Model-Based Test-Case Generation for
Simulink/Stateflow using Dependency Graph
Approach

'Adepu Sridhar, *Srinivasulu D and *Durga Prasad Mohapatra

Department of Computer Science and Engineering
National Institute of Technology
Rourkela, India
'sridharuce@gmail.com, “cnud916@gmail.com and *durga@nitrkl.ac.in

Abstract—Testing is an ultimate phase of product life cycle to
which particular attention is paid, namely when dependability is
of great importance. Modeling technology has been introduced
into the software testing field. However how to carry through the
testing modeling effectively is still a difficulty. Based on the
combination of simulation modeling technology and
dependability we have proposed an approach to generate test
cases. In our approach, first, the system is modeled in MATLAB
using Simulink/ Stateflow tool. After the model creation we verify
that system and generate a dependency graph of that system.
From that graph we generate test sequences.

Keywords-Simulink/Stateflow;
sequences ; software testing

dependency graph; test

1. INTRODUCTION

Embedded Control Systems are now integral parts of many
application systems in the areas of Aerospace, Communication,
Automobiles, Commercial (computer peripherals, appliances,
etc.), Industrial (machinery) etc. As a result, everyone looking
for easy and reliable techniques to design, develop, test and
verify these systems. With a model based design and
development becoming a trend, in industries as well as
academia. To implement these systems and analyze models
everyone normally use Mathworks Simulink tool [1]. Simulink
models consist of functional blocks with input and output ports
to interconnect them. These interconnections define the data
flows between the blocks. Embedded Systems are usually state
based, they can be situated in various states depends on the
inputs and the control logic.

The model must be tested in order to detect faults in the
embedded system as early as possible. Exhaustive test is not
possible for any system. The test data generation process is
very costly and time consuming and error prone when done
manually, the automation of this process is highly required [3].
Embedded controller software is usually based on various
states and for that states representation often uses Stateflow [2]
diagrams utilization of the internal structure of the diagram to
generate Test cases is important. This is achieved by covering
Stateflow coverage and particular state coverage.

Code generators are used within the Simulink/Stateflow
(SL/SF) to automatically generate the embedded software for

978-1-4673-4529-3/12/$31.00 ©2012 IEEE

the target system from the Simulink/Stateflow diagram. The
existing code generators cannot guarantee that the generated
code complies correctly as mentioned in the design.
Verification and testing is necessary to find errors in the code
generation process those are helpful to avoid software faults.
Several types of errors may occur in the implementation
process from the Simulink/Stateflow diagram of the target
code, such as:

e Errors in the Simulink/Stateflow diagram nodes will
get carried over.

e Errors in the automatic code generator for the
Simulink/Stateflow diagram caused for example by finite
precision arithmetic or timing constraints.

° Any human errors in the selection of code generation
options, library naming or inclusion, and others.

II. BASIC CONCEPTS

Simulink is an environment for multidomain simulation
and Model-Based Design for dynamic and embedded systems.
It is an interactive graphical environment and a customizable
set of block libraries that let us design, simulate, implement,
and test a variety of time-varying systems, including
communications, controls, signal processing, video
processing, and image processing. Simulink is used for
modeling both continuous and discrete Systems. Simulink
blocks are divided into different types according to their
behavior.

e The Source library: Contains blocks that generate signals.

e The Sink library: Contains blocks that display or write
block output.

e The Linear library: Contains blocks that describe linear
functions.

e The Nonlinear library: Contains blocks that describe
Non-linear functions.

e The Connections library: Contains blocks that allow
multiplexing and DE multiplexing, implement external

1415

Input/Output, pass data to other parts of the model, create
subsystems, and perform other functions.

A Stateflow diagram is a graphical representation of a
finite state event driven machine. Stateflow is a powerful
graphical design and development tool for complex control
and supervisory logic problems.

e Visually model and simulate complex reactive
systems based on finite state machine theory.

e Design and develop deterministic,
control systems.

supervisory

e Easily modify your design, evaluate the results, and
verify the system's behavior at any stage of your design.

e Automatically generate integer or floating-point code
directly from your design.

e Take advantage of the integration with the MATLAB
and Simulink environments to model, simulate, and analyze
your system.

