

124

Abstract—Load balancing problem on Heterogeneous Distributed

Computing System (HDCs) deals with allocation of tasks to
computing nodes, so that computing nodes are evenly loaded. Due the
complexity of dynamic load balancing problem majority of
researchers uses heuristic algorithm to obtain near optimal solutions.
We have used consistent ETC (Expected Time to Compute) matrix in
to study the performance of simulated annealing (SA) algorithm to
minimize the makespan. Simulated annealing based resource
allocation algorithm uses sliding widow techniques to select the tasks
to be allocated to computing nodes after number of iterations. A new
codification suitable for simulated annealing algorithm has been
introduced for dynamic load balancing on HDCS. We have also
presented three algorithms for move sets representations for SA.
Several simulations run have been made on proposed simulated
annealing algorithm for dynamic load balancing on HDCS, and
compare with conventional first fit (FF), and randomized algorithm.
The effect of simulated annealing based dynamic load balancing
scheme has been on comparisons with first-fit, and randomized
heuristic algorithm with task scalability.

Keywords—Dynamic load balancing, simulated annealing,
heterogeneous distributed system, makespan

I. INTRODUCTION

istributed heterogeneous computing is being widely
applied to a variety of large size computational
problems. The large scale computing problems requires

more computing time, which can be meat by utilizing the ideal
computing time of the vast computing resources distributed
over the globe. These computational environments are consists
of multiple heterogeneous computing modules, these modules
interact with each other to solve the problem. In a
Heterogeneous distributed computing system (HDCS),
processing loads arrive from many users at random time
instants. A proper scheduling policy attempts to assign these
loads to available computing nodes so as to complete the
processing of all loads in the shortest possible time. Modern
distributed computing technology includes clusters, the grid,
service-oriented architecture, massively parallel processors,
peer-to-peer networking, and cloud computing [37].

The central or serial scheduler schedules the processes in a
distributed system to make use of the system resources in such a
manner that resource usage, response time, network
congestion, and scheduling overhead are optimized. There are
number of techniques and methodologies for scheduling
processes of a distributed system. These are task assignment,
load-balancing, load-sharing approaches [20]. Due to
heterogeneity of computing nodes, jobs encounter different
execution times on different processors. Therefore, research
should address scheduling in heterogeneous environment.

In task assignment approach, each process submitted by a user
for processing is viewed as a collection of related tasks and
these tasks are scheduled to suitable nodes so as to improve
performance. In load sharing approach simply attempts to
conserve the ability of the system to perform work by assuring
that no node is idle while processes wait for being processed. In
load balancing approach, processes submitted by the users are
distributed among the nodes of the system so as to equalize the
workload among the nodes at any point of time. Processes
might have to be migrated from one machine to another even in
the middle of execution to ensure equal workload. Load
balancing strategies may be static or dynamic [3, 7, 38].

To improve the utilization of the processors, parallel

computations require that processes be distributed to processors
in such a way that the computational load is spread among the
processors. Dynamic load distribution (also called load
balancing, load sharing, or load migration) can be applied to
restore balance [7, 20]. In general, load-balancing algorithms
can be broadly categorized as centralized or decentralized,
dynamic or static, periodic or non-periodic, and those with
thresholds or without thresholds [3, 7, 11]. Central scheduler or
serial scheduler or load balancing service should be able to
effectively control the computing resource for dynamic
allocation to the tasks [13]. We have used a centralized
load-balancing algorithm framework as it imposes fewer
overheads on the system than the decentralized algorithm [38].
The load-balancing problem aims to compute the assignment
with smallest possible makespan (i.e. the completion time at the
maximum loaded computing node). The load distribution
problem is known to be NP-hard [21] in most cases and
therefore intractable with number of tasks and/or the computing
node exceeds few units. Here, the load balancing is a job
scheduling policy which takes a job as a whole and assign it to a
computing node [41]. The complexity of dynamic load
balancing increases with the size of HDCS and becomes

Simulated Annealing based Heuristic Approach
for Dynamic Load Balancing Problem on

Heterogeneous Distributed Computing System

Bibhudatta Sahoo, Sanjay Kumar Jena, and Sudipta Mahapatra

D

124

difficult to solve effectively. The exponential solution space for
the load balancing problem can searched using heuristic
techniques(GA, Tabu search, SA) to obtained suboptimal
solution in the acceptable time[16,17,38]. These Artificial
intelligence techniques have been used by researchers and
proven to be effective in solving many optimization problems.
Simulated Annealing (SA), proposed by Kirkpatrick et
al.[39,42], has been used as a popular heuristic to solve
optimization problems. Genetic Algorithms are used as one the
popular technique to search the solution space to obtain
sub-optimal solution.

This paper considers the problem of finding an optimal solution
for load balancing in heterogeneous distributed system using
stochastic iterative dynamic load balancing. The rest of the
paper is organized as follows. Section 2 highlights the
contribution of various researchers in the related area of load
balancing on distributed computing system and solving
dynamic load balancing problem with simulated annealing.
Section 3 discusses Heterogeneous distributed computing
system (HDCS) structure and the linear programming
formulation of load-balancing problem. Section 4 describes the
task model and stochastic iterative dynamic load balancing
techniques for dynamic load distribution. Section 5 outlines the
design details of simulated annealing. Finally, conclusions and
directions for future research are discussed in Section 6.

