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Abstract—Load balancing problem on Heterogeneous Distributed 

Computing System (HDCs) deals with allocation of tasks to 
computing nodes, so that computing nodes are evenly loaded. Due the 
complexity of dynamic load balancing problem majority of 
researchers uses heuristic algorithm to obtain near optimal solutions. 
We have used consistent ETC (Expected Time to Compute) matrix in 
to study the performance of simulated annealing (SA) algorithm to 
minimize the makespan. Simulated annealing based resource 
allocation algorithm uses sliding widow techniques to select the tasks 
to be allocated to computing nodes after number of iterations. A new 
codification suitable for simulated annealing algorithm has been 
introduced for dynamic load balancing on HDCS. We have also 
presented three algorithms for move sets representations for SA. 
Several simulations run have been made on proposed simulated 
annealing algorithm for dynamic load balancing on HDCS, and 
compare with conventional first fit (FF), and randomized algorithm.  
The effect of simulated annealing based dynamic load balancing 
scheme has been on comparisons with first-fit, and randomized 
heuristic algorithm with task scalability.  

Keywords—Dynamic load balancing, simulated annealing, 
heterogeneous distributed system, makespan   

I. INTRODUCTION 

istributed heterogeneous computing is being widely 
applied to a variety of large size computational 
problems. The large scale computing problems requires 

more computing time, which can be meat by utilizing the ideal 
computing time of the vast computing resources distributed 
over the globe. These computational environments are consists 
of multiple heterogeneous computing modules, these modules 
interact with each other to solve the problem. In a 
Heterogeneous distributed computing system (HDCS), 
processing loads arrive from many users at random time 
instants. A proper scheduling policy attempts to assign these 
loads to available computing nodes so as to complete the 
processing of all loads in the shortest possible time. Modern 
distributed computing technology includes clusters, the grid, 
service-oriented architecture, massively parallel processors, 
peer-to-peer networking, and cloud computing [37].  
 
 
 
 
 

 
 

The central or serial scheduler schedules the processes in a 
distributed system to make use of the system resources in such a 
manner that resource usage, response time, network 
congestion, and scheduling overhead are optimized. There are 
number of techniques and methodologies for scheduling 
processes of a distributed system. These are task assignment, 
load-balancing, load-sharing approaches [20]. Due to 
heterogeneity of computing nodes, jobs encounter different 
execution times on different processors.  Therefore, research 
should address scheduling in heterogeneous environment.  
 
In task assignment approach, each process submitted by a user 
for processing is viewed as a collection of related tasks and 
these tasks are scheduled to suitable nodes so as to improve 
performance. In load sharing approach simply attempts to 
conserve the ability of the system to perform work by assuring 
that no node is idle while processes wait for being processed. In 
load balancing approach, processes submitted by the users are 
distributed among the nodes of the system so as to equalize the 
workload among the nodes at any point of time. Processes 
might have to be migrated from one machine to another even in 
the middle of execution to ensure equal workload. Load 
balancing strategies may be static or dynamic [3, 7, 38]. 

 
To improve the utilization of the processors, parallel 

computations require that processes be distributed to processors 
in such a way that the computational load is spread among the 
processors. Dynamic load distribution (also called load 
balancing, load sharing, or load migration) can be applied to 
restore balance [7, 20]. In general, load-balancing algorithms 
can be broadly categorized as centralized or decentralized, 
dynamic or static, periodic or non-periodic, and those with 
thresholds or without thresholds [3, 7, 11]. Central scheduler or 
serial scheduler or load balancing service should be able to 
effectively control the computing resource for dynamic 
allocation to the tasks [13]. We have used a centralized 
load-balancing algorithm framework as it imposes fewer 
overheads on the system than the decentralized algorithm [38]. 
The load-balancing problem aims to compute the assignment 
with smallest possible makespan (i.e. the completion time at the 
maximum loaded computing node). The load distribution 
problem is known to be NP-hard [21] in most cases and 
therefore intractable with number of tasks and/or the computing 
node exceeds few units.  Here, the load balancing is a job 
scheduling policy which takes a job as a whole and assign it to a 
computing node [41]. The complexity of dynamic load 
balancing increases with the size of HDCS and becomes 
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difficult to solve effectively. The exponential solution space for 
the load balancing problem can searched using heuristic 
techniques(GA, Tabu search, SA) to obtained suboptimal 
solution in the acceptable time[16,17,38]. These Artificial 
intelligence techniques have been used by researchers and 
proven to be effective in solving many optimization problems. 
Simulated Annealing (SA), proposed by Kirkpatrick et 
al.[39,42], has been used as a popular heuristic to solve  
optimization problems.  Genetic Algorithms are used as one the 
popular technique to search the solution space to obtain 
sub-optimal solution.  
 
