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ABSTRACT  

 

The present research is an experimental and numerical investigation on parametric study of 

vibration characteristics of industry driven woven fiber carbon composite panels. The effects of 

different geometry, boundary conditions, lamination parameters and fibre on the frequencies of 

vibration of carbon fiber reinforced polymer (CFRP) panels are studied in this investigation. The 

vibration study is carried out using B &K FFT analyzer, accelerometer, impact hammer 

excitation. The PULSE software is used to convert the responses from time domain to frequency 

domain. The Frequency Response Function (FRF) spectrum are studied with the coherences to 

obtain a clear understanding of the vibration characteristics of the CFRP plates. The 

experimental results are compared with the numerical predictions using the FEM program as 

well as software package ANSYS 13.0. A very good agreement was observed between the 

results. Different mode shapes were plotted to interpret the different modes of vibration using 

ANSYS. Benchmark results are presented showing the effects of different parameters on the 

natural frequencies of CFRP plates. 

 

KEYWORDS 

Vibration, CFRP, modal testing, FRF spectrum, FFT, FEM 

 

1. Introduction 

Composite materials have extensive applications in various fields including fuselage panels of 

aeroplane, turbine blades, automobile body panels, cryogenic fuel tanks etc. The recent Boeing 

787 uses nearly 50% of composites of which the major components including fuselage and wings 

consists of carbon composites.  Thus, the vibration characteristics of the woven fibre laminated 

composite panels are of tremendous practical importance in prediction of the dynamic behaviour 

of carbon composite panels.  

Most of the previous investigations were focused either on numerical analysis of unidirectional 

composite plates. The related literature was critically reviewed so as to provide the background 

information on the problems to be considered in the research work and to emphasize the 

relevance of the present study. Most of the previous studies are limited to theoretical results by 

adopting various methods including analytical and numerical approach like Ritz and finite 

element method but with unidirectional fibres. The experimental results on vibration 



measurement or modal analysis of composite plates are less in open literature. Cawley and 

Adams [1] investigated the natural modes of square aluminium plates and square composite 

plates with different ply orientations for free-free boundary conditions, both theoretically as well 

as experimentally. Cawley and Adams [2] also used dynamic analysis to detect, locate and 

roughly quantify damage to components fabricated from fibre reinforced plastic. Crawley [3] 

experimentally determined the mode shapes and natural frequencies of composite plates, 

cylindrical shell sections and Aluminium hybrid plates for various laminates and aspect ratio 

using electro-magnetic shaker and compared the results to that obtained from finite element 

analysis. The natural frequency and the specific damping capacity of CFRP and GFRP were 

predicted by Lin et al. [4] using zoom-FFT based on transient testing technique and computer 

based programme implementing finite element method. Chai [5] presented an approximate 

method based on Rayleigh-Ritz approach to determine the free vibration frequencies of generally 

laminated composites for different ply orientation and different boundary conditions. Maiti and 

Sinha [6] used the first order shear deformation theory (FSDT) and higher order shear 

deformation theories (HSDT) to develop FEM methods to study the bending, free vibration and 

impact response of thick laminated composite plates. The effects of delamination on the free 

vibration of composite plates were analysed by Ju et al. [7]. Chen and Chou [8] developed 1D 

elasto-dynamic analysis method for vibration analysis orthogonal woven fabric composites. The 

free vibration frequencies of cross ply laminated square plates for twelve different boundary 

conditions were determined using Ritz method by Aydogdu and Timarci [9]. Ferreira et al. [10] 

conducted analytical studies using FSDT in radial basis functions procedure for moderately thick 

symmetrically laminated composite plates. Xiang et al. [11] carried out ttheoritical studies of 

laminated composite plates using Guassian radial basis functions and first order shear 

deformation theory. Xiang and Wang [12] studied the free vibration analysis of symmetric 

laminated composite plates using trigonometric theory and inverse multiquadriatic radial basis 

function. Maheri [13] used theoretical predictions of modal response of square layered FRP 

panel to study the variation of modal damping under various boundary conditions.  

Woven fabric composites are a class of composite materials with a fully integrated, continuous 

spatial fibre network that provide excellent integrity and conformability for advanced structural 

composite applications. These materials have gained tremendous popularity for possessing 

excellent durability, corrosion resistance and high strength to weight ratio. Ease of installation, 

versatility, anti-seismic behaviour, electromagnetic neutrality, excellent fatigue behaviour and 

fire resistance make it a better alternative to steel and other alloys. The studies on woven fiber 

composites are limited to static/ impact studies, damage initiation or failure mode of woven or 

braided composite plates. The computation of natural frequencies is important to predict the 

behaviour of structures under dynamic loads. The modal analysis can be used a non-destructive 

technique of assessment of stiffness of structures. Measurement of changes in vibrational 

characteristics can be used to detect, locate and roughly quantify damage in CRPF panels. This 

study is also necessary in order to avoid resonance of large structures under dynamic loading.  



