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Abstract: In the present work the free vibration of a
functionally graded ordinary (FGO) pre-twisted cantilever
Timoshenko beam has been investigated. Finite element
shape functions are established from differential equations
of static equilibrium. Expressions for element stiffness and
mass matrices are obtained from energy considerations.
The material properties along the thickness of the beam are
assumed to vary according to the power law. Increase in
the value of power law index decreases the first two mode
frequencies of the beam. Increase in pretwist angle
increases first mode frequency and decreases the second
mode frequency. The effect of pretwist angle and power
law index on the first mode frequency is marginal.
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1. Introduction:

Some machine components are twisted for functional
point of view. The blades of helicopter rotor, turbine and
aircraft propeller are given pre-twist and usually are
subjected to vibration. The study of free vibration of pre-
twisted components therefore remains an important area of
research.

Carnegie [1, 2] studied the dynamic behaviour of a pre-
twisted cantilever blade taking into account torsion, bending
rotary inertia and shear deformation. Dawson, Ghosh and
Carnegie [3] investigated the effect of shear deformation and
rotary inertia on the natural frequencies of pre-twisted
cantilever beams using numerical technique. They also
verified their results conducting experiments. Carnegie and
Thomas[4] used finite difference method to study the
vibration of uniform and tapered pre-twisted cantilevers.
Subrahmanyam and Rao[5] applied Reissner method to study
the vibration of tapered pre-twisted cantilever beam. Onipede
and Dong[6] studied vibration of pre-twisted inhomogeneous
beam of arbitrary cross-section by using variational method.
Vibration and stability of a spinning pre-twisted thin walled
composite beam were studied by Song, Jeong and
Librescu[7] considering a number of non-classical features
such as transverse shear, anisotropy and pre-twist.
Vielsack[8] has shown that the influence of small pre-twist
on lateral vibration of beams depends on the ratio of bending
stiffness about principal axes. Lin , Wu and Lee[9] have
studied the coupled bending-bending vibration of a rotating
pre-twisted beam with an elastically restrained root and a tip
mass, subjected to the external transverse forces and rotating
at a constant angular velocity. Yardimoglu and Yildirim[10]
have developed a finite element model with reduced number
of nodal degree of freedom to investigate the vibration of a

pre-twisted cantilever beam. The effect of pre-twist angle of
an aerofoil blade simplified as a rotating Euler as well as
Timoshenko beam has been investigated by Subuncu and
Ervan[11,12] using finite element method. Jhung and
Jo[13] have studied the vibration characteristics of a
rectangular twisted beam with pins surrounded with liquid .
Mohanty[14] has studied parametric instability of pre twisted
cantilever with localized damage. Hsu[15] has investigated
dynamic behavior of pre-twisted beams using spline
collocation method. Liu, Friend and Yeo[16] have carried
out an investigation on the coupled axial-torsional vibration
of pre-twisted beams. Leung and Fan[17] have studied the
influence of multiple kinds of initial stresses due to
compression, shears, moments and torque on the natural
vibration of pre-twisted straight beam based on the
Timoshenko theory. Chen[18,19] has found the influence of
thickness- to-width ratio, twist angle, spinning speed and
axial load on the natural frequency, buckling load and
instability zone of a pre-twisted Timoshenko beams by using
finite element method. Mohanty, Dash and Rout[20,21]
studied static and dynamic behaviour of Timoshenko beam
on Winkler’s foundation using finite element method.

FGM made of the mixture of turbine material and ceramics
can be applied as a coating on the surface of the blade such
that the surface of the coated blade is rich in ceramics to
improve the performance of the blade in eroding
environment. This article presents a study of free vibration of
a functionally graded pre-twisted Timoshenko beam of
cantilever type.

2. Formulation:

A functionally graded pre-twisted beam is considered for
analysis as shown in Fig.1(a). The mid-longitudinal(x-y, x-
z) planes are chosen as the reference planes for expressing
the displacements as shown in fig. 1(b). The two transverse
displacement of a point on the reference plane are, Vand
W and the corresponding rotation of cross-sections are ¢

and ¢. Fig. 1(c) shows a two nodded beam finite element
having four degrees of freedom per node.

2.1 Shape functions

The differential equation of motion [2, 3, 4] for the FGSW
beam element is given as
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Figure 1(a) Pre-twisted cantilever beam subjected to dynamic axial force.
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Qs the twist angle at the starting end and ¢ is the

change in twist angle per unit length of the beam.
The material properties along thickness (z-direction) is
assumed to vary according to power law as given below.
z 1Y
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where, R(z) denotes a material property such as, E, G,

P etc., R, and R, denote the values of the properties at

topmost and bottommost layer of the beam respectively,
and n is an index.
Eq.(1,2,3,4) in homogeneous form is given as
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Figure 1(b) The coordinate system with generalized
forces and displacements for the FGSW beam element
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Figure 1(c) Beam element showing generalized degrees of
freedom for i"" element.
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The following polynomials may be assumed for the
displacement field.
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where, U, = [V W]T and U, = [¢ H]T are deflection and

rotation vector respectively.