II. RELATED WORKS

Load balancing for distributed computing system is a problem
that has been deeply studied for a long time. Different heuristic
algorithms are used by researcher to find suboptimal solutions
for homogeneous and heterogeneous distributed system.
Dandamudi [10] addressed dynamic load sharing in distributed
systems and established that load sharing improves
performance by moving work from heavily loaded nodes to
lightly loaded nodes. A general model for heterogeneous
distributed/parallel computer system proposed by Li and
Kameda [11] and used to formulate the multiclass job load
balancing problem as a nonlinear optimization problem. An
algorithmic approach to load balancing problem is presented in
[19]. Different form of linear programming formulation of the
load balancing problem has been discussed along with greedy,
randomized and approximation algorithm to produce
sub-optimal solutions to the problem. The solution to this
intractable problem was discussed under different algorithm
paradigm. Modeling of optimal load balancing strategy using
queuing theory was proposed by Francois Spies (1996). This is
one of the pioneer works reported in the literature that presents
an analytical model of dynamic load balancing techniques as
M/M/k queue and simulate with fundamental parameters like
load, number of nodes, transfer speed and overload rate [7].
Most appropriate queuing model for homogeneous distributed
system can be M/M/m/n, has been analyzed in [9].
Queuing-Theoretic models for parallel and distributed system
can be found in [6, 8]. General Job scheduling problem of n
tasks with m machines, is presented as an optimization problem
in [8] to minimize the makespan. Jong-Chen Chen and et al.
[12] investigated the contribution made by evolutionary
learning on dynamic load balancing problems in distributed

computing system. Bora Ucar and et al. have considered the
assignment of communicating tasks to heterogeneous
processors[28], that uses a task clustering method based upon
execution time to allocate the task though the heuristic
techniques. A classification of iterative dynamic load balancing
technique is discussed in [28].

SA is a heuristic method that has been implemented to obtain
good solutions of an objective function defined on a number of
discrete optimization problems. Simulated Annealing (SA),
proposed by Kirkpatrick et al.[39,42], has been used as a
popular heuristic to solve several optimization problems to
obtain sub-optimal solution. A heuristic algorithm based on
simulated annealing is discussed [31], which guarantees good
load balancing on grid environment. A comparative study of
the three algorithms (Hill-climbing, simulated annealing and
genetic algorithms) is then carried out in [30] considering
performance criteria as the amount of search time.

Makespan minimization of scheduling problem on identical
parallel machines using simulated annealing has been presented
by Lee and et al. in [41]. Grid Computing is one of
heterogeneous distributed computing system geographically
dispersed among several entities. Fidanova used simulated
annealing to obtain near optimal solutions for scheduling
problem in large grid [1]. Researchers have examined, 11
different heuristics(Opportunistic Load Balancing, Minimum
Execution Time, Minimum Completion Time, Min–min,
Max–min, Duplex, Genetic Algorithm, Simulated Annealing,
Genetic Simulated Annealing, Tabu, and A*) on
Mixed-machine heterogeneous computing (HC) environments
to minimize the total execution time of the metatask[16,17].
Rahmani and Rezvani presented a genetic algorithm for static
scheduling, which is again improved by simulated annealing to
obtain an improvised solution[43]. They have also established
that running time depends on the number of task.

 Several researchers used SA and GA for load balancing on
distributed computing system; however majority of the papers
have no specific representation for simulated annealing
algorithms for load balancing. This paper presents detail frame
work for the simulated annealing algorithm to solve dynamic
load balancing problem using ETC matrix for n number of tasks
on m computing nodes. We have also presented three algorithm
for move sets representations (i) inversion, (ii) translation, and
(iii) switching for SA.

III. HETEROGENEOUS DISTRIBUTED COMPUTING

SYSTEM MODEL

A. Heterogeneous distributed computing system

Heterogeneous distributed computing system (HDCS) utilizes a
distributed suite of different high-performance nodes,
interconnected with high-speed links, to perform different
computationally intensive applications that have diverse
computational requirements [20, 22, 23, 24, 37]. Distributed
computing provides the capability for the utilization of remote

124

computing resources and allows for increased levels of
flexibility, reliability, and modularity. In heterogeneous
distributed computing system the computational power of the
computing entities are possibly different for each processor as
shown in figure 3.1 [10, 19, 27]. A large heterogeneous
distributed computing system (HDCS) consists of potentially
millions of heterogeneous computing nodes connected by the
global Internet. The applicability and strength of HDCS are
derived from their ability to meet computing needs to
appropriate resources [11, 20, 27]. Heterogeneity in DCS can
be expressed by considering three systems attributes (i)
Processor with computing node, (ii) memory, and (iii)
networking [27]. The metrics used to quantify the processor or
node processing power by means of processing speed and
represented with FLOPS (Floating point Operations per
Second) and can be measured through LINPACK. Memory
attributes are measured as the available memory capacity to
support the process. The networking attributes are the link
capacity associated with transmission medium, propagation
delay and available communication resources [3].

Figure: 3.1 Heterogeneous Distributed Computing System with central
scheduler

In paper we have carried out simulation only considering
processing power of the node, which can be represented as
Markovian service time distribution [7, 9, 32]. In general,
load-balancing algorithms can be broadly categorized as
centralized or decentralized, dynamic or static, periodic or
non-periodic, and those with thresholds or without thresholds
[11, 20]. We have used a centralized load-balancing algorithm
framework as it imposes fewer overheads on the system than
the decentralized algorithm [1, 20]. Centralized load balancing
algorithms requires the global information on computing nodes
at a single location and the load balancing policy is initiated
from the central location. Heterogeneity of architecture and
configuration complicates the load balancing problem [20].
Heterogeneity can arise due to the difference in task arrival rate
at homogeneous processors or processors having different task
processing rates.