However vibration of   industry driven woven fiber composite plates are scarce in literature. 

Linear analysis on CFRP faced sandwich plates with an orthotropic aluminium honeycomb core 

has done using principle of minimum total potential and double Fourier series by Kanematsu et 

al. [14]. Chai et al. [15] used TV holography technique to obtain the vibrational response of the 

unidirectional laminated carbon fibre-epoxy plates and carried out finite element studies 

simultaneously. Chakraborty et al. [16] determined the frequency response of GFRP plates 

experimentally and validated the results using commercial finite element package (NISA). The 

analytical values were compared with the experimental values obtained with fully clamped 

boundary condition. Holographic technique was used to study the modes and deflection. Hwang 

and Chang [17] used impulse technique for vibration testing of composite plates for 

determination elastic constants of materials and modelled undamped free vibration using 

ANSYS 5.3. Lei et al. [18] studied the effect of different woven structures of the glass fibre on 

the dynamic properties of composite laminates.   

The present study deals with modal testing of CRFP plates and compared with the numerical 

modelling using finite element in MATLAB environment and also by ANSYS. Various mode 

shapes are plotted using ANSYS and discussed. The effects of different geometry, boundary 

conditions and lamination parameters on the frequencies of vibration of carbon fiber reinforced 

polymer (CFRP) panels are studied in this investigation. 

 

2. Mathematical formulation  

The basic configuration of the problem considered here is a woven fiber carbon fiber composite 

laminated plate of sides ‘a’ and ‘b’ as shown in the Figure 1. The lamination sequence is also 

shown in Figure 2. 

       

Figure 1- Laminated Composite Plate under in-plane Figure 2- Lamination sequence 

      harmonic Loading 

The governing equations for the structural behavior of the laminated plates are derived on the 

basis of first order shear deformation theory. The element elastic stiffness, geometric stiffness 

and mass matrices are derived on the basis of principle of minimum potential energy and 

Lagrange’s equation. The assumptions made in this analysis are summarized as follows. 



2.1. Governing Differential Equation 

The equation of motion is obtained by taking a differential element of plate. The governing 

differential equations for vibration of general laminated composite plates derived on the basis of 

first order shear deformation theory (FSDT)  are: 

                                    
2

2

22

2

1
t

P
t

u
P

y

N

x

N xxyx


















 

                          (1)

 

                                  
2

2

22

2

1
t

P
t

v
P

y

N

x

N yyxy


















 
                              (2)        

                       
2

2

1
t

w
P

y

Q

x

Q yx














                                                    (3) 

 
2

2

22

2

3
t

u
P

t
PQ

y

M

x

M x
x

xyx


















 

                 (4)

                        

2

2

22

2

3
t

v
P

t
PQ

y

M

x

M y

y

yxy


















 

                                 (5)

 

            
                                                                                                                                                                         

Where Nx, Ny and Nxy are the in-plane stress resultants, Mx, My and Mxy are moment resultants 

and Qx, Qy= transverse shear stress resultants.  
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Where n= number of layers of laminated composite plates, (ρ)k= mass density. 

The equation of motion for vibration of a laminated composite panel, subjected to generalized in- 

may be expressed in the matrix form as: 

                
2[[K] [M]]{q} 0   

  
                                                                             (7) 

2.2 Finite Element Formulation 

For problems involving complex geometry, material and boundary conditions, analytical 

methods are not easily adaptable and numerical methods like finite element methods (FEM) are 

preferred. The finite element formulation is developed hereby for the structural analysis of 



woven fiber composite plates based on first order shear deformation theory. An eight nodded 

isoparametric element is employed in the present analysis with five degrees of freedom u, v, w, 

θx and θy per node. A Composite plate of length ‘a’ and width ‘b’ consisting of ‘n’ number of thin 

homogeneous arbitrarily oriented orthotropic layers having a total thickness ‘h’ is considered as 

shown in figure 3. The x-y axes refer to the reference axes and the principal material axes are 

indicated by the axes 1-2. The angle ‘θ’ measured in the anti-clockwise direction of x-axis 

represents the fiber orientation. The displacement field assumes that mid-plane normal remains 

straight before and after deformation, but not normal even after deformation so that: 

0

xu(x, y,z) u (x, y) z (x, y) 
 

0

yv(x, y,z) v (x, y) z (x, y) 
                                                                        (8)

 

0w(x, y,z) w (x, y)  

Where u, v, w are displacements in the x, y, z directions respectively for any point, u
0
,v

0
, w

0
 are 

those at the middle plane of the plate. θx, θy are the rotations of the cross section normal to the y 

and x axis respectively.  