This paper considers the problem of finding an optimal solution 
for load balancing in heterogeneous distributed system using 
stochastic iterative dynamic load balancing. The rest of the 
paper is organized as follows.  Section 2 highlights the 
contribution of various researchers in the related area of load 
balancing on distributed computing system and solving 
dynamic load balancing problem with simulated annealing. 
Section 3 discusses Heterogeneous distributed computing 
system (HDCS) structure and the linear programming 
formulation of load-balancing problem.  Section 4 describes the 
task model and stochastic iterative dynamic load balancing 
techniques for dynamic load distribution. Section 5 outlines the 
design details of simulated annealing. Finally, conclusions and 
directions for future research are discussed in Section 6. 

II. RELATED WORKS 

Load balancing for distributed computing system is a problem 
that has been deeply studied for a long time. Different heuristic 
algorithms are used by researcher to find suboptimal solutions 
for homogeneous and heterogeneous distributed system. 
Dandamudi [10] addressed dynamic load sharing in distributed 
systems and established that load sharing improves 
performance by moving work from heavily loaded nodes to 
lightly loaded nodes. A general model for heterogeneous 
distributed/parallel computer system proposed by Li and 
Kameda [11] and used to formulate the multiclass job load 
balancing problem as a nonlinear optimization problem.  An 
algorithmic approach to load balancing problem is presented in 
[19]. Different form of linear programming formulation of the 
load balancing problem has been discussed along with greedy, 
randomized and approximation algorithm to produce 
sub-optimal solutions to the problem. The solution to this 
intractable problem was discussed under different algorithm 
paradigm. Modeling of optimal load balancing strategy using 
queuing theory was proposed by Francois Spies (1996). This is 
one of the pioneer works reported in the literature that presents 
an analytical model of dynamic load balancing techniques as 
M/M/k queue and simulate with fundamental parameters like 
load, number of nodes, transfer speed and overload rate [7]. 
Most appropriate queuing model for homogeneous distributed 
system can be M/M/m/n, has been analyzed in [9].   
Queuing-Theoretic models for parallel and distributed system 
can be found in [6, 8]. General Job scheduling problem of n 
tasks with m machines, is presented as an optimization problem 
in [8] to minimize the makespan. Jong-Chen Chen and et al. 
[12] investigated the contribution made by evolutionary 
learning on dynamic load balancing problems in distributed 

computing system. Bora Ucar and et al. have considered the 
assignment of communicating tasks to heterogeneous 
processors[28], that uses a task clustering method based upon 
execution time to allocate the task though the heuristic 
techniques. A classification of iterative dynamic load balancing 
technique is discussed in [28]. 

 

SA is a heuristic method that has been implemented to obtain 
good solutions of an objective function defined on a number of 
discrete optimization problems. Simulated Annealing (SA), 
proposed by Kirkpatrick et al.[39,42], has been used as a 
popular heuristic to solve  several optimization problems to 
obtain sub-optimal solution. A heuristic algorithm based on 
simulated annealing is discussed [31], which guarantees good 
load balancing on grid environment. A comparative study of 
the three algorithms (Hill-climbing, simulated annealing and 
genetic algorithms) is then carried out in [30] considering 
performance criteria as the amount of search time. 

Makespan minimization of scheduling problem on identical 
parallel machines using simulated annealing has been presented 
by Lee and et al. in [41]. Grid Computing is one of 
heterogeneous distributed computing system geographically 
dispersed among several entities. Fidanova used simulated 
annealing to obtain near optimal solutions for scheduling 
problem in large grid [1]. Researchers have examined, 11 
different heuristics( Opportunistic Load Balancing, Minimum 
Execution Time, Minimum Completion Time, Min–min, 
Max–min, Duplex, Genetic Algorithm, Simulated Annealing, 
Genetic Simulated Annealing, Tabu, and A*) on 
Mixed-machine heterogeneous computing (HC) environments 
to minimize the total execution time of the metatask[16,17]. 
Rahmani and Rezvani presented a genetic algorithm for static 
scheduling, which is again improved by simulated annealing to 
obtain an improvised solution[43]. They have also established 
that running time depends on the number of task. 