We have assumed that all computational tasks are capable of
executed on any computing nodes of DCS. A single computing
node that acts as a central scheduler or resource manager of the

DCS collects the global load information of other computing
nodes. Resource management sub systems of the HDCS are
designated to schedule the execution of the tasks dynamically
as that arrives for the service. HDCS environments are well
suited to meet the computational demands of large, diverse
groups of tasks. The problem of optimally mapping also
defined as matching and scheduling. A basic assumption is that
all computing nodes are always available for processing.

B. Load balancing problem in Heterogeneous distributed
computing system

We have used the characterization model proposed by Shoukat
Ali and et al as the basic framework to study the impact of
system heterogeneity against different heuristic resource
allocation algorithms [23]. We consider a heterogeneous
distributed computing system (HDCS) consists of a set of M =
{M1, M2, … Mm}, m independent heterogeneous, uniquely
addressable computing entity (computing nodes). Let there are
T = {t1, t2, …, tn} n number of tasks with each task ti has an
expected time to compute tij on node ܯ . The entire task has
expected time to compute on m nodes of HDCS. Hence the
generalized load-balancing problem is to assign each task to
one of the node ܯ so that the loads placed on all nodes are as
“balanced” as possible [19].

Let A(j) be the set of jobs assigned to node ܯ; and Tj be the
total time machine ܯ have to work to finish all the task in A(j).
Hence ܶ = ∑ ௧()ݐ ; for all task in A(j). This is
otherwise denoted as Lj and defined as load on node Mj. The
basic objective of load balancing is to minimize make span,
which is defined as maximum loads on any node (T = maxj:1:m
(Tj). Let ݔ correspond to each pair (݅, ݆) of node ܯܯ and
task ݐ	∈ܶ .

ݔ • = 0 ; implies that task i not assign to node j.

ݔ • = .; will indicate load of task i on node jݐ

For each task ݐ we need ∑ ݔ = ୀଵݐ ; for all task ݐ ܶ
The load on node ܯ can be represented as ܮ = ∑ ୀଵݔ ,
where ݔ = 0 whenever task ݐ (݆)ܣ . The load
balancing problem aims to find an assignment that minimizes
the maximum load. Let L be the load of a HDCS with m nodes.
Hence the generalized load balancing problem on HDCS can be
formulated as
Minimize L
 ∑ ݔ = ୀଵݐ , for all				ݐ ܶ (1)

 ∑ ୀଵݔ ≤ ܯ for all ,ܮ (2) ܯ
ݔ	 ∈ {0, t୧୨} , for all 				ݐ ܶ	 and ܯ ݔ		 ܯ = 0 , for all 				ݐ (݆)ܣ

 Feasible assignments are one-to-one correspondence with ݔ
satisfying the above constraints [4]. Hence an optimal solution
to this problem is the load ܮ on a machine (corresponding

Task
arrivals

Central
scheduler

λ

•
•
•

µ1

µm

µ2

124

assignment). The problem of finding an assignment of
minimum makespan is NP-hard [19,21,29]. The problem is
therefore untractable with number tasks or computing nodes
(processors) exceeds a few units. The solutions to load
balancing problem can be obtained using a dynamic
programming algorithm with time complexity Ο(n Lm), where L
is the minimum makespan[19] The load balancing problem has
been evenly treated, in both the fields of computer science and
operation research. The algorithm approaches used for load
balancing problem are roughly classified as (i) exact algorithms
and (ii) heuristic algorithms [29, 45].

Queuing models are used as the key model for performance
analysis and optimization of parallel and distributed system
[11, 17]. The HDCS can be modeled as M/M/m/n (Markovian
arrivals, Markovian distributed service times, m computing
nodes as server, and space for n ≥ m tasks in the system)
multi-server queuing system with m servers as computing
nodes. However, the heterogeneous multi-server queuing
systems are not adequately addressed in research with respect
to certain quality of service [44].

The HDCS is modeled as M/M/m/n queuing system with

node M1 is the fastest computing node and Mm is the slowest
computing node. Assume that service time follow exponential
distribution with service rate so that μ1 > μ2 > … μm, where μI
is the service rate of node Mi. The arrivals of the tasks at the
central server or resource manager are modeled as Poisson with
arrival rate λ. Each computing nodes can be modeled as shown
in figure 2. The tasks that are to be executed at a node are under
the control of local scheduler and the scheduling policy of the
node is responsible for the execution of the assigned task. We
have assumed FCFS policy is being used at computing nodes,
which can be modeled as M/M/1 queuing system [44, 46].

IV. TASK MODEL AND ITERATIVE LOAD BALANCING

TECHNIQUES

A. Task model on HDCS

In literature of distributed computing researchers have used

two different task models as (i) Task graph(TG) or Task
interaction graph(TIG)[7,8,9,43], (ii) expected time to
compute(ETC) matrix[5,6,17,18,23]. The task graphs are both
directed and undirected weighted graph that represents process
or task to be executed, however majority of the models are not
representing any mathematical model for quantifying task
heterogeneity. In this paper we have use ETC matrix
representation of task [23] that represents task heterogeneity
and machine heterogeneity. The tasks are arriving from the
different users or nodes to the central scheduler or or serial
scheduler have the probability to be allocated to any of the m
computing nodes. Hence the tasks are characterized by
expected time to compute (ETC) on all m computing nodes,
can be represented as follows, In ETC matrix, the elements
along a row indicate the execution time of a given task on
different nodes[23], in particular tij represent expected time to
compute ith task on machine Mj.

