
1st Int. Conf. On Computing, Communication and Sensor Networks-CCSN’2012

Observing the Performance of Greedy
algorithms for dynamic load balancing in

Heterogeneous Distributed Computing System
Bibhudatta Sahoo# , Dilip Kumar*, Sanjay Kumar Jena#

#Department of Computer Science & Engineering, NIT Rourkela, India
*Department of Computer Science & Engineering, NIT Jamshedpur, India

1 bdsahu@nitrkl.ac.in
2 dilip.cse@nitjsr.ac.in

3skjena@nitrkl.ac.in

Abstract— Distributed systems have been an active
research area in computer science for the last decade, task
allocation and load balancing have been a major issue
associated with such systems. The load-balancing
problem, attempts to compute the assignment with
smallest possible makespan (i.e. the completion time
at the maximum loaded computing node). Load
balancing problem is a NP hard problem. This paper
discusses the performance of some simple heuristic
algorithms to solve load balancing problem with
makespan as performance metric to minimize the
makespan.

Keywords— Heterogeneous distributed system,
dynamic load balancing, makespan, greedy heuristic.

I. INTRODUCTION
Distributed heterogeneous computing is being widely
applied to a variety of large size computational
problems. These computational environments are
consists of multiple heterogeneous computing modules,
these modules interact with each other to solve the
problem. In a Heterogeneous distributed computing
system (HDCS), processing loads arrive from many
users at random time instants. A proper scheduling
policy attempts to assign these loads to available
computing nodes so as to complete the processing of all
loads in the shortest possible time.

The resource manager schedules the processes in a
distributed system to make use of the system resources
in such a manner that resource usage, response time,
network congestion, and scheduling overhead are
optimized. There are number of techniques and
methodologies for scheduling processes of a distributed
system. These are task assignment, load-balancing,
load-sharing approaches [7],[9],[10]. Due to
heterogeneity of computing nodes, jobs encounter
different execution times on different processors.
Therefore, research should address scheduling in
heterogeneous environment. The distributed nature of
underlying resources presents problems not present in
closely coupled systems, such as communication
overheads, or heterogeneity of resources. A poor

allocation of tasks to processors could nullify the
benefits of using a distributed system by inefficiently
utilizing the system resources [2].

. The load-balancing problem, aim to compute the
assignment with smallest possible makespan (i.e. the
completion time at the maximum loaded computing
node) The load distribution problem is known to be NP-
hard [4],[5] in most cases and therefore intractable with
number of tasks and/or the computing node exceeds few
units. Here, the load balancing is a job scheduling
policy which takes a job as a whole and assign it to a
computing node [2].This paper considers the problem of
finding an optimal solution for load balancing in
heterogeneous distributed system. The rest of the paper
is organized as follows. The next section discusses
Heterogeneous distributed computing system (HDCS)
structure and the load-balancing problem. Section 3
describes the different dynamic load distribution
algorithms using greedy paradigm. We have simulated
the behaviour of different greedy load balancing
algorithm with our simulator developed using Mat lab.
The results of the simulation present the performance of
resource allocation algorithms with scalability of
computing nodes and varying tasks arrival in Section 4.
Finally, conclusions and directions for future research
are discussed in Section 5

II. SYSTEM AND PROBLEM MODEL

A. Heterogeneous Distributed Computing System
Heterogeneous distributed computing system (HDCS)
utilizes a distributed suite of different high-performance
machines, interconnected with high-speed links, to
perform different computationally intensive applications
that have diverse computational requirements.
Distributed computing provides the capability for the
utilization of remote computing resources and allows
for increased levels of flexibility, reliability, and
modularity. In heterogeneous distributed computing
system the computational power of the computing
entities are possibly different for each processor
[1],[3],[4]. A large heterogeneous distributed computing
system (HDCS) consists of potentially millions of
heterogeneous computing nodes connected by the global

1st Int. Conf. On Computing, Communication and Sensor Networks-CCSN’2012

Internet. The applicability and strength of HDCS are
derived from their ability to meet computing needs to
appropriate resources [2],[3],[9]. Resource management
sub systems of the HDCS are designated to schedule the
execution of the tasks that arrive for the service. HDCS
environments are well suited to meet the computational
demands of large, diverse groups of tasks. The problem
of optimally mapping also defined as matching and
scheduling.