Name Notation Toolbar Icon
State

History junction @

Defanlt transition

Connective function .

Figure 1. Notations in the Stateflow Model

Stateflow allows us to use flow diagram notation and state
transition notation seamlessly in the same Stateflow diagram.
Flow diagram notation is essentially logic represented without
the use of states. Stateflow uses a variant of the finite state
machine notation established by Harel [1]. Stateflow allows
two basic building blocks states and transitions to represent
the finite state machine. Stateflow enables the representation
of hierarchy, parallelism, and history. Hierarchy enables you
to organize complex systems by defining a parent object
structure. For example, you can organize states within other
higher-level states. A system with parallelism can have two or
more orthogonal states active at the same time. History
provides the means to specify the destination state of a
transition based on historical information. These
characteristics enhance the usefulness of this approach and go
beyond what STDs and bubble diagrams provide. The
Stateflow machine is the collection of Stateflow blocks in a
Simulink model. The Simulink model and Stateflow machine
work seamlessly together. Running a simulation automatically
executes both the Simulink and Stateflow portions of the

1416

model. Simulink model consists of Simulink blocks,
Subsystems, toolbox and Stateflow Block. In the Simulink
model Stateflow represented as Chart. A collection of all these
charts is called as a Stateflow Machine. Chart consists of state,
transition, data, events are there. The graphical objects in the
Stateflow model are State, History junction, Default transition,
Connectivity junction. These notations are taken from
MathWorks [2] standard library. These are shown in Figure 1.

Stateflow diagram example: Figure 2 shows the small
Stateflow model example which represents the power switch.

A sample of the Simulink model which containing a
Stateflow diagram in it. When you simulate this model, the
generation of the input event from Simulink, Switch, will
toggle the activity of the states between Power on and
Power off. an In this model Simulink used as interface for the
Stateflow model.

Power on

Power oft

Figure 2. An example of Stateflow model

In the Stateflow logical operations are performed with
four actions:

e Entry actions
e During actions
. On Event actions

° Exit actions

III. PROPOSED APPROACH

Our method of generating test cases is based on using
graph. The edges in the graph have special meaning based on
the pair of nodes that connect. We represent an edge in the
graph using a node pair. In Simulink model the edges
represent the interconnections between the Simulink blocks.
An interconnection between two Simulink blocks represent the
transfer of a signal from one block to the other, one
dependency exist that is output dependency.

Output dependency edge: Output dependency graph is a
graph which contains the edges like, edge from A to B means
that block B is output dependent on block A, input for the
block B depends on the output produced by block A. In
Stateflow the dependency exists is control dependency.

Control Dependency: A control dependency graph is a
graph, which represents an inter stage dependency that arises
due to a change of state in the Stateflow model.

Graph construction is based on the model information
present in the mdl file of a given model. First we discuss the
overview of our approach. This is followed by an algorithmic
representation of the same. First the SL/SF model is used to

2013 3"% IEEE International Advance Computing Conference (IACC)

construct a top level Graph. In the top level graph, every
subsystem is represented using a single node. Every subsystem
and with respect to that subsystem, Stateflow are represented
using separate Graphs. The number of graphs are constructed
based on the hierarchy of subsystems and Stateflow in a SL/SF
model.

Algorithm Details: This graph takes the SL / SF model as
input and generate graphs. First, the top level graph is
constructed. If any subsystem is found to exist in the model
then the graphs for the subsystems are constructed. After
which the “Stateflow Graph Construction" is called to generate
graphs for Stateflow charts. Whenever we are constructing the
graph we make a matrix for traversing purpose.

1) Algorithml:Dependency Graph_Construction

Input: file path // path of mdl file of a model

Output: Output dependency graph of the Simulink model
Begin

//create a model object

Read the blocks from the model object

// read the each block

while up to all blocks cover do

extract all adjacent blocks of current block

Note down the adjacency in the adjacency matrix

write the adjacency matrix information to the dotty files
if any block having Simulink subsystem then

push that block to the Queue

end if

end while

while Queue is not empty do

Read the each block

extract all adjacent blocks of current block

Note down the adjacency in the adjacency matrix

write the adjacency matrix information to the dotty files
end while

Stateow graph construction(file path);

End

2) Dependency Graph_Construction:

The Dependency Graph Construction algorithm is taking
the file path as input. First, we are creating a model object.
Second, read the blocks from the model object. For every
block considers the adjacent blocks and note down in the
adjacency matrix. Using the adjacency matrix draws the
graph in the Dotty file using Graphviz [12] tool. When

2013 3"¢ IEEE International Advance Computing Conference (IACC)

traversing the block if any block is a subsystem push it to
the Queue. After all the completion of block traversal, check
the Queue and if it is not empty, construct graph for the
every subsystem. At the end call the Stateflow Graph
Construction.

