂T
i and R̂ik = M̂iRikM̂T

i , k = 1, 2, . . . , q2
i ,

one obtains





Π11
i Π12

i Π13
i

∗ Π22
i Π23

i

∗ ∗ Π33
i



 − M̂i





Ω14
i

Ω24
i

Ω34
i





(

Ω44
i

)

−1





Ω14
i

Ω24
i

Ω34
i





T

M̂T
i

+
N

∑

j=1

qiqj
∑

k=1

M̂iMiDijkQ−1
ijkDT

ijkM
T
i M̂

T
i < 0, (10)

where

Π11
i = AiM̂

T
i + M̂iA

T
i + BiŶi + Ŷ T

i BT
i

+

q2

i
∑

k=1

(

Q̂ik + N̂1ik + N̂T
1ik

)

+

N
∑

j=1

qiqj
∑

k=1

M̂iQjikM̂T
i ;

Π12
i = P̂i − M̂T

i + δi1M̂iA
T
i + δi1Ŷ

T
i BT

i +

q2

i
∑

k=1

N̂T
2ik;

Π13
i =

[

Π13
i1 Π13

i2 . . . Π13
iq2

i

]

,

Π13
ik = CikM̂T

i + δi(k+1)M̂iA
T
i + δi(k+1)Ŷ

T
i BT

i

−N̂1ik + N̂T
3ik;

Π22
i =−δi1M̂

T
i − δi1M̂i +

q2

i
∑

l=1

η̄ikR̂ik;

Π23
i =

[

Π23
i1 Π23

i2 . . . Π23
iq2

i

]T

;

Π23
ik = δi1AiM̂

T
i + δi1BiŶi − δi(k+1)M̂i − N̂2ik;

Π33
i =













Π33
i11 Π33

i12 . . . Π33
i1q2

i

∗ Π33
i22 . . . Π33

i2q2

i

∗ ∗
. . .

...
∗ ∗ ∗ Π33

iq2

i
q2

i













,

Π33
ikk = δi(k+1)CikM̂T

i + δi(k+1)M̂iC
T
ik

−N̂3ik − N̂T
3ik − Q̂ik,

Π33
ilk = δi(l+1)CikM̂T

i + δi(k+1)M̂iC
T
il , l 6= k.

Next, consider the second term in the LHS of (10). It can
be rewritten as:

−M̂i





Ω14
i

Ω24
i

Ω34
i





(

Ω44
i

)

−1





Ω14
i

Ω24
i

Ω34
i





T

M̂T
i

=−





M̂i 0 0

∗ M̂i 0

∗ ∗ M̃i









Ω14
i

Ω24
i

Ω34
i



M̃T
i

(

M̃iΩ
44
i M̃T

i

)

−1

×M̃i





Ω14
i

Ω24
i

Ω34
i





T 



M̂T
i 0 0

∗ M̂T
i 0

∗ ∗ M̃T
i



 . (11)

Now, since M̃i = diag{M̂i, M̂i, . . . , M̂i} ∈ ℜq2

i ni×q2

i ni and

N̂jik = M̂iNjikM̂T
i , in view of structure of Ω14

i , Ω24
i , Ω34

i

as in (3), one can write





M̂i 0 0

∗ M̂i 0

∗ ∗ M̃i









Ω14
i

Ω24
i

Ω34
i



M̃T
i =





Ξ14
i

Ξ24
i

Ξ34
i



 . (12)

where Ξ14
i , Ξ24

i and Ξ34
i are as in (6). Further, in view of

Ω34
i as in (3) and Ξ44

i in (6), one may write

(

M̃iΩ
44
i M̃T

i

)

= Ξ44
i . (13)

Using (12) and (13), LHS of (11) may be written as

−M̂i





Ω14
i

Ω24
i

Ω34
i





(

Ω44
i

)

−1





Ω14
i

Ω24
i

Ω34
i





T

M̂T
i

= −





Ξ14
i

Ξ24
i

Ξ34
i





(

Ξ44
i

)

−1





Ξ14
i

Ξ24
i

Ξ34
i





T

. (14)