TABLE I
EXPECTED TIME TO COMPUTE (ETC) MATRIX ܯଵ ଶܯ ⋯ ܯ ⋯ ଵܶܯ ଵଵݐ ଵଶݐ ⋯ ଵݐ ⋯ ଵଶܶݐ ଶଵݐ

ܶ
ܶ

ଵݐଵݐ
ଶݐଶݐଶଶݐ

… ݐݐଶݐ
… ݐݐଶݐ

The ETC model presented in [23] are characterized by three
parameters (i) machine heterogeneity, (ii)task heterogeneity
and (iii)consistency. The task heterogeneity can be represented
with two categories (i) consistent and (ii) inconsistent, here a
consistent ETC matrix the computing nodes are arranged in the
order of their processing capability or may be arranged as
decreasing order of FLOPS. In particular a node Mi has a lower
execution time than node Mj for task tk , then tki< tkj .
Inconsistent ETC matrix is resulted in practice, when HDCS
includes different type of machine architectures.(HPC clusters,
Multi-core processor based workstations, parallel computers,
work station with GPU units). In literature most of the task
execution times are uniformly distributed[23, 24]. A consistent
ETC matrix for ten tasks on five machines is shown on table II,
which is taken from [23] .

To generate ETC matrix, we have used range base ETC
generation technique discussed in [23] and added one
component as arrival time of task. The arrival pattern of the task
is based on Poisson distribution. For the analysis of the
simulation results through the graph we have used expected
completion time of task uniformly distributed {1, 500} time
unit or seconds.

TABLE II

EXAMPLE OF CONSISTENT ETC MATRIX FOR 10 TASKS ON FIVE
MACHINES

Node→
Task
 ↓

M1 M2 M3 M4 M5

t1 22 21 6 16 15

t2 7 46 5 28 45

t3 64 83 45 23 58

t4 53 56 26 42 53

t5 11 12 14 7 8

t6 33 31 46 25 23
t7 24 11 17 14 25
t8 20 17 23 4 3

t9 13 28 14 7 34

t10 2 5 7 7 6

B. Iterative centralized algorithms

We have used centralized load balancing algorithm, a central
node collects the load information from the other computing
nodes in HDCS. Central node communicates the assimilated
information to all individual computing nodes, so that the nodes
get updated about the system state. This updated information
enables the nodes to decide whether to send the task to other

124

nodes or accept new task for computation. The computing
nodes depend on the information available with central node for
all allocation decision. The two heuristic based resource
allocation used to balance the load on computing nodes of
HDCS are First Come First serve (FF), and Simulated
Annealing (SA). A randomized resource allocation algorithm
is selected along with the heuristic algorithms because the
randomness can (probabilistically) guarantee average case
behavior as well as it produces an efficient approximate
solution to intractable problems. The FF algorithm follows the
order of arrival time of the task with central scheduler. The
random task allocation algorithm selects the node randomly
from m nodes to allocate task tj. SA based load balancing
algorithm uses an iterative structure with stopping criteria as
maximum number of iteration.

We have also assumed that tasks are independent and can be
processed by any computing node in distributed environment.
For stability it is also assumed that tasks must not be generated
faster than the HDCS can process as shown in equation 3.

 ∑ ୀଵ ≤ ∑ μୀଵ (3)

C. Coding Scheme for the Solution

Simulated annealing algorithms require a suitable
representation and evaluation mechanism. In this case we have
use a window structure of fixed length say k, with integer value
assigned to individual element of the array of size k.. That on
each step k no of task to be allocated to the computing node
through simulated annealing with a minimized value of
makespan. Task is assigned dynamically to the computing
nodes on the fly. At the time of allocation there may be a large
number of tasks are with central scheduler. A sliding window
technique is used to select those tasks only that are in the
window. The number of elements in the window is fixed is
equal to the size of window. Figure 4.1, represents 10 tasks and
their respective allocation to five computing node. Figure 4.2
shows the structure of allocation list, indicates the computing
node. We have assumed that, current work load as dedicated
tasks for each own node, so that the calculation of makespan is
carried out from the time point when sliding window is
selected.

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

M5 M3 M5 M3 M2 M2 M4 M4 M1 M1

Figure 4.1 allocation list of task to computing node

5 3 5 3 2 2 4 4 1 1
Figure 4.2 Allocation list

SA requires an appropriate representation to find the

solution, we have used the window structure as shown in figure
4.2, the length of a array is the maximum number of task in the
widow (window size) [38, 35]. The use of linear array helps to
use the index as task number in the window so that a one
dimensional list representation is selected. The individual
element on window indicates the machine on which the
corresponding task to be executed. Each window shows a

possible allocation of computing nodes for which the makespan
can be calculated from the ETC matrix. To prevent the nodes
from overloading, before the task to be assigned to the node
queue, a threshold is used. The percentage of acceptable queue
for each node is calculated using formula:

 ݉݁ݐݏݕݏ	ℎ݁ݐ	݊݅	ݏ݁݀݊	݂	ݎܾ݁݉ݑ݊	݈ܽݐܶݏ݁ݑ݁ݑݍ	݁݀݊	݈ܾ݁ܽݐ݁ܿܿܽ	݂	ݎܾ݁݉ݑ݊

The higher the percentage leads to minimization of

makespan[1]. Each computing nodes are modeled as M/M/1/k
queue with maximum capacity to have k tasks in the system, so
that it can also be a constraint on assignment.