  Several researchers used SA and GA for load balancing on 
distributed computing system; however majority of the papers 
have no specific representation for simulated annealing 
algorithms for load balancing.  This paper presents  detail frame 
work for the simulated  annealing algorithm to solve dynamic 
load balancing problem using ETC matrix for n number of tasks 
on m computing nodes. We have also presented three algorithm 
for move sets representations (i) inversion, (ii) translation, and 
(iii) switching for SA. 

III. HETEROGENEOUS DISTRIBUTED COMPUTING 

SYSTEM MODEL 

A. Heterogeneous distributed computing system 

Heterogeneous distributed computing system (HDCS) utilizes a 
distributed suite of different high-performance nodes, 
interconnected with high-speed links, to perform different 
computationally intensive applications that have diverse 
computational requirements [20, 22, 23, 24, 37]. Distributed 
computing provides the capability for the utilization of remote 
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computing resources and allows for increased levels of 
flexibility, reliability, and modularity. In heterogeneous 
distributed computing system the computational power of the 
computing entities are possibly different for each processor as 
shown in figure 3.1 [10, 19, 27]. A large heterogeneous 
distributed computing system (HDCS) consists of potentially 
millions of heterogeneous computing nodes connected by the 
global Internet. The applicability and strength of HDCS are 
derived from their ability to meet computing needs to 
appropriate resources [11, 20, 27]. Heterogeneity in DCS can 
be expressed by considering three systems attributes (i) 
Processor with computing node, (ii) memory, and (iii) 
networking [27]. The metrics used to quantify the processor or 
node processing power by means of processing speed and 
represented with FLOPS (Floating point Operations per 
Second) and can be measured through LINPACK. Memory 
attributes are measured as the available memory capacity to 
support the process. The networking attributes are the link 
capacity associated with transmission medium, propagation 
delay and available communication resources [3].  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure: 3.1 Heterogeneous Distributed Computing System with central 
scheduler 

In paper we have carried out simulation only considering 
processing power of the node, which can be represented as 
Markovian service time distribution [7, 9, 32]. In general, 
load-balancing algorithms can be broadly categorized as 
centralized or decentralized, dynamic or static, periodic or 
non-periodic, and those with thresholds or without thresholds 
[11, 20]. We have used a centralized load-balancing algorithm 
framework as it imposes fewer overheads on the system than 
the decentralized algorithm [1, 20].  Centralized load balancing 
algorithms requires the global information on computing nodes 
at a single location and the load balancing policy is initiated 
from the central location. Heterogeneity of architecture and 
configuration complicates the load balancing problem [20]. 
Heterogeneity can arise due to the difference in task arrival rate 
at homogeneous processors or processors having different task 
processing rates.  
 
We have assumed that all computational tasks are capable of 
executed on any computing nodes of DCS. A single computing 
node that acts as a central scheduler or resource manager of the 

DCS collects the global load information of other computing 
nodes.  Resource management sub systems of the HDCS are 
designated to schedule the execution of the tasks dynamically 
as that arrives for the service.  HDCS environments are well 
suited to meet the computational demands of large, diverse 
groups of tasks. The problem of optimally mapping also 
defined as matching and scheduling. A basic assumption is that 
all computing nodes are always available for processing. 
 

B. Load balancing problem in Heterogeneous distributed 
computing system 

We have used the characterization model proposed by Shoukat 
Ali and et al as the basic framework to study the impact of 
system heterogeneity against different heuristic resource 
allocation algorithms [23]. We consider a heterogeneous 
distributed computing system (HDCS) consists of a set of M = 
{M1, M2, … Mm}, m  independent heterogeneous, uniquely 
addressable computing entity (computing  nodes). Let there are 
T = {t1, t2, …, tn} n number of tasks with each task ti has an 
expected time to compute  tij on  node ܯ . The entire task has 
expected time to compute on m nodes of HDCS. Hence the 
generalized load-balancing problem is to assign each task to 
one of the node ܯ so that the loads placed on all nodes are as 
“balanced” as possible [19].  
 
Let A(j) be the set of jobs assigned to node ܯ; and Tj be the 
total time machine ܯ have to work to finish all the task in A(j). 
Hence ܶ = ∑ ௧()ݐ  ; for all task in A(j).  This is 
otherwise denoted as Lj  and defined as load on node Mj. The 
basic objective of load balancing is to minimize make span, 
which is defined as maximum loads on any node (T = maxj:1:m 
(Tj). Let ݔ  correspond to each pair (݅, ݆) of node ܯܯ  and 
task ݐ	∈ܶ .  