3) Algorithm?2: Stateflow Graph Construction

Input: file path

Output: control dependency graph of the Stateflow model
Begin

Get the Stateflow machine

Get the charts from the Stateflow machine

Read every Stateflow chart

while up to cover all charts do

Read all the states present in a model

while states not empty do

Read each nodes from the state

Note that adjacency in the adjacency matrix
write down the adjacency matrix to the dotty files
end while

end while

End

4) Stateflow_Graph_Construction:

The Stateflow Graph Construction algorithm is taking the
file path as input. First, we get the Stateflow machine, From
the Stateflow machine we get the Stateflow charts. Every chart
is a subsystem. Read each node from the every chart. Note the
adjacency in the adjacency matrix. Using the adjacency matrix
draws the graph in the dotty file using Graphviz [12] tool.

IV. IMPLEMENTATION

In this section, we explain the working of our algorithm by
taking the Fan example using a Simulink/Stateflow model, as
described below and it is shown in Figure 3.

In this example the fan receives signal from signal builder.
According to that signal the fan rotates. While rotating it
changes from one state to the other state. First the control
starts in the default state. In our example Off/ is the default
state. At this time the speed of the fan is '0'. When the switch
signal becomes ‘on' the transition goes to work and control
goes to On/ state. On/ state having hierarchy, it is having sub
states one/, two/, three/, four/. In these states the default state
is one/, this time the speed of the fan is ‘1°. When the clock
signal is on one/ state outline transition goes to work and
control goes to two/ state. Every time whenever clock changes
from off to on speed changes with respect to the states.
Whenever the switch signal goes to off then control goes to
Off/ state. This is shown in Figure 3. When drawing the graph

1417

we are representing the default transition by using the START
node.

1) Implementation Details:
1. Language used for implementation is Java.

2. Input: SL/SF MATLAB model file having .mdl
extension.

3. Output: Graph representation of the model and test
sequences.

2) Tools used for the implementation:
1. Netbeans

2. GRAPhviz.

3. Matlab Simulink.

The Figure 3 is the Stateflow in the SL/SF model. When
we are passing this model as input our algorithm generates the
graph which is shown in Figure 4. In the On/ node it is having
sub nodes for the representation of sub nodes. Our algorithm
generates one more graph which is shown in Figure 5. From
this graph we will generate test sequences based on the state
coverage, transition coverage etc.

mnmmnqma—-u__

FES I mE ket EE 0 WEE BABAD W

b

Flgure 3. Stateﬂow fan model

3) State coverage: The coverage which covers states in all the
possible ways is State coverage.

4) Top level test sequences:
1. Start -> off/ (if the signal is not generated)
2. Start-> oft/ -> on/-> off/(if the signal is generated)

5) Secondary level test sequences: It is within the On/ state so
it will execute whenever the signal generated successfully.

1. start-> one/-> two/-> three-> four/-> one/ (In this case it is
covering all states)

e ER Wiedes Guph e

IPB Xx0B 34

1gure Secondary level graph

P Bt Ven lewimes Tome Too e

DIEES L SR s tlo iy afif [D BMBG. BEES
[e |

— 1

@ P =

Figure 6. Example of Simulink model

1418 2013 3"¢ IEEE International Advance Computing Conference (IACC)

Figure 7 . Graph of Simulink model

6) Transition coverage: The coverage which covers
transitions in all the possible ways is Transition coverage.

e Top level test sequences:
1. Start -> off/(if the signal is not generated)

2. Start-> off/-> switch-> on/-> switch-> off/ (if the signal
is generated)

e Secondary level test sequences:

1. Start -> one/ -> clock->two/->clock->three/->clock->
four/ -> clock (in this case it covers all states and all
transitions)

The transition coverage is better than the state coverage it
covers all the states and extra it covers all transitions. We
generated test sequences from Simulink model that is shown
in Figure 6. When we are sending this model as input to the
our algorithm the the graph is coming out. That is shown in
Figure 7.

