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1

| ntroduction

The estimation of ordered parameters when the orderingkisaywn arises in var-
lous ranking and selection problems. One may refédidewicz and Koo (1982)
for a detailed bibliography on these problems. The estwnadf parameters when
they are known to follow am priori ordering has also been studied by many au-
thors in the pastThis problem has applications in various agricultural ustdial,
economic and medical experiments.

In testing for a new drug, doses In increasing order are adtaned to animals in
successive stages.df, 0-, . . ., 0, denote the mortality rates Atsuccessive
stages, then it is expected titat< 6, < ... < 0, for somek. Let

i, 12, . . ., 4k denote the inflation rates of a developing economy when the
corresponding petroleum prices &e 0, ..., 0., wheref; < 0; < ... < 0. It
Is then natural to expectthat < p2 < ... < ug.
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A detailed account of results on maximum likelihood estonaitfMLES) of or-
dered parameters can be foundiarlow et al. (1972andRobertson et al. (1988)

Brown and Cohen (1968ihtroduced the decision theoretic approach in the prob-
lem of estimating ordered parameters. They obtained serfti@onditions for the
admissibility and minimaxity of the generalized Bayesrastior of the location
parameten( i1, u2) with respect to the Lebesgue prior on the spége;, u2) :

p1 < pa}.
Sackrowitz (1970and Cohen and Sackrowitz (1970ptained some minimaxity

and admissiblity results when estimating the last mean adaatone sequence for
both discrete and continuous cases.

Sackrowitz and Strawederman (19&hdSackrowitz (1982gstablished some
admissibility results for the MLE of parameters of binondatribution when an
ordering among the parameters is knoavpriori.
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Kumar and Sharma (1988pnsidered two normal population(u;, 07), 1 = 1,2

with known and commomw? and i, < pe. They considered the simultaneous
estimation of(u1, pu2) with respect to the loss function as the sum of squared
errors. They introduced a classmifxed estimatorand some of these estimators
were shown to be minimax. A class of admissible estimatosshiegen obtained
within this class. They have also shown that some of thesenatstirs dominate
the MLE when the variances are unequal.

Kumar and Sharma (1988pnsideredc normal populations with means

1, 2, ..y iy 1 < u2 ... < ur and the common variance unity. They proved
that the Pitman estimator for estimatifyg, p2, - - . , ux) iS minimax. Also they
have discussed the admissibility of the Pitman estimatoentain subclass of
estimators. Fok = 2, the components of the Pitman estimator for estimating
andu. are minimax but fok = 3, the components for estimating andus are
shown to be not minimax. The questions of the minimaxity ef$kcond
component was settled in affirmative Bymar and Tripathi (20050sing a
simulation study.
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For simultaneous estimation éfordered normal means with unequal but known
variances, the Pitman estimator is shown to be minimax va#ipect to a scale
invariant loss functionumar and Sharma (1993 but non-minimax with respect
to the loss function as the sum of squared errénsifar et al.(20053) Further
improvements over the Pitman estimator and MLE of orderadhabmeans are
obtained inKumar et al.(2005h)

Gupta and Singh (1992onsidered two normal populations with means
u1, po; 1 < pe and common unknown variane€. They showed that the MLES
of u1, e ando® whenpu, < po; dominate the standard MLES of these parame-
ters (that is, when there is no ordering ama@ng w2) with respect to the Pitman
nearness criterion.

Elfessi and Pal (1992%onsidered estimation of the common mean of two normal
populations, when the variances are known to be ordered; diloposed an
estimator dominating the well known Graybill-Deal estiora{sraybill and Deall
(1959) in the terms of stochastic dominandéisra and van der Meulen (1997)
generalized the results &ifessi and Pal (1992b k£ normal populations. They
also proved dominance of the new estimator with respectt@ttman nearness
criteria. -~ pGEL