ݔ • = 0 ; implies that task i not assign to node j. 

ݔ • =  .; will indicate load of task i on node jݐ

 
For each task ݐ  we need      ∑ ݔ = ୀଵݐ ; for all task ݐ  ܶ 
The load on node ܯ can be represented as ܮ = ∑ ୀଵݔ   , 
where ݔ = 0  whenever task ݐ (݆)ܣ .  The load 
balancing problem aims to find an assignment that minimizes 
the maximum load. Let L be the load of a HDCS with m nodes. 
Hence the generalized load balancing problem on HDCS can be 
formulated as  
Minimize L 
             ∑ ݔ = ୀଵݐ  , for all				ݐ  ܶ      (1) 
 
            ∑ ୀଵݔ ≤ ܯ for all ,ܮ   (2)          ܯ
ݔ	  ∈ {0, t୧୨}   ,  for all 				ݐ  ܶ	 and ܯ  ݔ		 ܯ = 0  ,  for all   				ݐ   (݆)ܣ
   
 Feasible assignments are one-to-one correspondence with ݔ   
satisfying the above constraints [4].  Hence an optimal solution 
to this problem is the load ܮ  on a machine (corresponding 
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assignment). The problem of finding an assignment of 
minimum makespan is NP-hard [19,21,29]. The problem is 
therefore untractable with number tasks or computing nodes 
(processors) exceeds a few units. The solutions to load 
balancing problem can be obtained using a dynamic 
programming algorithm with time complexity Ο(n Lm), where L 
is the minimum makespan[19] The load balancing problem has 
been evenly treated, in both the fields of computer science and 
operation research. The algorithm approaches used for load 
balancing problem are roughly classified as (i) exact algorithms 
and (ii) heuristic algorithms [29, 45].   
 
Queuing models are used as the key model for performance 
analysis and optimization of parallel and distributed system 
[11, 17]. The HDCS can be modeled as M/M/m/n (Markovian 
arrivals, Markovian distributed service times, m computing 
nodes as server, and space for n ≥ m tasks in the system) 
multi-server queuing system with m servers as computing 
nodes. However, the heterogeneous multi-server queuing 
systems are not adequately addressed in research with respect 
to certain quality of service [44]. 

 
The HDCS is modeled as M/M/m/n queuing system with 

node M1 is the fastest computing node and Mm is the slowest 
computing node.  Assume that service time follow exponential 
distribution with service rate so that μ1 >  μ2 > …  μm,  where μI  
is the service rate of node Mi. The arrivals of the tasks at the 
central server or resource manager are modeled as Poisson with 
arrival rate λ. Each computing nodes can be modeled as shown 
in figure 2. The tasks that are to be executed at a node are under 
the control of local scheduler and the scheduling policy of the 
node is responsible for the execution of the assigned task. We 
have assumed FCFS policy is being used at computing nodes, 
which can be modeled as M/M/1 queuing system [44, 46]. 

 

IV. TASK MODEL AND ITERATIVE LOAD BALANCING 

TECHNIQUES 

A. Task model on HDCS 
 
In literature of distributed computing researchers  have used 

two different task models as (i) Task graph(TG) or Task 
interaction graph(TIG)[7,8,9,43], (ii) expected time to  
compute(ETC) matrix[5,6,17,18,23]. The task graphs are both 
directed and undirected weighted graph that represents process 
or task   to be executed, however majority of the models are not 
representing any mathematical model for quantifying task 
heterogeneity. In this paper we have use ETC matrix 
representation of task [23] that represents task heterogeneity 
and machine heterogeneity. The tasks are arriving from the 
different users or nodes to the central scheduler or or serial 
scheduler have the probability to be allocated to any of the m 
computing nodes. Hence the tasks are characterized by 
expected time to  compute  (ETC) on all m computing nodes, 
can be represented as follows, In ETC matrix, the elements 
along a row indicate the execution time of a given task on 
different nodes[23], in particular tij represent expected time to 
compute ith  task on machine Mj. 