Fig. 1 A model of distributed computing system

We consider a heterogeneous distributed computing
system (HDCS) consists of a set of m { M1, M2, … Mm}
independent heterogeneous, uniquely addressable
computing entity (computing nodes). Let there are n
number of jobs with each job j has a processing time tj
are to be processed in the HDCS with m nodes. Hence
the generalized load-balancing problem is to assign each
job to one of the node Mi so that the loads placed on all
machine are as “balanced” as possible [5].

B. Model of load balancing problem on Distributed
System

 This section presents a mathematical model for load
balancing problem based on min-max criterion.
Objective of this formulation is to minimize the load at
the maximum loaded processor. Let A(i) be the set of
jobs assigned to machine Mi; hence the machine Mi
needs total computing time ܶ ൌ ∑ ሺሻڳݐ which is
otherwise known as (Li)load on machine Mi. The basic
objective of load balancing is to minimize make span,
which is defined as maximum loads on any machine (T
= maxi Ti). This problem can be expressed as linear
programming problem, with the objective to (load of the
corresponding assignment).
Minimize L
 ∑ ݔ ൌ ݐ , for all j א A(i)

 ∑ ݔ ൏ M א for all i ,ܮ

ݔ א ሼ0, t୧୨ሽ

ݔ ൌ ሼ0, t୧୨ሽ , for all j א A(i), i ܯ א

ݔ ൌ 0 , for all j א A(i), i ܯ ב

 Where ܯ ك set of machines to which the job j;ܯ
can be assigned.

The problem of finding an assignment of minimum
makespan is NP-hard [5]. The solutions to this can be
obtained using a dynamic programming algorithm Ο(n
Lm), where L is the minimum makespan.

Due to the complexity of load balancing problem, most
of researchers proposed heuristic algorithms, while
optimal algorithm are developed for only restricted
cases or for small problems[4]. Greedy algorithmic
technique always makes the choice that looks best at the
moment to solve optimization problems with the hope
that this choice will lead to a globally optimal solution.
In this paper we have analyse the performance of
resource allocation schemes on the HDCS where all
computing nodes are heterogonous and characterised by
the different service rate µ. For any to computing nodes
Mi, and Mj , µi ≠ µj.

C. Task model
The tasks are arriving from the different nodes to the

resource manager has the probability to be allocated to
any of the m computing nodes. Hence the tasks are
characterized by expected time of completion (ETC) on
all m computing nodes, can be represented as follows,
In ETC matrix, the elements along a row indicate the
execution time of a given task on different machine[12]
[14]

ଵܯ ଶܯ ڮ ܯ ڮ ܯ

ଵܶ ଵଵݐ ଵଶݐ ڮ ଵݐ ڮ ଵݐ

ଶܶ ଶଵݐ

ܶ

ܶ

ଵݐ

ଵݐ

ଶଶݐ

ଶݐ

ଶݐ

… ଶݐ

ݐ

ݐ

… ଶݐ

ݐ

ݐ

These tasks are arrived to the system with Poisson

distribution and their expected times to complete the
execution are uniformly distributed. Simulation is
carried out with the ETC matrix and the different greedy
allocation policy.

III. GREEDY RESOURCE ALLOCATION ALGORITHMS FOR
LOAD BALANCING

A. Simple greedy algorithm for load Balancing
In a HDCS, each task can have a different execution

time on each machine. We have used heuristic
algorithms to map tasks into the computing nodes of the
HDCS. The simple greedy base algorithm is as follows.

Algorithm 1: Greedy resource allocation algorithm.
Input: MaxTask, MaxNode.
Output: makespan
1: Generate ETC Matrix.
2: Generate Arrival Times for each task with
arrival rate (λ).
3: for i=1 to MaxTask
4: for j=1 to MaxNode
5: Allocate task i to Node with minimum load.
6: end for
7: end for
8: Compute make span.