From Figure 7 the test sequences are:

1. Start-> tg -> Abs -> Gain ->sum2 ->switch -> output
port->Start -> u -> switch -> output port

2. Start -> u->sum2 ->switch->output port->Start -> u ->
productl -> sum1-> switch->output port

3. Start -> la -> sum -> productl -> suml -> switch ->
output port->Start -> u ->switch -> unit Delay -> product ->
suml ->switch -> output port

4. Start -> u -> sum2 -> switch ->unit delay -> product ->
suml ->switch ->output port->Start -> tg -> Abs -> Gain ->
sum?2 -> switch ->unit delay -> product -> suml1 -> switch ->
output port

5. Start ->u -> product] -> suml -> switch -> unit delay -
> product -> suml ->switch -> output port -> Start -> la ->
sum -> productl -> suml ->switch ->unit delay -> product ->
suml -> switch -> output port

2013 3"¢ IEEE International Advance Computing Conference (IACC)

6. Start -> la -> product -> suml -> switch -> unit delay ->
product -> suml ->switch -> output port

V. COMPLEXITY ANALYSIS

The complexity of the model under test has a big influence
on the success of the test data generation process due to
associated increasing execution times. We now analyze the
time complexity and space complexity of the graph
construction procedure. First we consider the complexity for
construction of graphs of the models having only Simulink
blocks with no Stateflow charts. Next we analyze the
complexity of construction of graph for Stateflow charts alone
and then generalize for the models having both Simulink and
Stateflow blocks. First assume a simple model having no
hierarchy, that is only one level and has ‘n' blocks on that
level. Each block in the model is visited once to extract its
information into adjacency matrix, hence O(n). This adjacency
matrix is used for graph traversal and construction. Adjacency
matrix has nXn entries, accessing adjacency matrix has time
complexity O(n*n). So the time complexity of the above such
models will be O(n2). Let us take complex model having ‘'m'’
subsystems in the top level and also each level there exist ‘n'
blocks, this would result in (1+m(k+1)) graphs. One block for
the top level having B blocks out of which 'm' are subsystems
and each subsystem in turn has ‘k' subsystems, there would be
'k' graphs plus one more graph having these ‘k' subsystems.
Total subsystems are m(k+1) graphs. Finally, including the top
level total graphs would be 1+m(k+1). Total complexity
would be O(1+m(k+1))(n®). Space complexity is based on the
size of the adjacency matrix. The size of the adjacency matrix
depends on the number of blocks in a subsystem. The space
complexity of each level is O(n®). Complexity analysis for
Stateflow model Each state has traversed once and its
information is extracted and modeled into a graph. Let the
number of states be 'S' and transitions be "T'. Then the time
complexity is O(S+T). Space complexity is O(S).

Complexity analysis of an SL/SF model having ‘m'
subsystems in the top level and ‘n' Stateflow charts and in
each of 'm' subsystem there are ‘k' other subsystems. The
complexity is O(1+m(k+1))B*+n(S+T). Space complexity for
every level is O(B).

VI. COMPARISON WITH RELATED WORK

Simulink/Stateflow has originally been designed for the
simulation purposes. Automated test generation for
Simulink/Stateflow diagram is required to identify the errors.
Many authors have tried different ways of test data generation
and verification for Simulink/Stateflow diagram.

Zhan [6] proposed one approach, novel search based
approach to cover the particular structural elements of
Simulink. He has considered the small signal generation as the
input, it is not covering all the blocks in the model. But our
approach overcoming this limitation our approach covering all
the blocks in the model by traversing the model.

Tools also there for the testing of Simulink/Stateflow
models, One of these tools is T-Vec Tester [4], generates test
cases automatically from the domain testing theory. Another

1419

tool is a Reactive Tester [5], by using guided simulations and
heuristics without explanation. This approach is limited
regarding the length of generating input signals, model size
and complexity leads to lower structural coverage. But our
approach overcoming these limitations in our approach works
for complex models also.