Now, one has to take care of the last term in the LHS of
(10). In view of the structure of Mi as defined in (3), one
obtains

M̂iMi=
[

LT
1iM̂

T
i LT

2iM̂
T
i MT

i1M̂
T
i . . . MT

iq2

i

M̂T
i

]T

=
[

I δi1I δi2I . . . δi(q2

i
+1)I

]T
.(15)

Note that, even though the above linearization is restric-
tive but it still helps to formulate the stabilization criterion
in a convenient LMI form.
The last term in the LHS of (10) can be written in ex-
panded form as

N
∑

j=1

qiqj
∑

k=1

M̂iMiDijkQ−1
ijkDT

ijkM
T
i M̂

T
i
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=















Di δi1Di δi2Di . . . δi(q2

i
+1)Di

∗ δi1δi1Di δi1δi2Di . . . δi1δi(q2

i
+1)Di

∗ ∗ δi2δi2Di . . . δi2δi(q2

i
+1)Di

∗ ∗ ∗
. . .

...
∗ ∗ ∗ ∗ δi(q2

i
+1)δi(q2

i
+1)Di















,(16)

with Di =
∑N

j=1

∑qiqj

k=1 DijkQ−1
ijkDT

ijk.

Next, note that, Π11
i of (10) is nonlinear due to the

multiplication of M̂i with its transpose. The summation
of this term can be expressed as:

N
∑

j=1

qiqj
∑

k=1

M̂iQjikM̂T
i =

N
∑

j=1

ΘjiΦjiΘ
T
ji

=











ΘT
1i

ΘT
2i

...
ΘT

Ni











T








Φ1i 0 . . . 0
∗ Φ2i . . . 0

∗ ∗
. . .

...
∗ ∗ ∗ ΦNi



















ΘT
1i

ΘT
2i

...
ΘT

Ni











= −
[

Ξ15
i

] (

Ξ55
i

)

−1 [

Ξ15
i

]T
, (17)

where Θji =
[

M̂iQji1 M̂iQji2 . . . M̂iQji(qiqj)

]

, Φji =

diag
{

Q−1
ji1, Q

−1
ji2, . . . , Q

−1
ji(qiqj)

}

, j = 1, 2, . . . , N , and Ξ15
i ,

Ξ55
i are as in (6).

Now, using (14), (16) and (17), inequality (10) may be
written in partitioned matrix form as:





Ξ11
i Ξ12

i Ξ13
i

∗ Ξ22
i Ξ23

i

∗ ∗ Ξ33
i



 −





Ξ14
i

Ξ24
i

Ξ34
i





[

Ξ44
i

]

−1





Ξ14
i

Ξ24
i

Ξ34
i





T

−





Ξ15
i

0
0





[

Ξ55
i

]

−1





Ξ15
i

0
0





T

< 0. (18)

Combining the second and third term in (18), one may
write





Ξ11
i Ξ12

i Ξ13
i

∗ Ξ22
i Ξ23

i

∗ ∗ Ξ33
i





−





Ξ14
i Ξ15

i

Ξ24
i 0

Ξ34
i 0





[

Ξ44
i 0
0 Ξ55

i

]

−1




Ξ14
i Ξ15

i

Ξ24
i 0

Ξ34
i 0





T

< 0. (19)

Finally, employing Schur Complement formula on (19),
one obtains the LMI (6) that can be solved to obtain
stabilizing control gains from (7).

5. NUMERICAL EXAMPLE

Example 1. Consider an interconnected system given by

S∗

i : ẋ∗

i (t) = Gix
∗

1(t) +

3
∑

j=1

j 6=1

Hijx
∗

j (t − τ∗

ij) + B̄iūi(t),

i = 1, 2, 3,(20)

with

G1 =

[

−2 0.1
0 0.2

]

, G2 =

[

−1 1
−0.2 0

]

, G3 =

[

−1 1
0 −3

]

,

H12 =

[

0 0
−0.5 0

]

, H21 =

[

0 1.7
−1 0

]

, H13 =

[

0 0.8
0 0.1

]

,

H31 =

[

0 0
0.5 0

]

, H23 =

[

0.1 0
0 0

]

, H32 =

[

0.1 0
0 0

]

,

B̄1 = [ 1 0 ]
T

, B̄2 = B̄3 = [ 0 0 ]
T

.