 

TABLE I 
EXPECTED TIME TO COMPUTE (ETC) MATRIX ܯଵ ଶܯ ⋯ ܯ ⋯ ଵܶܯ ଵଵݐ ଵଶݐ ⋯ ଵݐ ⋯ ଵଶܶݐ ଶଵݐ

ܶ
ܶ

ଵݐଵݐ
ଶݐଶݐଶଶݐ

… ݐݐଶݐ
… ݐݐଶݐ

 

 
The ETC model presented in [23] are characterized by three 
parameters (i) machine heterogeneity, (ii)task heterogeneity 
and (iii)consistency. The task heterogeneity can be represented 
with two categories (i) consistent and (ii) inconsistent, here a 
consistent ETC matrix the computing nodes are arranged in the 
order of their processing capability or may be arranged as 
decreasing order of FLOPS. In particular a node Mi has a lower 
execution time than node Mj for task tk , then tki< tkj . 
Inconsistent ETC matrix is resulted in practice, when HDCS 
includes different type of machine architectures.( HPC clusters, 
Multi-core processor based workstations, parallel computers, 
work station with GPU units). In literature most of the task 
execution times are uniformly distributed[23, 24]. A consistent 
ETC matrix for ten tasks on five machines is shown on table  II, 
which is taken from [23] .  
 
To generate ETC matrix, we have used range base ETC 
generation technique discussed in [23] and added one 
component as arrival time of task. The arrival pattern of the task 
is based on Poisson distribution. For the analysis of the 
simulation results through the graph we have used expected 
completion time of task uniformly distributed {1, 500} time 
unit or seconds. 

 
TABLE II 

EXAMPLE OF CONSISTENT ETC MATRIX FOR 10 TASKS ON FIVE 
MACHINES 

Node→ 
Task 
 ↓ 

M1 M2 M3 M4 M5 

t1 22 21 6 16 15 

t2 7 46 5 28 45 

t3 64 83 45 23 58 

t4 53 56 26 42 53 

t5 11 12 14 7 8 

t6 33 31 46 25 23 
t7 24 11 17 14 25 
t8 20 17 23 4 3 

t9 13 28 14 7 34 

t10 2 5 7 7 6 

 

B. Iterative centralized algorithms 

We have used centralized load balancing algorithm, a central 
node collects the load information from the other computing 
nodes in HDCS. Central node communicates the assimilated 
information to all individual computing nodes, so that the nodes 
get updated about the system state. This updated information 
enables the nodes to decide whether to send the task to other 
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nodes or accept new task for computation. The computing 
nodes depend on the information available with central node for 
all allocation decision. The two heuristic based resource 
allocation used to balance the load on computing nodes of 
HDCS are First Come First serve (FF), and Simulated 
Annealing (SA).  A randomized resource allocation algorithm 
is selected along with the heuristic algorithms because the 
randomness can (probabilistically) guarantee average case 
behavior as well as it produces an efficient approximate 
solution to intractable problems. The FF algorithm follows the 
order of arrival time of the task with central scheduler.  The 
random task allocation algorithm selects the node randomly 
from m nodes to allocate task tj. SA based load balancing 
algorithm uses an iterative structure with stopping criteria as 
maximum number of iteration.  
 

We have also assumed that tasks are independent and can be 
processed by any computing node in distributed environment. 
For stability it is also assumed that tasks must not be generated 
faster than the HDCS can process as shown in equation 3. 

 ∑ ୀଵ ≤ ∑ μୀଵ                                        (3) 
 

C. Coding Scheme for the Solution 

Simulated annealing algorithms require a suitable 
representation and evaluation mechanism. In this case we have 
use a window structure of fixed length say k, with integer value 
assigned to individual element of the array of size k.. That on 
each step k no of task to be allocated to the computing node 
through simulated annealing with a minimized value of 
makespan. Task is assigned dynamically to the computing 
nodes on the fly. At the time of allocation there may be a large 
number of tasks are with central scheduler.  A sliding window 
technique is used to select those tasks only that are in the 
window.  The number of elements in the window is fixed is 
equal to the size of window. Figure 4.1,  represents 10 tasks and 
their respective allocation to five computing node. Figure 4.2 
shows the structure of allocation list, indicates the computing 
node.  We have assumed that, current work load as dedicated 
tasks for each own node, so that the calculation of makespan is 
carried out from the time point when sliding window is 
selected.  