2 A Minimaxity Result and the Maximum
Likelihood Estimator

Supposé€ X11, X12,..., X1in), (Xa1, Xoo, ..., Xon)y - oy (Xk1, Xk2, - - -y Xkn)
are independent random samples drawn fkonormal populations with unknown
meansy, a2, . . . , i, respectively and common unknown variance We con-
sider simultaneous estimation of quantiles of Ahgopulationsp = (04, ..., 0%),
where; = u; + no;, i« = 1,2,...,k. The means follow a known ordering
pr < p2 << g

This is equivalent to saying that < 6, < ... < 0;. The loss function is taken
to be thesum of scale invariant quadratic losses;

k ai — 0.\ 2
(2.1) L(g,a,gzz( - ) ,

1=1

wherep = (u1, p2, ..., pk),a = (a1, az2,...,ax).
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Let X; = - >°" | Xy andS7 = 77 | (Xi; — Xi)? denote the mean and the
sum of squares of deviations from the mean respectivelyeitthsample. It can
be seen thatT, S) is a complete sufficient statistisvhereT = (X1,..., Xx)
ands? =Y ¢ S2.

We introduce affine invariance in the estimation problemngsider the transfor-
mationX;; — aX;; + b;, wherea > 0,b;, e R,57=1,...,n;:=1,...,k. The
decision problem is invariant under this transformatiod &ms further induces
transformationsX; — aX; + b, S* — a*S?, u; — aps + bi, 0* = a*0?,0; —
ab; +b;,1=1,...,k.

The form of anaffine equivariant estimataf 6 is seen to be

d(r,S) = T+cS

(2.2) = d, say,

wherec = (c1,...,cx) € RF.
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The mnimizing choice for has been obtained with respect to the loss (2.1) and

is obtained as* = enby(, 1)1 , andb, = ﬁgngl)w forv = 2,3,... and
e=(1,...,1).

The estimator/ . Is minimax for estimatind , when there are no restrictions on
p:'s and the loss function i€2.1); (seeZidek (1971). The risk ofd,. is constant
and is calculated as

k
R(p,0,d.-) = —+ k(1 = k(n — 1)bj(n—1)41]

(2.3) = R, say
Next we prove a general result on the minimaxity of estingfor quantileg
whenu;’'s are known to be ordered. The result is an extension of Hme&.1 of

Kumar and Sharma (1988)hich applies to the problem of simultaneous
estimation of ordered location parameters.
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Theorem 2.1 Let() be a subset oR” such that there exists a sequence
{a, = (an1,...,ank) : n > 1} for which

(2.4)7111_)1%1O inf{(p1, ..., pk): (11 + anty ..., e + ank) € Q} = R”.

Letd be an estimator withiR(u, 0, d) < R < oo, whenevep € Q, 0 > 0, where
R is the constant risk of the estimai@y.. Thend is a minimax estimator df for
pe Q2,0 >0.

Corrolary 2.1 Letd be an estimator of with
R(p,o0,d) <R for py <... < pg,0 >0,

whereR is the constant risk af ... Thend is a minimax estimator df for
p1 < ..o < pg,0 > 0.

Remark 2.1 Takingd = d.. in Corollary 2.1, itis seen thatl_... is also a
minimax estimator of for y; < ... < pug,o0 > 0.
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The maximum likelihood estimators afanda when there are no restrictions on
uisarep; = X;,i=1,...,k; 6° =
of MLE, one getshe MLE of § as@
1,...,k.

S2
= . Using these and the invariance property
= (01,...,0k), wherel; = fi; + né,i =

However, wheru;s are ordered, the MLEs of ando? get modified. Following
representations ihee (1981)and Gupta and Singh (1992Wwe can write these
restricted MLEs as

1<t s<1

k n
1
fii = minmax Av(s,t) and &° = T ZZ(XZ'J' — fii)®

whereAuv(s,t) = —— >_._, X;. Therefore, the MLE of under order
restrictions onu;s is = (01, ...,60x), whered; = ji; +né,i=1,..., k.
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For the case of = 2 populations, the expressions for the MLESGf 12> ando?,
whenpu, < ue, reduce to

fi1 = min{Xy, %()_ﬁ + X2)},
fiz = max{Xo, %()_Q + X2)},
and 5° = %, if X7 < Xo;
B §+i()_(1—)_(2)2, it X1 > X,

