Stochastic Open Pit Mine Production Scheduling Incorporating Price Uncertainties

Manas Ranjan Sethi

&

Snehamoy Chatterjee

Department of Mining Engineering
National Institute of Technology, Rourkela

Introduction

Mine production scheduling is an assignment problem

Aim to maximizes profit

 No algorithm is available to solve large scale mine scheduling problem

Number of approximate algorithms are available

Iron ore price

Source: Index Mundi commodity price www.indexmundi.com/commodities/?commodity=iron-ore&months=360

Stochastic production scheduling

Maximize
$$Z = \sum_{t=1}^{T} \sum_{s=1}^{S} \sum_{i=1}^{N} \frac{c_i^s}{(1+r)^t} x_{i,t}^s$$

subject to
$$x_{i,t}^{s} - x_{j,t}^{s} \le 0, j \in \Gamma_{i}, i \in N, s \in S, t \in T$$

 $x_{i,t-1}^{s} - x_{i,t}^{s} \le 0, i \in N, s \in S, t \in T$

$$\sum_{s=1}^{S} x_{i,t}^{s} = S, i \in N, s \in S, t \in T$$

$$x_{i,t}^{s} \in \{0,1\}, i \in \mathbb{N}, s \in S, t \in T$$

$$\sum_{i=1}^{N} a_{i1}^{st} x_i^{st} \le b_1^{st}$$

$$\sum_{i=1}^{N} a_{i2}^{st} x_i^{st} \le b_2^{st}$$

 Γ_i is the set of successor blocks of block i

 c_{i}^{s} is the economic value of block i for simulation s

N is the number of blocks in the block model

 a_{i1}^{st} is the amount of ore from a block x_i of simulation s at time t

 a_{i2}^{st} is the amount of waste from a block x_i of simulation s at time t

 b_1^{st} is the amount of ore production constraint from simulation s at time t

 b_2^{st} is the amount of waste production constraint from simulation s at time t

T is the total number of production periods

S is the number of simulation; r is interest rate

Constructing graph

Three simulation with economic value of blocks

C ₁ ¹	c ₂ ¹	c ₃ ¹	C ₄ ¹	C ₅ ¹
C ₆ ¹	C ₇ ¹	c ₈ ¹	c ₉ ¹	C ₁₀ ¹
C ₁₁ ¹	C ₁₂ ¹	C ₁₃ ¹	C ₁₄ ¹	C ₁₅ ¹

C ₁ ²	c_2^2	c_3^2	C ₄ ²	c_5^2
C_6^2	C ₇ ²	c_8^2	c ₉ ²	c ₁₀ ²
C ₁₁ ²	C ₁₂ ²	c ₁₃ ²	C ₁₄ ²	C ₁₅ ²

C ₁ ³	C ₂ ³	c ₃ ³	C ₄ ³	C ₅ ³
c_6^3	C ₇ ³	c ₈ ³	c ₉ ³	C ₁₀ ³
C ₁₁ ³	C ₁₂ ³	C ₁₃ ³	C ₁₄ ³	C ₁₅ ³

Economic value of blocks of three simulations after multiplying λ

d_1^1	d_2^1	d ₃ ¹	d ₄ ¹	d_5^1
d_6^{1}	d ₇ ¹	d ₈ ¹	d_9^1	d ₁₀ ¹
d ₁₁ ¹	d ₁₂ ¹	d ₁₃ ¹	d ₁₄ ¹	d ₁₅ ¹

d_1^2	d_2^2	d_3^2	d_4^2	d_5^2	
d_6^2	d_7^2	d_8^2	d_9^2	d ₁₀ ²	
d ₁₁ ²	d ₁₂ ²	d ₁₃ ²	d ₁₄ ²	d ₁₅ ²	

d ₁ ³	d_2^3	d_3^3	d_4^3	d_{5}^{3}
d_6^3	d_7^3	d_8^3	d_9^3	d_{10}^{3}
d ₁₁ ³	d ₁₂ ³	d ₁₃ ³	d ₁₄ ³	d_{15}^{3}

Suppose economic value of blocks are

2	5	-2	2	-2
-3	6	-1	4	-2
-5	8	4	-7	-4

1	3	-1	-2	-2
-1	4	3	5	-1
-3	6	7	7	-3

-6	1	-3	3	-2
-2	-1	1	3	11
-1	1	1	3	10

Constructing graph

Merged graph

Case Study

- A Iron ore deposit
- Slope angle is 45 degree
- 100 simulated ore body models
- Price simulation was done using SGS algorithm

Variogram Model

Nugget	No of structure	Sill	Туре	Max	Med	Min
0	1	0.63	Spherical	100	70	27

3-D view of Pit

Conclusions

- Production scheduling was performed by incorporating price uncertainty
- The algorithm is computationally fast, so can handle large orebody model
- No ultimate pit and pushback generation is required in this algorithm
- 5% more NPV can be generated as compared to conventional method

THANK YOU