 
t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

M5 M3 M5 M3 M2 M2 M4 M4 M1 M1 

Figure 4.1 allocation list of task to computing node 
 

5 3 5 3 2 2 4 4 1 1 
Figure 4.2 Allocation list 

 
SA requires an appropriate representation to find the 

solution, we have used the window structure as shown in figure 
4.2, the length of a array is the maximum number of task in the 
widow (window size) [38, 35]. The use of linear array helps to 
use the index as task number in the window so that a one 
dimensional list representation is selected. The individual 
element on window indicates the machine on which the 
corresponding task to be executed. Each window shows a 

possible allocation of computing nodes for which the makespan 
can be calculated from the ETC matrix. To prevent the nodes 
from overloading, before the task to be assigned to the node 
queue, a threshold is used. The percentage of acceptable queue 
for each node is calculated using formula: 

 ݉݁ݐݏݕݏ	ℎ݁ݐ	݊݅	ݏ݁݀݊	݂	ݎܾ݁݉ݑ݊	݈ܽݐܶݏ݁ݑ݁ݑݍ	݁݀݊	݈ܾ݁ܽݐ݁ܿܿܽ	݂	ݎܾ݁݉ݑ݊ 

 
The higher the percentage leads to minimization of 

makespan[1]. Each computing nodes are modeled as M/M/1/k 
queue with maximum capacity to have k tasks in the system, so 
that it can also be a constraint on assignment.  
 

D. Performance Metric 

The performance analysis of allocation algorithms are based 
on three performance metric (i) makespan, (ii) average 
utilization, and (iii) acceptable queue size. The average 
utilization for a computing node can be calculated as the ration 
(makespan/Li). To prevent the nodes from overloading, before 
the task to be assigned to the node queue, a threshold is used. 
The percentage of acceptable queue for each node is calculated 
using formula: ݊ݎܾ݁݉ݑ	݂	݈ܾ݁ܽݐ݁ܿܿܽ	݁݀݊	݈ܽݐܶݏ݁ݑ݁ݑݍ	ݎܾ݁݉ݑ݊	݂	ݏ݁݀݊	݊݅	ݐℎ݁	݉݁ݐݏݕݏ 

 
The higher the percentage leads to minimization of 

makespan [1]. Each computing nodes are modeled as M/M/1/k 
queue with maximum capacity to have k tasks in the system, so 
that it can also be a constraint on assignment.  

Figure 4.3 shows the makespan=73 for the chromosome in 
figure 4.2 with corresponding average utilization (AU) of five 
computing nodes. 

 
Node A(i)  Li AU 

1 t(9,1)=13 t(10,1)=2 15 0.2054 
2 t(5,2)=12 t(6,2)=31 43 0.5890 
3 t(2,3)=5 t(4,3)=26 31 0.4246 
4 t(7,4)=14 t(8,4)=4 28 0.3835 
5 t(1,5)=15 t(3,5)=58 73 1.0000 

Figure 4.3 Makespan of the system 
 

Node Initial 
Load 

A(i) Li 

 

AU 

1 9 t(9,1)=13 t(10,1)=2 24 0.3076 
2 11 t(5,2)=12 t(6,2)=31 54 0.6923 
3 7 t(2,3)=5 t(4,3)=26 38 0.4871 
4 15 t(7,4)=14 t(8,4)=4 43 0.5512 
5 5 t(1,5)=15 t(3,5)=58 78 1.0000 

Figure 4.4 Makespan with initial load 
Figure 4.4 shows the makespan=78 for the chromosome in 

figure 4.2 with corresponding average utilization(AU) of  five 
computing nodes with considering current system load as initial 
load. The genetic algorithm uses fitness function to evaluate the 
quality of the task assignment for the chromosome  is based on 
the [38] by Zomaya and The,  defined by following equation: 
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ݏݏ݁݊ݐ݂݅ = 	 ݊ܽݏ1݉ܽ݇݁ × ܷܣ × ݏ݁݀݊	݃݊݅ݐݑ݉ܿ	#ݏ݁ݑ݁ݑݍ	݈ܾ݁ܽݐ݁ܿܿܽ	#  

Where AU is average utilization 
 

V. LOAD BALANCING ALGORITHM 
USING SIMULATED ANNEALING 

 
SA is a heuristic method that has been implemented to obtain 
good solutions of an objective functions defined on a number of 
discrete optimization problem [16,31].The simulated annealing 
method mimics the physical process of heating a material and 
then slowly lowering the temperature(cooling) to decrease 
defects so as to minimize the system energy[17]. SA is 
implemented using iterative algorithm that only considers one 
possible solution for each task window at a time. The solution 
uses representation as the fixed window size for k number of 
task from the list of n tasks. The SA approaches randomly 
generates initial solution representing an allocation of tasks 
with a fixed window size. A new solution is generated based 
upon the neighborhood structure [26]. Temperature is used as a 
control parameter in SA and decreases gradually with each 
iteration. This decides the probability of accepting a worst 
solution at any step and commonly used a stopping criterion. 
The initial temperature is used as an integer value and 
decreased by a rate called annealing schedule [ 1, 26]. 
 