D. Performance Metric

The performance analysis of allocation algorithms are based
on three performance metric (i) makespan, (ii) average
utilization, and (iii) acceptable queue size. The average
utilization for a computing node can be calculated as the ration
(makespan/Li). To prevent the nodes from overloading, before
the task to be assigned to the node queue, a threshold is used.
The percentage of acceptable queue for each node is calculated
using formula: ݊ݎܾ݁݉ݑ	݂	݈ܾ݁ܽݐ݁ܿܿܽ	݁݀݊	݈ܽݐܶݏ݁ݑ݁ݑݍ	ݎܾ݁݉ݑ݊	݂	ݏ݁݀݊	݊݅	ݐℎ݁	݉݁ݐݏݕݏ

The higher the percentage leads to minimization of

makespan [1]. Each computing nodes are modeled as M/M/1/k
queue with maximum capacity to have k tasks in the system, so
that it can also be a constraint on assignment.

Figure 4.3 shows the makespan=73 for the chromosome in
figure 4.2 with corresponding average utilization (AU) of five
computing nodes.

Node A(i) Li AU

1 t(9,1)=13 t(10,1)=2 15 0.2054
2 t(5,2)=12 t(6,2)=31 43 0.5890
3 t(2,3)=5 t(4,3)=26 31 0.4246
4 t(7,4)=14 t(8,4)=4 28 0.3835
5 t(1,5)=15 t(3,5)=58 73 1.0000

Figure 4.3 Makespan of the system

Node Initial
Load

A(i) Li

AU

1 9 t(9,1)=13 t(10,1)=2 24 0.3076
2 11 t(5,2)=12 t(6,2)=31 54 0.6923
3 7 t(2,3)=5 t(4,3)=26 38 0.4871
4 15 t(7,4)=14 t(8,4)=4 43 0.5512
5 5 t(1,5)=15 t(3,5)=58 78 1.0000

Figure 4.4 Makespan with initial load
Figure 4.4 shows the makespan=78 for the chromosome in

figure 4.2 with corresponding average utilization(AU) of five
computing nodes with considering current system load as initial
load. The genetic algorithm uses fitness function to evaluate the
quality of the task assignment for the chromosome is based on
the [38] by Zomaya and The, defined by following equation:

124

ݏݏ݁݊ݐ݂݅ = 	 ݊ܽݏ1݉ܽ݇݁ × ܷܣ × ݏ݁݀݊	݃݊݅ݐݑ݉ܿ	#ݏ݁ݑ݁ݑݍ	݈ܾ݁ܽݐ݁ܿܿܽ	#

Where AU is average utilization

V. LOAD BALANCING ALGORITHM
USING SIMULATED ANNEALING

SA is a heuristic method that has been implemented to obtain
good solutions of an objective functions defined on a number of
discrete optimization problem [16,31].The simulated annealing
method mimics the physical process of heating a material and
then slowly lowering the temperature(cooling) to decrease
defects so as to minimize the system energy[17]. SA is
implemented using iterative algorithm that only considers one
possible solution for each task window at a time. The solution
uses representation as the fixed window size for k number of
task from the list of n tasks. The SA approaches randomly
generates initial solution representing an allocation of tasks
with a fixed window size. A new solution is generated based
upon the neighborhood structure [26]. Temperature is used as a
control parameter in SA and decreases gradually with each
iteration. This decides the probability of accepting a worst
solution at any step and commonly used a stopping criterion.
The initial temperature is used as an integer value and
decreased by a rate called annealing schedule [1, 26].

At each iteration Scheduling of tasks from a task set to different
processors such that the loads of the assigned computing nodes
is balanced, is a well-known instance of combinatorial
optimization, which is tackled using the SA technique in the
following steps. Task schedule (TS) is the linear representation
of nodes on which the tasks are to be executed in order. We
have use the similar structure as figure 3.1, to represent the task
schedule TS = (ts1, ts2j, ts3, …, tsWIN_SIZE). With n task to be
scheduled on m computing nodes, simulated annealing based
algorithm selects asset of k tasks from the task pool of n tasks,
and generated an allocation for those tasks randomly on m
machine. In next iteration the new allocated is based upon the
move set representation. We are presenting three move sets
representations (i) inversion, (ii) translation, and (iii) switching
for SA. The details of these algorithms are presented with
illustration as follows.

• Inversion

In the process of inversion, we select four randomly chosen
consecutive nodes and replace it by the reverse order of the
same node number. Following figure illustrates the process of
10 tasks on 5 nodes.

2 1 2 3 1 3 4 3 4 2

Inversion results

2 1 3 1 3 2 4 3 4 2
Figure 5.1 Allocation list on inversion

Algorithm INVERSION (TS, WIN_SIZE)

Input: TS = (ts1, ts2j, ts3, …, ts10) Task Schedule

WIN_SIZE = Size of the Task Schedule TS

Output: TS*=(ts1, ts2j, ts3, …, ts10) Task Schedule

1. Generate a random number S1 to represent the starting point

and another random number L1 for the length of the

substring.

2. Let SS = StringReverse (SubString (TS, S1, L1));

3. For i = 1 to WIN_SIZE repeat,

a. if i < S1 or (i > S1 and i >= S1 + L1),

S = concat (S, TS (i));

b. if i == S1, S = concat (S, SS);

 [End of for loop]

4. Return (TS);

• Translation

Algorithm TRANSLATION (TS, WIN_SIZE)
Input: TS = (ts1, ts2j, ts3, …, ts10) Task Schedule

WIN_SIZE = Size of the Task Schedule TS

 Output: TS*=(ts1, ts2j, ts3, …, ts10) Task Schedule

1. Generate a random number S1 to represent the starting point
and another random number L1 for the length of the
substring.