N,, N, N¢and N, are the corresponding shape

functions.

The coefficient vector D can be expressed in terms of the
coefficient vector @ by substituting eq. (16) in eq. (12
and eq. (13) and by equating the coefficients of same
powers of X. The mentioned procedure vyields the
following.
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The coefficient vector D can be expressed in terms of the
coefficient vector @ in matrix form as
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A two noded Timoshenko beam finite element with 4-
degree of freedom per node as shown in fig. 1(c) is
considered for analysis. The nodal degree of freedom
vector of the i element is given as

{a}: [Vi Wi ¢ 0 Vi Wiy iy 9i+1]T (15)
Using eq. (16) and eq. (19) the nodal degree of freedom
vector can be expressed as
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Substituting eq. (22) in eq. (18) we get
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2.2 Element elastic stiffness matrix

The strain energy of the element [4] is given as
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Substituting eq. (9, 10, 17 and 27) into eq. (28) the
expression of strain energy is given as
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Where [ke]is the element elastic stiffness matrix and is

given as follows.
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2.3 Element mass matrix

The kinetic energy of the beam element [4] is expressed
as follows
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Substituting eq. (9, 10, 17 and 27) in eq. (32) the kinetic
energy is expressed as follows.
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where [m] is the element mass matrix which is presented
below
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2.4 Governing equation of motion

The equation of motion for the element can be expressed
in terms of nodal degrees of freedom as

[m, Jif+ [k, Jay =0 (26)
Assembling the element matrices as used in eq. (40), the

equation in global matrix form which is the equation of
motion for the beam, can be expressed as

M1 [+ [k ]G }=0 @7)

[M ], [Ke ], are global mass, elastic stiffness matrices

respectively and [L]] is global displacement vector.



3. Results and discussion

A steel-alumina FGO beam with steel-rich
bottom, fixed at one and free at other is considered for
vibration and dynamic analysis. The length, breadth and
thickness of the beam are 50.8 cm, 2.54 cm and 0.03175
cm respectively. The material properties of the constituent
phases are given below. Properties of steel: g =2.1x10™

Pa, G =3/8KE , =7.8x10°kg/m’. Properties of alumina:
E =3.9x10" Pa, G =3/8kE, p =2.707x10°%kg/m’. The
shear correction factor is assumed as k=0.833.
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Figure 2(a) Effect of power law index on first mode
frequency of steel-alumina pre-twisted FGO beam with

steel-rich bottom. Twist angle o, =45".
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Figure 2(b) Effect of power law index on second mode
frequency of steel-alumina pre-twisted FGO beam with

steel-rich bottom. Twist angle o, =45".
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Figure 3(a) Effect of pre-twist angle on first mode frequency
of steel-alumina pre-twisted FGO beam with steel-rich
bottom. n=2.
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Figure 3(b) Effect of pre-twist angle on second mode
frequency of steel-alumina pre-twisted FGO beam with
steel-rich bottom. n=2.

The effect of power law index on the natural frequencies of
the FGO beam is investigated and is presented in fig. 2(a)
and 2(b) for first and second mode respectively. It is
observed from the figure that the increase in power law
index decreases the first and second mode frequencies.
This may be due to the fact that increase in index causes
increase in the relative amount of steel which in turn
decreases the elastic stiffness of the beam.

The Fig. 3(a) and 3(b) represent the variation of first and
second mode frequencies respectively with the pre-twist
angle. The increase in pre-twist angle increases the first
mode frequency of the beam where as it decreases the
second mode frequency of the beam.

4. Conclusion

Finite element method in conjunction with static
equilibrium approach is used to investigate the free
vibration behaviour of a steel-alumina functionally graded
cantilever beam with steel-rich bottom. The material
properties along the thickness of the beam are assumed to
vary according to power law. Increase in the value of
power law index decreases the first two modal frequencies
of the beam. Increase in pretwist angle increases first mode
frequency and decreases the second mode frequency.
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Nomenclature:

{a} Independent coefficient vector

{b} Dependent coefficient vector

a,,a,,a4,8, Polynomial coefficients of the linear
displacement on xy plane

b,,b,,b;,b,  Polynomial coefficients of the linear
displacement on xz plane

PO O Stiffness coefficients

Lor P11 P2 Mass moments

M,,M, Bending moments about Y and Z axis

Vy Vv, Shear forces along Y and Z axis

R, Material property at the bottommost
layer

R, Material property at topmost layer

R(Z) A material property at location z

n Natural frequency

@ Rotation of cross-section plane about Y-
axis

7 Rotation of cross-section plane about Z-
axis

Q, Twist angle at the free end

Q Increase in twist angle per unit length

Deflection and Rotation vectors

Density of material at location z
Global elastic stiffness and mass matrices

N,, N, N, N, Shape function matrix

{a} Nodal displacement vector
) } Global nodal displacement vector
[ke] [m] Element elastic stiffness and mass
matrices
[G] Material constant matrix