2.3      Strain Displacement Relations  

The linear part of the strain is used to derive the elastic stiffness matrix.    The linear generalized 

shear deformable strain displacement relations are [6] 
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The linear strain   can be expressed in terms of displacement as:  

    eB  
                                                                                                                  

(11) 
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T
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And [B] = [[B1], [B2]………………………………. [B8]]                                         (13)   
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[B]    is called the strain displacement matrix 

2.4     Constitutive Relations 

The elastic behavior of each lamina is essentially two dimensional and orthotropic in nature. The 

elastic constants for the composite lamina are given as [6 ]. 

The stress strain relation for the k
th
 lamina is, 
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E11 = Modulus of Elasticity of Lamina along 1-direction 

E22 = Modulus of Elasticity of Lamina along 2-direction 

G12 = Shear Modulus 

ν12= Major Poisson’s ratio 

ν21 = Minor Poisson’s ratio

 

The on-axis elastic constant matrix [Qij]k for the material axes 1-2 for k
th
 layer is given by 
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For obtaining the off-axis elastic constant matrix, [Qij]k corresponding to any arbitrarily oriented 

reference x-y axes for the k
th

 layer ,appropriate transformation is required. Hence the off-axis 

elastic constant matrix is obtained from the on axis elastic constant matrix by the relation: 
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Where [T] = Transformation matrix =
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The off-axis stiffness values are: 
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The stiffness corresponding to transverse deformations are: 

   

                                                                                      (21) 

 

Where m=cosθ and n=sinθ; and θ=angle between the arbitrary principal axis with the material 

axis in a layer.  

The force and moment resultants are obtained by integrating the stresses and their moments 

through the laminate thickness as given by  
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This can also be stated as  
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Where Aij, Bij andSi j  are the extensional, bending- stretching coupling, bending and transverse 

shear stiffnesses. They may be defined as 
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κ = shear correction factor =5/6   in-line with previous studies [Whitney and Pagano [1970] and 

Reddy [1979]] 

zk, zk-1= top and bottom distance of lamina from mid-plane. 

2.5 Elastic stiffness matrix  

The element matrices in natural coordinate system are derived as 
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Where   [B]    is called the strain displacement matrix 

2.6 Element mass matrix 
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Where the shape function matrix  

     (32) 
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The element load vector due to external transverse static load ‘p’ per unit area is given by 
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2.7. Computer Program 

A computer program is developed by using MATLAB environment to perform all the necessary 

computations. The element stiffness and mass matrices are derived using the formulation. 

Numerical integration technique by Gaussian quadrature is adopted for the element matrices. The 

overall matrices [K] and [M] are obtained by assembling the corresponding element matrices. 

The boundary conditions are imposed restraining the generalized displacements in different 

nodes of the discretized structure.  

 

2.8 Modeling using ANSYS 13.0 

The CFRP plate was modeled using a commercially available finite element package, ANSYS 

13.0. [20] The natural frequencies and mode shapes are obtained by modal analysis. The element 

type used is SHELL281 which is an 8 noded structural shell, suitable for analyzing thin to 

moderately thick shell structures. The element has 8 nodes with 6 degrees of freedom at each 

node. The accuracy in modeling composite shells is governed by the first order shear 

deformation theory. The whole domain is divided into 8 x 8 mesh for all the cases. The boundary 

conditions of CCCC, CSCS, SSSS and CFFF were introduced by limiting the degrees of freedom 

at each node. FFFF condition was simulated by limiting displacement of the plate in vertical 

direction along the plane of plate. This condition closely resembled the experimental used in 

which the plate was hung vertically using strings of negligible stiffness.  

 

3. Experimental Programme 

The experimental investigation describes in detail of the materials and its fundamental 

constituents, the fabrication of composite plates, and the test methods according to standards.  

 

3.1 Fabrication Method 

Specimens were cast using hand layup technique as shown in Figure 3. In hand lay-up method, 

The percentage of fiber and matrix was taken as 50:50 by weight for fabrication of the plates. 