Note that, the overall autonomous system is not delay-
independently stable since G1 is not Hurwitz. Moreover,

for τ∗

12 = τ∗

21 = 0, the augmented matrix
[

G1 H12

H21 G2

]

is

also not Hurwitz. Further, the pair {G1, B̄1} is uncon-
trollable but for τ∗

12 = τ∗

21 = 0, the augmented pair
{[

G1 H12

H21 G2

]

,

[

B̄1

0

]}

is controllable. Therefore, one may

use both the states of 1st and 2nd subsystems to stabilize
the system through the control input of the first subsystem
and then the system has to be delay-dependently stable on
τ∗

12 and τ∗

21. The corresponding control law is described as:

u1(t) = K∗

11x
∗

1(t) + K∗

12x
∗

2(t)

= [ K∗

11 K∗

12 ]
[

x∗T
1 (t) x∗T

2 (t)
]T

.

The objective now is to design the stabilizing control gains
K∗

11 and K∗

12. By augmenting the 1st and 2nd subsystems,
one obtains

ẋi(t) = Aixi(t) +

q2

i
∑

k=1

Cikxi(t − ηik)

+

2
∑

j=1

j 6=i

qiqj
∑

k=1

Dijkxj(t − τijk) + BiKixi(t), i = 1, 2,

with

q1 = 2, q2 = 1, B2 = C13 = C14 = C21 = 0, η11 = τ∗

12,

η12 = τ∗

21, τ121 = τ∗

13, τ122 = τ∗

23, τ211 = τ∗

31, τ212 = τ∗

32,

A1 =

[

G1 0
0 G2

]

, A2 = G3, C11 =

[

0 H12

0 0

]

,

C12 =

[

0 0
H21 0

]

, D121 =

[

H13

0

]

, D122 =

[

0
H23

]

,

D211 = [ H31 0 ] , D212 = [ 0 H32 ] ,

B1 = [ 1 0 0 0 ]
T

, B2 = 0 and K1 = [ K∗

11 K∗

12 ] .

For η11 = 0.1 and η12 = 0.2, one may use Theorem 4.2 to
design the controller. For solving the LMI, we consider

Q121 = 15I, Q122 = I, Q211 = Q212 = I.

Then solving LMI (6) for δ11 = δ12 = δ13 = 1, one obtains
a stabilizing control gain as:

K∗

11 = [−9.2005 231.1257 ] , K∗

12 = [ 23.3063 49.6720 ] .

The LMI criterion corresponding to the second new sub-
system is also found to yield feasible solution. This ensures
the system (20) with the designed controller is delay-
dependently stable for η11 = 0.1 and η12 = 0.2. The system
is now simulated with τ∗

12 = 0.1, τ∗

21 = 0.2, τ∗

13 = τ∗

31 = 0.6,
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τ∗

23 = τ∗

32 = 0.4; x∗

1(t) = [−1 2 ]
T

for −0.6 ≤ t ≤ 0;

x∗

2(t) = [−4 1 ]
T

for −0.4 ≤ t ≤ 0; x∗

3(t) = [ 0 −2 ]
T

for −0.6 ≤ t ≤ 0. The corresponding norm of the state
responses of the three subsystems and the control input
are shown in Figs. 1 – 4, which shows that the controller
effectively stabilizes the composite system.
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35

Time

||x
1* (t)

||

Fig. 1. Variation of norm of the state of S∗

1 .
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Fig. 2. Variation of norm of the state of S∗

2 .
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Fig. 3. Variation of norm of the state of S∗

3 .
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Fig. 4. Control input to the first subsystem S∗

1 .

6. CONCLUSION

Mixed delay-dependent/delay-independent state feedback
stabilization of interconnected time-delay system has been
considered and a stabilization criterion has been derived
in terms of LMIs for designing the decentralized controller.
Formation of larger subsystems involving finite delays has
been considered to obtain the desired delay-dependent
stabilization. A numerical example has been presented to
demonstrate the effectiveness of the proposed design.
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