At each iteration Scheduling of tasks from a task set to different 
processors such that the loads of the assigned computing nodes  
is balanced, is a well-known instance of combinatorial 
optimization, which is tackled using the SA technique in the 
following steps. Task schedule (TS) is the linear representation 
of nodes on which the tasks are to be executed in order. We 
have use the similar structure as  figure 3.1, to represent the task  
schedule TS = (ts1, ts2j, ts3, …, tsWIN_SIZE). With n task to be 
scheduled on m computing nodes, simulated annealing based 
algorithm selects asset of k tasks from the task pool of n tasks, 
and generated an allocation for those tasks randomly on m 
machine. In next iteration the new allocated is based upon the 
move set representation. We are presenting three move sets 
representations (i) inversion, (ii) translation, and (iii) switching 
for SA. The details of these algorithms are presented with 
illustration as follows. 

 
• Inversion 

In the process of inversion, we select four randomly chosen 
consecutive nodes and replace it by the reverse order of the 
same node number. Following figure illustrates the process of 
10 tasks on 5 nodes. 
  

2 1 2 3 1 3 4 3 4 2 
 

Inversion results 

2 1 3 1 3 2 4 3 4 2 
Figure 5.1 Allocation list on inversion 

 

Algorithm INVERSION (TS, WIN_SIZE) 

Input: TS = (ts1, ts2j, ts3, …, ts10) Task Schedule 

WIN_SIZE = Size of the Task Schedule TS 

Output:  TS*=(ts1, ts2j, ts3, …, ts10) Task Schedule    

1. Generate a random number S1 to represent the starting point 

and another random number L1 for the length of the 

substring. 

2. Let SS = StringReverse (SubString (TS, S1, L1)); 

3. For i = 1 to WIN_SIZE repeat, 

a. if i < S1 or ( i > S1 and i >= S1 + L1 ), 

S = concat (S, TS (i)); 

b. if i == S1, S = concat (S, SS); 

 [End of for loop] 

4. Return (TS); 

 
• Translation 

 

Algorithm TRANSLATION (TS, WIN_SIZE) 
Input: TS = (ts1, ts2j, ts3, …, ts10) Task Schedule 

WIN_SIZE = Size of the Task Schedule TS 

       Output:  TS*=(ts1, ts2j, ts3, …, ts10) Task Schedule 
 

1. Generate a random number S1 to represent the starting point 
and another random number L1 for the length of the 
substring. 

2. Generate a random number I1 for the insertion point. 
3. Let SS = SubString (TS, S1, L1); 
4. For i = 1 to WIN_SIZE repeat, 

a. if i <= I1 and (i < S1 or ( i > S1 and  
i >= S1 + L1 )), S= concat (S, TS (i)); 

b. if i == I1, TS = concat (TS, SS); 
c. if i > I1 and (i < S1 or ( i > S1 and 

 i >= S1 + L1 )), S= concat (S, TS (i)); 
[End of for loop] 

5. Return (TS); 
 
 

Translation is transformation functions that remove two or 
more consecutive nodes from the schedule and place it in 
between any two randomly selected consecutive nodes. 
 

 

2 1 2 3 1 3 4 3 4 2
 

Translation results  

2 1 2 3 4 3 3 1 4 2
Figure 5.2 Allocation list on translation 

 

 

• Switching 

Move set can be constructed for the schedules using a switching 
function, which randomly select two nodes and switch them in 
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a schedule. Generally speaking, the switching move set tends to 
rupture the original schedule and results in an allocation that 
has a makespan significantly different from that of the original 
allocation. Comparisons between inversion and switching 
move set can be found in [48]. Example of switching function is 
shown in figure 5.3. 