Lamination started with the application of a gel coat (epoxy and hardener) deposited on the 

mould by brush. Layers of reinforcement were placed on the mould at top of the gel coat and gel 

coat was applied again by brush. Any air which may be entrapped was removed using steel 

rollers. After completion of all layers, again a plastic sheet was covered the top of last ply by 

applying polyvinyl alcohol inside the sheet as releasing agent. Again one flat ply board and a 

heavy flat metal rigid platform were kept top of the plate for compressing purpose. The plates 

were left for a minimum of 48 hours in room temperature before being transported and cut to 

exact shape for testing.  



 
Figure 3 - Hand Lay Up method used for fabrication 

3.2 Determination of Physical Properties 

The physical properties of fabricated composite plates such as density and thickness, represented 

in Table 1, were measured up to the required degree of accuracy. The thickness was measured 

using vernier caliper with a least count of 0.1 mm. The weight of the specimen was measured 

using digital weighing balance with an accuracy of 0.1 grams.  

Table 1- Physical properties of the casted specimens 

Sl. No. No of 

layers 

Length in 

m 

Width in m Thickness 

in m 

Mass in g Density in 

kg/m3 

1 4 0.24 0.24 0.0021 174 1438.49 

2 8 0.24 0.24 0.0042 345 1426.09 

3 12 0.24 0.24 0.0065 519 1386.22 

3.3 Tensile tests on CFRP plates 

The Young’s modulus was obtained experimentally by performing unidirectional tensile tests on 

specimens cut in longitudinal and transverse directions as described in ASTM Standard [19] for 

the FRP plates fabricated earlier. Strips of specimens having a constant rectangular cross-section, 

say 250 mm long × 25mm width are prepared from the plates. Three or more sample specimens 

were prepared from each plate of CFRP in this experiment. The specimen is gradually loaded up 

to failure, which was abrupt and sudden as the FRP material was brittle in nature. The INSTRON 

1195 machine as shown in figure 4 directly indicated the Young’s Modulus, ultimate strength. 



 
Figure 4: Tensile testing of CFRP plates using INSTRON 1195  

3.4 Setup and Test Procedure for Free Vibration Test: 

The connections of FFT analyzer, laptop, transducers, modal hammer, and cables to the system 

were done as per the guidance manual. The pulse lab shop software key was inserted to the port 

of laptop. The plate was excited in a selected point by means of Impact hammer (Model 2302-5). 

The resulting vibrations of the specimens on the selected point were measured by an 

accelerometer (B&K, Type 4507) mounted on the specimen by means of bees wax. The plates 

were placed as per the required boundary conditions of free-free (FFFF), fully clamped (CCCC), 

simply supported (SSSS), cantilevered (CFFF) and CSCS conditions. Fully clamped and free 

free conditions were simulated as shown in figure 5(a) and 5(b). 

   
(a) (b) 

Figure 5: Carbon fibre composite plate during testing for different boundary conditions. (a) Fully 

Clamped condition. (b) Free free condition  for aspect ratio 4. 

 



4. Results and Discussion 

The predictions of natural frequency of vibration using finite element analysis and experimental 

results are presented. Comparison with existing literature is done for the validation of the results 

obtained from finite element analysis. The above results are compared with that of finite element 

package, ANSYS. The experiments were conducted to study the modal frequencies of industry 

driven woven carbon fibre composite plates. The variation of the fundamental frequencies with 

boundary conditions, number of layers, aspect ratio and type of fibre were studied. 

4.1 Material properties 

The material properties of the carbon/epoxy composite are presented in Table 2. 

Table 2 – Material properties of epoxy/carbon composite 

E1 (GPa) 40.32 GPa 

E2 (GPa) 40.32 GPa 

G12 (GPa) 3.78 GPa 

G13 (GPa) 3.5 GPa 

ν12 0.3 

ρ(kg/m
3) 

1426 

4.2 Validation of results 

The present formulation is validated for vibration analysis of composites panels in free-free 

boundary conditions as shown in Table 3. The four lowest non dimensional frequencies obtained 

by the present finite element are compared with numerical solution published by Ju et al. [7].The 

experimental results were compared with analytical results as well as results from ANSYS, finite 

element package. The comparison has been presented in the subsequent sections. A good 

agreement was observed between the results with a maximum deviation of 20 % between 

experimental and FEM program results and 7 % between FEM program ANSYS. 