2. Generate a random number I1 for the insertion point.
3. Let SS = SubString (TS, S1, L1);
4. For i = 1 to WIN_SIZE repeat,

a. if i <= I1 and (i < S1 or (i > S1 and
i >= S1 + L1)), S= concat (S, TS (i));

b. if i == I1, TS = concat (TS, SS);
c. if i > I1 and (i < S1 or (i > S1 and

 i >= S1 + L1)), S= concat (S, TS (i));
[End of for loop]

5. Return (TS);

Translation is transformation functions that remove two or
more consecutive nodes from the schedule and place it in
between any two randomly selected consecutive nodes.

2 1 2 3 1 3 4 3 4 2

Translation results

2 1 2 3 4 3 3 1 4 2
Figure 5.2 Allocation list on translation

• Switching

Move set can be constructed for the schedules using a switching
function, which randomly select two nodes and switch them in

124

a schedule. Generally speaking, the switching move set tends to
rupture the original schedule and results in an allocation that
has a makespan significantly different from that of the original
allocation. Comparisons between inversion and switching
move set can be found in [48]. Example of switching function is
shown in figure 5.3.

2 1 2 3 1 3 4 3 4 2

2 1 4 3 1 3 4 3 2 2

Figure 5.3 Outcome of switching operation

Algorithm SWITCHING (TS, WIN_SIZE)
Input: TS = (ts1, ts2j, ts3, …, ts10) Task Schedule

WIN_SIZE = Size of the Task Schedule TS

Output: TS*=(ts1, ts2j, ts3, …, ts10) Task Schedule

1. Generate a random number i to represent the task 1 and
another random number j to represent task 2.

2. swap (TS(i), TS(j));
3. Return (TS);

In our model, simulated annealing algorithm starts with
generating initial schedule ܶܵ randomly for 10 tasks.
Following that move set is created for an initial schedule, by
any one of the three different methods (i) Inversion , (ii)
Translation and (iii) Switching by selecting a random number
between 1 to 3. A final allocation list for the tasks is obtained
after 25 iteration. Tasks are allocated to the nodes and average
utilization is calculated for those 10 tasks before selecting a
next 10 tasks from the set of waiting tasks. The simulated
annealing for dynamic load balancing outlined in for of
algorithm SA_DLB. The algorithm SA_DLB called for
maximum (n/ WIN_SIZE) times to allocate n tasks to the
computing nodes.

Algorithm SA_DLB (TS, WIN_SIZE)
Input: TS = (ts1, ts2j, ts3, …, ts10) Task Schedule

WIN_SIZE = Size of the Task Schedule TS

 Output: TS*= (ts1, ts2j, ts3, …, ts10) and AU(TS*)

1. Calculate makespan for TS = ms
2. For i = 1 to 25 repeat,

a. Generate a random integer m from {1,2,3}
b. if m = 1, call INVERSION (TS, WIN_SIZE) to

create move set
c. if m = 2, call TRANSLATION (TS, WIN_SIZE)

to create move set

d. if m = 3, call SWITCHING (TS, WIN_SIZE) to
create move set

e. calculate the makespan for the new move set
TS* as ms*

f. if ms* < ms then TS = TS*
[End of for loop]

3. Allocate the tasks to Nodes using TS and calculate average
utilization(AU)

4. Return (TS*, AU);

Common approaches used as the stopping criteria in

simulated annealing algorithm (SA) are, (i) one may use a given
number of iteration, or (ii) a time limit, or (iii) a given number
of iteration without an improvement of the objective function
value, (iv) value of the objective function limit as set by the
user[25, 26]. We have used a fixed number of iteration
proportional to number of task to be schedule on computing
nodes. We have use Matlab to design our simulation programs.
The experiment was conducted with n=1000 tasks on m=60
computing nodes. The simulation results are compared with
two heuristic algorithms: first fit and randomized [17, 40].

Figure 5.4 Completion Time of 1000 tasks on

0 200 400 600 800 1000
0

500

1000

1500

2000

2500

3000

Number of Tasks

C
o

m
p

le
tt

io
n

 T
im

e

SA
FF
RAND

124

Figure 5.5 Average Processor Utilization

Randomized algorithms are known for efficient approxima te
solutions to intractable problems with better complexity
bounds. Moreover randomized algorithm is selected for
performance comparison as it is simple to describe and
implement than the deterministic algorithm. We executed
several simulations on proposed simulated annealing algorithm
for dynamic load balancing on HDCS, to compare with
conventional first fit (FF), and randomized algorithm. The
simulation results are presented in figure 5.4 and 5.5 with
completion time and processor utilization respectively.

The Fast come first serve (FF) and randomized algorithms for
resource allocation can make an instantaneous decision to
allocation of the task to computing nodes, which results a
shorter makespan. The SA-based load balancing algorithm
shows very much similar performance to that of FF in both
average processor utilization and completion time or
makespan.

VI. CONCLUSION AND FUTURE WORK

Load balancing is being performed during runtime at various
stages to keep the workload balance on different computing
nodes of a HDCS. This paper presents in details, a SA based
load balancing algorithm for HDCS with three algorithms to
compute move set. We have proposed a coding scheme to
represent the task assigned for execution to different computing
node. We have simulated the behavior of different load
balancing algorithm with our simulator developed using
Matlab, where each task ti is with the expected execution
time ݐ		 on machineܯ . The results of the simulation with
scalability of tasks are presented for conventional first fit (FF),
randomized, and SA algorithm. This paper uses consistent ETC
matrix to design load balancing algorithms, however further
investigations may be carried out to design SA based load balancing
algorithms for inconsistent and partially–consistent ETC matrix for
tasks. Genetic algorithm have been proposed over the years for

solving static and dynamic load balancing problems on
distributed system. The coding method introduced in this paper
can be used to design a genetic algorithm for dynamic load
balancing in HDCS.