 
 

2 1 2 3 1 3 4 3 4 2 
 
 
 

2 1 4 3 1 3 4 3 2 2 
 

Figure 5.3 Outcome of switching operation  
 
 
Algorithm SWITCHING (TS, WIN_SIZE) 
Input: TS = (ts1, ts2j, ts3, …, ts10) Task Schedule 

WIN_SIZE = Size of the Task Schedule TS 

Output:  TS*=(ts1, ts2j, ts3, …, ts10) Task Schedule 

1. Generate a random number i to represent the task 1 and 
another random number j to represent task 2.    

2. swap (TS(i), TS(j)); 
3. Return (TS); 

 
 
 
In our model, simulated annealing algorithm starts with 
generating initial schedule ܶܵ   randomly for 10 tasks. 
Following that move set is created for an initial schedule, by  
any one of the three different methods (i) Inversion , (ii) 
Translation and (iii) Switching by selecting a random number 
between 1 to 3. A final allocation list for the tasks is obtained 
after 25 iteration. Tasks are allocated to the nodes and average 
utilization is calculated for those 10 tasks before selecting a 
next 10 tasks from the set of waiting tasks. The simulated 
annealing for dynamic load balancing outlined in for of 
algorithm SA_DLB.  The algorithm SA_DLB called for 
maximum   (n/ WIN_SIZE) times to allocate n tasks to the 
computing nodes.  
 
 

Algorithm SA_DLB (TS, WIN_SIZE) 
Input: TS = (ts1, ts2j, ts3, …, ts10) Task Schedule 

WIN_SIZE = Size of the Task Schedule TS 

       Output:  TS*= (ts1, ts2j, ts3, …, ts10)  and  AU(TS*) 
 

1. Calculate makespan for  TS = ms 
2. For i = 1 to 25 repeat,  

a. Generate a random integer  m from {1,2,3}   
b.  if  m = 1,  call INVERSION (TS, WIN_SIZE) to 

create move set 
c. if  m = 2,  call TRANSLATION (TS, WIN_SIZE) 

to create move set 

d. if  m = 3,  call SWITCHING (TS, WIN_SIZE) to 
create move set 

e. calculate the makespan  for the new move set  
TS* as ms* 

f. if ms* < ms  then  TS = TS*  
[End of for loop] 

3.  Allocate the tasks to Nodes using TS and calculate  average 
utilization(AU) 

4. Return (TS*, AU); 

 
Common approaches used as the stopping criteria in 

simulated annealing algorithm (SA) are, (i) one may use a given 
number of iteration, or (ii) a time limit, or (iii) a given number 
of iteration without an improvement of the objective function 
value, (iv) value of the objective function limit as set by the 
user[25, 26 ]. We have used a fixed number of iteration 
proportional to number of task to be schedule on computing 
nodes. We have use Matlab to design our simulation programs. 
The experiment was conducted with n=1000 tasks on m=60 
computing nodes. The simulation results are compared with 
two heuristic algorithms: first fit and randomized [17, 40].  

 
 

 
 

Figure 5.4 Completion Time of 1000 tasks on  
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Figure 5.5 Average Processor Utilization 

Randomized algorithms are known for efficient approxima te 
solutions to intractable problems with better complexity 
bounds. Moreover randomized algorithm is selected for 
performance comparison as it is simple to describe and 
implement than the deterministic algorithm. We executed 
several simulations on proposed simulated annealing algorithm 
for dynamic load balancing on HDCS, to compare with 
conventional first fit (FF), and randomized algorithm.  The 
simulation results are presented in figure 5.4 and 5.5 with 
completion time and processor utilization respectively. 
 
The Fast come first serve (FF) and randomized algorithms for 
resource allocation can make an instantaneous decision to 
allocation of the task to computing nodes, which results a 
shorter makespan. The SA-based load balancing   algorithm 
shows very much similar performance to that of FF in both 
average processor utilization and completion time or 
makespan.   

VI. CONCLUSION AND FUTURE WORK 

Load balancing is being performed during runtime at various 
stages to keep the workload balance on different computing 
nodes of a HDCS. This paper presents in details, a SA based 
load balancing algorithm for HDCS with three algorithms to 
compute move set. We have proposed a coding scheme to 
represent the task assigned for execution to different computing 
node. We have simulated the behavior of different load 
balancing algorithm with our simulator developed using 
Matlab, where each task ti is with the expected execution 
time ݐ		   on machineܯ . The results of the simulation with 
scalability of tasks are presented for conventional first fit (FF), 
randomized, and SA algorithm. This paper uses consistent ETC 
matrix to design load balancing algorithms, however further 
investigations may be carried out to design SA based load balancing 
algorithms for inconsistent and partially–consistent ETC matrix  for 
tasks. Genetic algorithm have been proposed over the years for  

solving static and dynamic load balancing problems on 
distributed system. The coding method introduced in this paper 
can be used to design a genetic algorithm for dynamic load 
balancing in HDCS.  
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