Table 3 - Comparison of natural frequencies (Hz) from FEM with the frequencies for 8 layers for 

fully free boundary condition  

Studies Mode 1 Mode 2 Mode 3 Mode 4 

Ju et al. [7] 73.309 202.59 243.37 264.90 

Present FEM 72.71 202.06 244.22 264.14 

4.3 Modal Testing of Composite plates for different boundary conditions 

Natural frequencies of the first four modes obtained experimentally and using FEM analysis for 

various boundary conditions are represented in figures 6(a)-(e). The experimental values are in 

good agreement with the predicted values with a maximum deviation 18.03%. There is a marked 

increase in the modal frequencies with the increase in the number of layers of carbon fibre used 

for a particular boundary condition. This can be accounted for due to bending, stretching and 



coupling. It is also observed that the effect of plate thickness is most evident in case of FFFF 

boundary condition.  

  

(a)         (b) 

  

       (c)            (d) 

 

(e) 

Figure 6 – Variation of natural frequency with number of layers for (a) free-free (b) fully 

clamped (c) cantilever (d) simply supported (e) CSCS boundary conditions. 



The first four mode shapes for 8 layered plates were obtained from ANSYS 13.0 and are 

illustrated in figures 7(a)-(e). It is observed that the frequencies for second and third modes are 

quite close for FFFF, CCCC, SSSS, and CSCS boundary conditions since they represent 

conjugate modes as evident from the mode shapes. A deviation from such behavior is noted in 

case of CFFF boundary condition which can be attributed to asymmetry in boundary condition.  

 

(a) 

 

(b) 

 

(c) 

 

(d) 



 

(e) 

Figure 7 – Mode shapes for first four modes for 8 layered CFRP plate in (a) FFFF (b) CCCC (c) 

CFFF (d) SSSS (e) CSCS boundary conditions. 

The comparison of the natural frequencies of 8 layered CFRP plates for different boundary 

conditions is shown in figure 8.  The natural frequencies of vibration for CCCC condition are 

observed to be higher than that of other boundary conditions. This is followed by CSCS, SSSS, 

FFFF and CFFF in descending order. The greatest frequency in fully clamped condition can be 

attributed to greater stiffness of supports. With decrease in restraints the modal frequencies 

decrease.  

 

Figure 8 – Comparison of natural frequency of 8- layer CFRP plates for different boundary 

condition 

The natural frequencies of vibration in FFFF boundary condition for aspect ratio 1, 2 and 4 are 

presented in figure 9. Figure 10(a)-(b) shows the mode shapes for the first four modes for 

different aspect ratios. It is observed that the modal frequencies increase with the increase in 

aspect ratio. The frequencies are increased by nearly 47% as the aspect ratio is increased and an 

almost linear variation was observed. 



 

Figure 9 - Variation of natural frequency with aspect ratio 

 

(a) 

 

(b) 

Figure 10 - Mode shapes for first four modes for 8 layered CFRP plate in FFFF boundary 

condition with (a) a/b = 2 (b) a/b = 4. 

The variation of natural frequency with type of fibre is shown in figure 11. The present values 

obtained for CFRP plates have been compared with GFRP plates of equal dimension, reinforced 

with E Glass Fibre having E= 7.8GPa, υ=0.33 and σ= 2160 kg/m
2
 obtained from Basa and 

Dwibedi [21]. The natural frequencies obtained for CFRP plates are significantly greater than 

those obtained for GFRP plates showing higher specific stiffness.The increase in frequencies is 

more pronounced at higher modes. 



 

Figure 11  Variation of natural frequency with type of fibre  

5. Conclusion 

Based on the discussions of results, the conclusions are: 

 Benchmark solutions on the natural frequencies of the first four modes are reported for 

simply supported, fully clamped, cantilever, free-free and CSCS boundary conditions.  

 The mode shapes are plotted for CFRP plates supported on different boundaries. 

 The frequencies of woven fiber CFRP plates increase with increase of aspect ratio. 

 From the experiments conducted it was observed that the frequency of vibration of 

composite plates increase with increase in the number of layers of fiber for all the support 

conditions due to bending stretching coupling..  

 The frequency of vibration was noted to be highest for fully clamped condition due to the 

increased stiffness.  

 When compared with the results reported for GFRP, it was observed that the modal 

frequencies for CFRP were considerably higher than that of GFRP accounting for its 

better performance. 

From the present studies, it is concluded that the vibration behavior of woven fiber laminated 

composite plates and shells is greatly influenced by the geometry and lamination parameter. 

The figures dealing with variation of the frequencies are recommended as design aids for flat 

panels. The above recommendations for design of composite plates are valid within the range 

of geometry and material considered in this study. So the designer has to be cautious while 

dealing with woven fiber composite plates. This can be utilized to the advantage of tailoring 

during design of laminated composite structures. The vibration studies can also be used a non 

destructive tool for damage detection and structural health monitoring of structures.   
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