Scaife [7] are able to translate Simulink /Stateflow block
into lustre and verify the model using a model checking toll
called Lesar. Gadkari et al.[8] have translated
Simulink/Stateflow to a formal language and generated test
cases based on model checking. Meng Li and Ratnesh kumar
introduced a recursive method to translate a
Simulink/Stateflow diagram to an Input/Output Extended
Finite Automata [9] which is a formal model of reactive
untimed infinite state system. In this they generated test cases
for the Simulink/Stateflow diagram based on the Input/Output
Extended Finite Automata. In our approach we implemented
graph from the Simulink/Stateflow diagram and from that we
generated test cases.

Mirko Conard et al. [10] proposed one approach to
test suite design for code generation tools. They describe the
design of a test suite for code generation tools. This method
provides solutions of main problems how the correct
transformation of a source into a target language can be
proved. The application of the proposed testing approach leads
to a test suite which is suitable for testing code generators
systematically.

The existing code generators can’t guarantee that the
generated code compiles correctly as mentioned in the design.
The reasons are:

1. Errors in the Simulink/Stateflow diagram nodes will get
carried over.

2. Errors in the automatic code generator for the
Simulink/Stateflow diagram caused for example by finite
precision arithmetic or timing constraints.

3. Any human errors in the selection of code generation
options, library naming or inclusion, and others.

But our approach overcoming these limitations, no need to
generate code from the models in our approach because of that
it overcome the Mrko Conard's approach. No assumption in
our approach so, it overcomes the Reactive Tester approach.
We are covering all the blocks and all transitions through the
generated graph. The Zhan's approach also not covering all the
Blocks due to small signal generation, but our approach
overcoming this limitation also.

VII. CONCLUSION AND FUTURE WORK

We proposed a methodology to generate test cases from
SL/SF models. First we have constructed the model in the
MATLAB environment by using Simulink/Stateflow

1420

designing tool. By simulation we verify the model. After
verification by using our approach we generated a graph. From
that graph we performed the traversal operations and
generated the test sequences. The test sequences are used to
generate test cases. This approach covers many important
coverages like state coverage, transition coverage. This is
more accurate than the methods which are generating test
cases using code generation. We generated test sequences
moreover we plan to generate test cases for every Embedded
real time control system and we are planning to prioritize test
cases based on the certain block.

REFERENCES

[1T The MathWorks, Simulink, Stateflow and Real-
TimeWorkshop at http://www.mathworks.com/products,
Website, 2003.

[2]Online
http://dali.feld.cvut.cz/ucebna/matlab/toolbox/stateow.

[3] B.Beizer. Software Testing Techniques. International
Thompson computer press, 1990.

[4] T-VEC, http://www.t-vec.com/.

[5] Reactive Systems Inc, Reactis Simulator / Tester at
www.reactive-systems.com, Website 2003.

[6] Y.Zhan. A secarch-Based Framework for Automatic Test-
Set Generation for MATLAB/Simulink Models.PhD thesis,
University of York, December 2005.

[7] N.scaife, C.Sofronis, P.Caspi, S.Tripakis, and F.
Maraninchi, Defining and translating a safe subset
Simulink/stateow into lustre. In EMSOFT 04: Proceedings of
the 4th ACM international conferenceon Embedded Soft-

ware New York, NY, USA:ACM, 2004, pp.259-268.

[8] A. Gadkari, S. Mohalik, K. Shashidhar, A. Yeolekar, J.
Suresh, and S. Ramesh, Automatic generation of test-cases
using model checking for sl/sf models, 4th International
Workshop on Model Driven Engineering, Verification and
Validation, 2007.

[91 Meng Li, Ratnesh Kumar Model-Based Automatic Test
Generation for Simulink/Stateow using Extended Finite
Automaton 2011.

[10] Igno sturmer, Mirko conard "Test suite design for code
generation Tools", IEEE 2003.

[11] J Ellson, E Gansner, L Koutso_os, S North, GWoodhull,
Graphviz Open Source Graph Drawing Tools, 9"
International ~ symposium, GD 2001 Vienna, Austria,
September 23-26, 2001, pages 483-484.

2013 3"% IEEE International Advance Computing Conference (IACC)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