Lee (1981 )proved that the restricted MLE; is better than the usual MLE;,

¢t = 1,..., kunder the mean squared error critefiaupta and Singh (1992)
showed that the restricted MLE is better tharé? under the squared error as
well as Pitman Nearness criterion. We have shown using aaiion study thad
improves ovep under the loss functiof®.1), whenu; < uo.
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3 TheMixed Estimators

Letd = (91, 92) be an estimator . Whenf; < 65, the mixed estimator af is

defined by
(3.1) 0o+(0) = (b1 + (1 — @)d2, (1 — a)d1 + adz),
where
a = 1 when § <o,
= o  when §; > d,

wherea™ is a constant. We state a lemma duekttz (1963) and Kumar and
Sharma(1988).

Lemma 3.1 Let the loss function for estimatirtg= (6.1, 62) be of the form

W (o1 — 01) + W(d2 — 62), where W is a convex, even and nonnegative function.
If Py(d1 > d2) > 0 for somed = (01, 02), 61 < 62, then the mixed estimator

5+ () given by(3.1) improvess whenf; < 62 and0 < o™ < 1.
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Remark 3.1 Itis easily seen that the above lemma is applicable to thetjea
estimation problem considered in this paper. Hencefortiwilleuse the term
mixed estimator for the mixed estimator of the best affinevagant estimator
d... Combining Remark.1 and Lemma3.1, we get the following result.

Theorem 3.1 For estimating quantile8 = (61, 62) with respect to the loss
function(2.1), the class of mixed estimators®f_, that is,

_Q*’

{§a+(d§*) : 0 < ot < 1}is aclass of minimax estimators when < j..

The risk of the mixed estimator is given by

(10,004 (de)) = (14201 a®)6(6(6) +£2(6)) — 207 (1 — o) (&)
(3.2) +20°[1 — 2(n — 1)b3,_1]

Remark 3.2 Comparing the risk expressions(2.4) and(3.2) and using the
fact thatp (&) + () > 0 for all &, itis seen that the risk of 1 (d,.,) is less
than or equal to the risk af ., for ¢ < 0and0 < o™ < 1. Thisis a direct
verification of Theorers.1.
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Theorem 3.2 The estimatop,, + is inadmissible forr™ > < and admissible for
ot < £ among the class of mixed estimators.

Next, we introduce aew class of estimatofsllowing Kumar and Sharma (1988)
Consider

(3.3) = (5)21 + (1 — 5)X2)§—|—Q*S, if X1 > Xo.

é; = T—|—Q*5, if Xl < Xz,

The risk ofd ; can be evaluated as

* 1 *
R(Ha O-aéﬁ) Y [/_ B HI+Q S_H_T]O-QHQCZP

whered P denotes the integration with respect to the probability sness ofX,
X, andS.
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After some mathematical calculations and simplificatioesgst,

R(p,o,85) = 2[4 (8°+ (1= 8))g(€) — B(E)] + 2071 — 2(n — )b, ]

Q\fn
=

In the next theorem we obtain a class of minimax estimatargdantiless.

(3.4) (1 =28)(1 = 2(n — 1)ba, 1) ($(&) + £D(€)).

Theorem 3.3 Consider the estimators of the forg, given by(3.3) for
estimating quantile8 = (61, 62) with respect to the loss functid2.1) when

p1 < pg. (i) Whenn > 0, {0} : + < B < 1}is aclass of minimax estimators.
(i) Whenn < 0, {d% : 0 < 8 < 5} is aclass of minimax estimators

Proof: Note that the first term on the right hand sid€ &#l) achieves its maximum
at8 = 0andg = 1, which is smaller thart . Using the fact thap(&)+£®(£) > 0
for all £, we get the result.
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Next we derive an essentially complete class of estimatamsg estimators of the
form §%. Definefy = 5 + n(1 —2(n — 1)b3,,_1)/Z.
Theorem 3.4 (i) Whenn > 0, the estimatob ; is inadmissible fo3 < 3, and
admissible for3 > 8, among the class of estimators of the faffn (i) When
n < 0, the estimatop ; is inadmissible for3 > 3, andadmissible for3 < o

among the class of estimators of the faffn

Remark 3.3 Note that the mixed estimatdy, (d.,) for o™ = 3 and the
estimatoro; for 8 = % are the same. An application of Theor8m then proves
the following corollary.