REFERENCES
[1] Fidanova, Stefka. "Simulated annealing for grid scheduling problem." In

Modern Computing, 2006. JVA'06. IEEE John Vincent Atanasoff 2006
International Symposium on, pp. 41-45. IEEE, 2006.

[2] Wu, Min-You, Wei Shu, and Hong Zhang. "Segmented min-min: A static
mapping algorithm for meta-tasks on heterogeneous computing systems."
In Heterogeneous Computing Workshop, 2000.(HCW 2000) Proceedings.
9th, pp. 375-385. IEEE, 2000.

[3] Clawson, James. "Distributed computing architecture." U.S. Patent
6,112,304, issued August 29, 2000.

[4] Joanna Kolodziej , and Semee Ullah Khan,“Multi-level hierarchic
genetic-based scheduling of independent job in dynamic heterogeneous
grid environment”, Information Science, vol. 214, pp.1-19, 2012.

[5] R. Thamilselvan, and P. Balasubramanie, “Analysis of various alternate
crossover strategies for genetic algorithm to solve job shop scheduling
problem”, European Journal of Scientific Research, Vol. 64, No.4, 2011,
pp.538-554.

[6] Onno Boxma, Ger Koole, and Zhen Liu,”Queueing-theoretic solution
methods for models of parallel and distributed systems”, Centrum voor
Wiskunde en Informatica, Department of Operations Research, Statistics,
and System Theory, 1994.

[7] Francois Spies, “Modeling of optimal load balancing strategy using
queuing theory” Micro processing and Microprogramming, vol.41, 1996,
pp.555-570.

[8] Caffrey, James, and Graham Hitchings. "Makespan distributions in flow
shop scheduling." International Journal of Operations & Production
Management 15.3 (1995): 50-58.

[9] R. Rindzevicius, D. Poškaitis, and B. Dekeris. "Performance measures
analysis of M/M/m/K/N systems with finite customer population." Electr.
Electr. Eng 3.67 (2006): 65-70.

[10] Sivarama P. Dandamudi, Sensitivity evaluation of dynamic load sharing
in distributed systems, IEEE Concurrency,6(3), 1998, 62-72.

[11] Jie Li, & Hisao Kameda, Load balancing problems for multiclass tasks in
distributed/parallel computer systems, IEEE Transactions on Computers,
47(3), 1998, 322-332.

[12] Jong-Chen Chen, Guo-Xun Liao, Jr-Sung Hsie, Cheng-Hua Liao: A study
of the contribution made by evolutionary learning on dynamic
load-balancing problems in distributed computing systems. Expert Syst.
Appl. 34(1): 357-365 (2008)

[13] Sukumar Ghosh,. Distributed systems: an algorithmic approach. Vol. 13.
Chapman & Hall/CRC, 2006.

[14] M. Nikravan, and M. H. Kashani. "A genetic algorithm for process
scheduling in distributed operating systems considering load balancing."
In Proceedings 21st European Conference on Modelling and Simulation
Ivan Zelinka, Zuzana Oplatkova, Alessandra Orsoni, ECMS. 2007.

[15] A.J. Page, T.M. Keane, and T.J. Naughton. Multi-heuristic dynamic task
allocation using genetic algorithms in a heterogeneous distributed system.
Journal of parallel and distributed computing, 70(7):758–766, 2010.

[16] Mitchell D. Theys, et al. "Mapping tasks onto distributed heterogeneous
computing systems using a genetic algorithm approach." Solutions to
Parallel and Distributed Computing Problems: Lessons from Biological
Sciences (2001): 135-178.

[17] Tracy D. Braun, Howard Jay Siegel, Noah Beck, Ladislau L. Bölöni,
Muthucumaru Maheswaran, Albert I. Reuther, James P. Robertson et al.
"A comparison of eleven static heuristics for mapping a class of
independent tasks onto heterogeneous distributed computing systems."
Journal of Parallel and Distributed computing 61, no. 6 (2001): 810-837.

[18] Tracy D. Braun, Howard Jay Siegel, and Anthony A. Maciejewski.
"Static mapping heuristics for tasks with dependencies, priorities,
deadlines, and multiple versions in heterogeneous environments." In
Parallel and Distributed Processing Symposium., Proceedings
International, IPDPS 2002, Abstracts and CD-ROM, pp. 78-85. IEEE,
2002.

[19] Jon Kleinberg & Eva Tardos, Algorithm Design (Pearson Education Inc.
2006).

100 200 300 400 500 600 700 800 900 1000 1100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of Tasks

A
ve

ra
g

e
 P

ro
c

e
s

s
o

r
U

til
iz

a
tio

n

SA
FF
RAND

124

[20] Jie Wu, Distributed system design,(CRC press, 1999)

[21] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY,
1979.

[22] H. J. Siegel, and S. Ali, Techniques for mapping tasks tonodes in
heterogeneous computing, Systems, Journal of Systems Architecture,
46(8), 2000, 627—639.

[23] S. Ali; H.J. Siegel, M. Maheswaran, D. Hensgen; , "Task execution time
modeling for heterogeneous computing systems ," Heterogeneous
Computing Workshop, 2000. (HCW 2000) Proceedings. 9th , vol., no.,
pp.185-199, 2000.

[24] Helen D. Karatza, & Ralph C. Hilzer, Load sharing in heterogeneous
distributed systems, Proceedings of the Winter Simulation Conference,
1, San Diego California, 2002 Page(s): 2002, 489 – 496.

[25] Genetic Algorithm and Direct Search Toolbox 2, User Guide, The
MathWorks, Inc., US, 2009.