A simple greedy algorithm [5] makes one pass the jobs
in any order and assigns the job j to the computing node
Mi that having minimum load so far. The allocations

1st Int. Conf. On Computing, Communication and Sensor Networks-CCSN’2012

are based upon the ETC of n tasks on m computing
nodes.

B. Load balancing algorithm with greedy heuristic
We have implemented three different greedy heuristic
task allocation algorithm based on (i) first come First
serve (FCFS) based on arrival of the task to the resource
manager, (ii) max-min, and Min-max. We have also
used a randomized scheduler that represents the average
major of the makespan. [14] The scheduler starts the
tasks in the order of their submission. If resources are
not sufficient to start the task then the scheduler waits
until tasks can be started. The other tasks in the
submission queue are stalled. The first come first serve
(FCFS) algorithms uses job arrival time as the heuristic
to assign the jobs to the computing nodes having
minimum ETC value. The details of FCFS algorithm
that uses ETC matrix and arrival time to decide
allocation are shown below.

Algorithm 2: First Come First Served (FCFS) Resource
allocation algorithm
Input: MaxTask, MaxNode, ETC Matrix, Arrival Times
Output: Make span, Allocation
// B[] holds the completion times of Nodes
 1: B [1: MaxNode]=0
 2: // Allocation of Tasks to Nodes
 3: for i=1 to MaxTask do
 4: if (i ≤ MaxNode) then
 5: Allocate Task ܶ to Node ܲ
 6: Waiting Time(ܶ)=0
 7: TurnAroundTime(ܶ)= ETC(i,i);
 8: B(i) =TurnAroundTime(ܶ)+ArrivalTime(ܶ)
 9: else
 10: ܲ =Node with minimum value in B
 11: Allocate Task ܶ to Node ܲ
 12: Waiting Time(Ti)=B(ܶ)-Arrival Time(ܶ)
 13: TurnAroundTime(ܶ)=
 Wating Time(ܶ)+ETC(i, ܲ)
 14: B(ܲ) = TurnAroundTime(ܶ)+ArrivalTime(ܶ)
 15: end if
 16: end for
 17: // Make span computation
 18: Make span = Maximum(B)

The Max-min heuristic sends the task with maximum
completion time for execution. This strategy is useful in
a situation where completion time for tasks varies
significantly. Using this heuristic, the tasks with long
completion time are scheduled first on the best available
machines and executed in parallel with other tasks. This
leads to better load-balancing and better total execution
time. The Min-max heuristic also assigns the task with
minimum ETC on a machine to that machine so as to
minimize makespan. A frame work for max-min
algorithm is described as follows.

Algorithm3: Max-Min Resource Allocation Algorithm
Input: MaxTask, MaxNode, ETC Matrix, Arrival Times

Output: Make Span, Allocation
// B[] holds the completion times of Nodes
 1: B[1:MaxNode] =0
 2: for i=1 to MaxTask
 3: ܲ= Node that has minimum completion time for ܶ
 =Minimum completion timeݐ :4
 5: end for
 6: for i=1 to MaxTask
 7: if (B(ܲ) = = 0)
 8: B(ܲ) = Arrival Time(ܶ)+ ݐ
 9: elseif (Arrival Time(ܶ) > B(ܲ))
 10: B(ܲ) = Arrival Time(ܶ)+ ݐ
 11: else
 12: B(ܲ) = B(ܲ) + ݐ
 13: end if
 14: end for
 15: // Make span computation
 16: Make span=maximum(B)

IV. SIMULATION RESULTS

Simulation is carried out with the simulator designed

using Mat lab. The number of task arrives are based on
Poisson distribution with their expected time of
completion of different computing nodes are generated
using uniform distributions. The allocations of
computing nodes are decided by the central resource
manager. All the greedy algorithms are fast and
polynomial bounded irrespective of their ability to
generate sub-optimal solutions for optimization problem.

