Stochastic Open Pit Mine Production Scheduling Incorporating Price Uncertainties Manas Ranjan Sethi & Snehamoy Chatterjee Department of Mining Engineering National Institute of Technology, Rourkela #### Introduction Mine production scheduling is an assignment problem Aim to maximizes profit No algorithm is available to solve large scale mine scheduling problem Number of approximate algorithms are available # Iron ore price Source: Index Mundi commodity price www.indexmundi.com/commodities/?commodity=iron-ore&months=360 ## Stochastic production scheduling Maximize $$Z = \sum_{t=1}^{T} \sum_{s=1}^{S} \sum_{i=1}^{N} \frac{c_i^s}{(1+r)^t} x_{i,t}^s$$ subject to $$x_{i,t}^{s} - x_{j,t}^{s} \le 0, j \in \Gamma_{i}, i \in N, s \in S, t \in T$$ $x_{i,t-1}^{s} - x_{i,t}^{s} \le 0, i \in N, s \in S, t \in T$ $$\sum_{s=1}^{S} x_{i,t}^{s} = S, i \in N, s \in S, t \in T$$ $$x_{i,t}^{s} \in \{0,1\}, i \in \mathbb{N}, s \in S, t \in T$$ $$\sum_{i=1}^{N} a_{i1}^{st} x_i^{st} \le b_1^{st}$$ $$\sum_{i=1}^{N} a_{i2}^{st} x_i^{st} \le b_2^{st}$$ Γ_i is the set of successor blocks of block i c_{i}^{s} is the economic value of block i for simulation s N is the number of blocks in the block model a_{i1}^{st} is the amount of ore from a block x_i of simulation s at time t a_{i2}^{st} is the amount of waste from a block x_i of simulation s at time t b_1^{st} is the amount of ore production constraint from simulation s at time t b_2^{st} is the amount of waste production constraint from simulation s at time t T is the total number of production periods S is the number of simulation; r is interest rate ## Constructing graph #### Three simulation with economic value of blocks | C ₁ ¹ | c ₂ ¹ | c ₃ ¹ | C ₄ ¹ | C ₅ ¹ | |------------------------------|------------------------------|------------------------------|------------------------------|------------------------------| | C ₆ ¹ | C ₇ ¹ | c ₈ ¹ | c ₉ ¹ | C ₁₀ ¹ | | C ₁₁ ¹ | C ₁₂ ¹ | C ₁₃ ¹ | C ₁₄ ¹ | C ₁₅ ¹ | | C ₁ ² | c_2^2 | c_3^2 | C ₄ ² | c_5^2 | |------------------------------|------------------------------|------------------------------|------------------------------|------------------------------| | C_6^2 | C ₇ ² | c_8^2 | c ₉ ² | c ₁₀ ² | | C ₁₁ ² | C ₁₂ ² | c ₁₃ ² | C ₁₄ ² | C ₁₅ ² | | C ₁ ³ | C ₂ ³ | c ₃ ³ | C ₄ ³ | C ₅ ³ | |------------------------------|------------------------------|------------------------------|------------------------------|------------------------------| | c_6^3 | C ₇ ³ | c ₈ ³ | c ₉ ³ | C ₁₀ ³ | | C ₁₁ ³ | C ₁₂ ³ | C ₁₃ ³ | C ₁₄ ³ | C ₁₅ ³ | ### Economic value of blocks of three simulations after multiplying λ | d_1^1 | d_2^1 | d ₃ ¹ | d ₄ ¹ | d_5^1 | |------------------------------|------------------------------|------------------------------|------------------------------|------------------------------| | d_6^{1} | d ₇ ¹ | d ₈ ¹ | d_9^1 | d ₁₀ ¹ | | d ₁₁ ¹ | d ₁₂ ¹ | d ₁₃ ¹ | d ₁₄ ¹ | d ₁₅ ¹ | | d_1^2 | d_2^2 | d_3^2 | d_4^2 | d_5^2 | | |------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|--| | d_6^2 | d_7^2 | d_8^2 | d_9^2 | d ₁₀ ² | | | d ₁₁ ² | d ₁₂ ² | d ₁₃ ² | d ₁₄ ² | d ₁₅ ² | | | d ₁ ³ | d_2^3 | d_3^3 | d_4^3 | d_{5}^{3} | |------------------------------|------------------------------|------------------------------|------------------------------|--------------| | d_6^3 | d_7^3 | d_8^3 | d_9^3 | d_{10}^{3} | | d ₁₁ ³ | d ₁₂ ³ | d ₁₃ ³ | d ₁₄ ³ | d_{15}^{3} | ### Suppose economic value of blocks are | 2 | 5 | -2 | 2 | -2 | |----|---|----|----|----| | -3 | 6 | -1 | 4 | -2 | | -5 | 8 | 4 | -7 | -4 | | 1 | 3 | -1 | -2 | -2 | |----|---|----|----|----| | -1 | 4 | 3 | 5 | -1 | | -3 | 6 | 7 | 7 | -3 | | -6 | 1 | -3 | 3 | -2 | |----|----|----|---|----| | -2 | -1 | 1 | 3 | 11 | | -1 | 1 | 1 | 3 | 10 | # Constructing graph ## Merged graph ## Case Study - A Iron ore deposit - Slope angle is 45 degree - 100 simulated ore body models - Price simulation was done using SGS algorithm # Variogram Model | Nugget | No of structure | Sill | Туре | Max | Med | Min | |--------|-----------------|------|-----------|-----|-----|-----| | 0 | 1 | 0.63 | Spherical | 100 | 70 | 27 | ## 3-D view of Pit #### Conclusions - Production scheduling was performed by incorporating price uncertainty - The algorithm is computationally fast, so can handle large orebody model - No ultimate pit and pushback generation is required in this algorithm - 5% more NPV can be generated as compared to conventional method # THANK YOU