[26] Kalyanmoy Deb, Optimization for Engineering Design: Algorithm and
Examples, Prentice hall of India, 1998.

[27] Gamal Attiya, and Yskandar Hamam, “Task allocation for maximizing
reliability of distributed system: A simulated annealing approach”,
Journal of parallel and Distributed Computing, vol.66, pp. 1259-1266,
2006

[28] Cheng-Zhong Xu, and Francis CM Lau. "Iterative dynamic load
balancing in multicomputers." Journal of the Operational Research
Society (1994): 786-796.

[29] Gamal Attiya, and Yskandar Hamam. "Two phase algorithm for load
balancing in heterogeneous distributed systems." In Parallel, Distributed
and Network-Based Processing, 2004. Proceedings. 12th Euromicro
Conference on, pp. 434-439. IEEE, 2004.

[30] Talbi, E-G., and Traian Muntean. "Hill-climbing, simulated annealing
and genetic algorithms: a comparative study and application to the
mapping problem." In System Sciences, 1993, Proceeding of the
Twenty-Sixth Hawaii International Conference on, vol. 2, pp. 565-573.
IEEE, 1993.

[31] Bora Ucar, Cevdet Aykanat, Kamer Kaya, & Murat Ikinci, Task
assignment in heterogeneous computing system, Journal of parallel and
Distributed Computing, Vol.66, pp.32-46, 2006.

[32] K. S. Trivedi, Probability and statistics with reliability, queuing and
computer science applications, Prentice Hall of India, 2001.

[33] Thomas V. Christensen, “Heuristic Algorithms for NP-Complete
Problems” Project report, Institute of Informatics and mathematical
Modeling, Technical University of Denmark.2007.

[34] Daniel Grosu, and Anthony T. Chronopoulos, “Algorithmic Mechanisim
Design for load balancing in Distributed system”, IEEE transaction on
system man and cybernetics-Part B: cybernetics, vol.34, No.1, PP. 77-84,
2004.

[35] Suman, Balram, and Prabhat Kumar. "A survey of simulated annealing as
a tool for single and multiobjective optimization." Journal of the
operational research society , Vol.57, No. 10, pp.1143-1160, 2005.

[36] R. H. J. M. Otten and L. P. P. P. van Ginneken. The Annealing Algorithm,
Kluwer Academic Publishers, 1989.

[37] K K. Hwang, G.C. Fox, and JJ Dongarra., “Distributed and Cloud
Computing: From Parallel Processing to the Internet of Things”, Morgan
Kaufmann, 2012.

[38] A.Y. Zomaya and Y.H. Teh, “Observations on using genetic algorithms
for dynamic load-balancing”, IEEE Trans. on Parallel and Dist. Systems,
pp.899-911, September 2001.

[39] S. Kirkpatrick, C.D. Gelatt Jg., M. P. Vecchi, “Optimization by Simulated
Annealing”, Science 220, pp.671-680, 1983.

[40] Bibhudatta Sahoo, Dillip Kumar and Sanjay Kumar Jena, “Analysing the
Impact of Heterogeneity with Greedy Resource Allocation Algorithms
for Dynamic Load Balancing in Heterogeneous Distributed Computing
System”, International Journal of Computer Applications, Vol. 62, No.19,
pp.25-34, January 2013. Published by Foundation of Computer Science,
New York, USA

[41] Wen-Chiung Lee, Chin-China Wu, and Peter Chen, “A Simulated
annealing approach to makespan minimization on identical parallel
machines”, International Journal of Advanced Manufacturing
Technology, Vol.31, pp.328-334, 2006.

[42] S. Kirkpatrick, “Optimization by Simulated Annealing: Quantitative
Studies”, Journal of Statistical Physics, Vol.34, No.5/6, pp.975-986,
1984.

[43] Amir Masoud Rahmani and Mojtaba Rezvani, “A Novel Genetic
Algorithm for Static Task Scheduling in Distributed Systems”,
International Journal of Compute Theory and Engineering, Vol.1, No1,
April 2009.

[44] R. L. Haupt, and S.E. Haupt, “Practical genetic algorithm”, John Willy
and Sons, 2004.

[45] Helen D. Karatza Ralph C. Hilzer “Load Sharing in Heterogeneous
Distributed Systems” Proceeding of the winter simulation conference,
2002, pp.489-496.

Bibhudatta Sahoo has 20years of Teaching
Experience in undergraduate and graduate level in the
field of computer Science & Engineering. He is
presently Assistant Professor in the Department of
Computer Science & Engineering, NIT Rourkela,
INDIA. His technical interests include performance
evaluation methods and modeling techniques
distributed computing system, networking
algorithms, scheduling theory, cluster computing and
web engineering.

Sanjay Kumar jena is Professor in the department of
Computer Science and Engineering NIT Rourkela. His
areas of research interest include Database
Engineering, Parallel Algorithm, Artificial Intelligence
& Neural Computing, Computational Machines,
Network security. He is the principal investigator of
Information Security Education & Awareness Project
for MIT, Government of India at NIT Rourkela.

Sudipta Mahapatra, obtained his M.tech. and Ph.D.
degree in Computer Engineering from IIT, Kharagpur.
He was in the Electronic Systems Design Group of
Loughborough University, UK as BOYSCAST Fellow
of DST Government of India, from March 1999 to
March 2000. He is presently working as an Associate
Professor in the Electronics & Electrical
Communication Engineering department of IIT
Kharagpur. His areas of research interest include Image

and Video Compression, Optical and Wireless Networks, Parallel and
Distributed Systems.