I

Fig. 2 Performance of heuristic algorithms against the
number of computing node

We have simulated against the makespan for a task

pool of 500 tasks that arrives using Poisson distribution.
It is assumed that the service rate of the task is higher
than the rate of arrival of the task, so that whatever the
task arrives at a point of time to the resource manager
entered to the task queue. The observation from Fig 2
leads to the selection of no of nodes fur further
simulation. We have use node size to be 60 so as to
study the performance of greedy algorithms on HDCS

1st Int. Conf. On Computing, Communication and Sensor Networks-CCSN’2012

Fig. 3 Makespan for 60 nodes for slow arrival of tasks

Fig. 4 Makespan for 60 nodes for moderate arrival of tasks

Fig. 5 Makespan for 60 computing nodes for fast arrival of tasks

V. OBSERVATION AND CONCLUSIONS
This paper studies performance of different greedy
algorithms to solve dynamic load balancing in
heterogeneous computing system. Simulation results
indicate that the performance of min-max algorithm
found to be best method irrespective no of computing
nodes with the system. We analyzed the performance of
allocation schemes with different arrival rate of task on
system with heterogeneous computing capability. The
simulation results indicate the optimal performance by
min-max algorithm.

REFERENCES
[1] Marta Beltran, Antonio Guzman, and Jose Luis Bosque,
Dealing with heterogeneity in load balancing algorithm, Proc. 5th
IEEE International Symposium on Parallel and Distributed Computing,
Timisoara, Romania, 2006, 123-133.
[2] Jie Li, & Hisao Kameda, Load balancing problems for
multiclass jobs in distributed/parallel computer systems, IEEE
Transactions on Computers, 47(3), 1998, 322-332.
[3] H. C. Lin, and C. S. Raghavendra, A dynamic load-balancing
policy with a central job dispatcher (LBC), IEEE Transactions on
Software Engineering, 18(2), 1992, 148-158.
[4] Gamal Attiya & Yskandar Hamam, Two phase algorithm for
load balancing in heterogeneous distributed systems, Proc. 12th IEEE
Euromicro conference on Parallel, Distributed and Network-based
processing, Coruna, Spain 2004, 434-439.
[5] Jon Kleinberg & Eva Tardos, Algorithm Design (Pearson
Education Inc. 2006).
[6] Helen D. Karatza, & Ralph C. Hilzer, Load sharing in
heterogeneous distributed systems, Proceedings of the Winter
Simulation Conference, 1, San Diego California, 2002 Page(s): 2002,
489 – 496.
[7] Jie Wu, Distributed system design,(CRC press, 1999)
[8] Y.Zhang, H.Kameda & S.L.Hung, Comparison of dynamic and
static load-balancing strategies in heterogeneous distributed systems,
IEE proceedings in Computer and Digital Techniques,144(2), 1997,
100-106.
[9] Bora Ucar, Cevdet Aykanat, Kamer Kaya, & Murat Ikinci,
Task assignment in heterogeneous computing system, Journal of
parallel and Distributed Computing, 66, 2006, 32-46.
[10] Marta Beltran, Antonio Guzman, & Jose Luis Bosque, Dealing
with heterogeneity in load balancing algorithm, Proc. 5th IEEE
International Symposium on Parallel and Distributed Computing,
Timisoara, Romania, 2006, 123-132.
[11] Sivarama P. Dandamudi, Sensitivity evaluation of dynamic
load sharing in distributed systems, IEEE Concurrency,6(3), 1998, 62-
72.
[12] H. C. Lin, and C. S. Raghavendra, A dynamic load-balancing
policy with a central job dispatcher (LBC), IEEE Transactions on
Software Engineering, 18(2), 1992, 148-158.
[13] B. A. Shirazi, A. R. Hurson, & K. M. Kavi, Scheduling and
load balancing in parallel and Distributed systems, CS press, 1995.
[14] H. J. Siegel, and S. Ali, Techniques for mapping tasks
tomachines in heterogeneous computing, Systems, Journal of Systems
Architecture, 46(8), 2000, 627—639.
[15] G. Schmidt, Scheduling with limited machine availability,
European Journal of Operational Research, Elsevier, 121(1), 2000, 1-
15.