Corrolary 3.1 The mixed estimato_?% (d...) is inadmissible, when # 0.

Proof: Note that3, > 1 whenn > 0 andBy < 2 whenn < 0. TheorenB.4 then
yields thaté% (d.,) = 41 isimproved byé;’;o.
- 2
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4 A Generalized Bayes Estimator

Let X ~ N(u,I),pe CC R* whereC is a closed convex set with nonempty
interior. Consider estimation qf with respect to the loss function as the sum of
squared errors. Let; denote the generalized Bayes estimatqu @fith respect to

the non-informative prior (Jeffrey’s prior) ovér. Hartingan (2004 showed that

d ; improvesX whenyu € C'. Motivated by this, we in this section, consider the
Jeffrey’s improper prioand derive the generalized Bayes estimator of quantiles
0 = (01, 02) with respect to the loss function sum of squared errors.

The Jeffrey’s prior for( i, o) is obtained as

(4.1) b 0) =

) :UJ1§:UJ270->0'

The generalized Bayes estimatoréof= (61, 62) with respect to the loss function
as the sum of squared errors is the posterior expectati@rand is given by

(4.2) éJ:E(Q|Q_31,.f2,S).
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After some simplifications, for the cage = 2, the components of generalized
Bayes estimator are given by

2

fooo{(ém +no)®(v) — \/%—nﬁb(v)}ngﬂe_#da

(4.3) 651 = - |
Jo q)(v)awlﬂe_mda
and
82
aay s, = o (F2 10020+ Frdlw)) grmere 37 do
: J2 = - |
> D(v)—azre 202do
Jo —onT
where
_ nfT2— T
(4.5) v=14/3 ( - )

Remark 4.1 The risk ofd ; has been evaluated using simulations. In some
regions of the parameter space it is seen to have satisfagenformance as
compared to other estimators considered in this paper.
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5 SomeHeuristic Estimators

Let the prior density function fofu1, p2) be

(5.1) gi(p1, p2) =1, 1 < po,

and the variance? is assumed to be known. Now the sufficient statistics for this
problem isT’ = (X1, X2). The generalized Bayes estimatorof= (1, p2) is

(5.2) éU = E(H|a_71,:f‘2).

The components af,, = (év1, du2) are obtained as

o

(5.3) dyr = 1 — E\IJ(U),

and

(5.4) duz = T2 + L\IJ(’U) whereV (v) = b(v) :
Von ®(v)
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Now we construct some heuristic estimators for quantlles (61, 02) whenu; <
p2 by replacing in(5.3) and(5.4), the standard deviatios by its estimators. If
we replacer by \/%, we get a heuristic estimator

(5-5) éllﬁIU — (5}JU1: 5}JU2)
given by
1S S S
(56) 5HU1 _Xl Qn\:[j<v1)+n\/%7
and
— S S
7 Huo = Xo + — ——
(5 ) 5HU2 2+2nqj(vl)+nm7
n()_(2—)_<1).

wherev; = =

.—p.21/31



If we replaces by S. where

2
(5.8) S7 ="+ ,

we get the estimator

(5.9) éi]U — (5?JU1; 5?JU2)

given by

(5.10) N U(vg) +nS
. HU1 1 \/% 2 77 * 9

and

(5.11) St = Xo + o U (vg) +nS
. HU?2 2 \/% 2 77 * 9

wherev, = g()_ﬁs—:—fl)
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Further, we may use restricted MLE efasc to get another heuristic estimator
é?j)L[U — (5%U17 5§JU2)7 where

é?I’LIUz‘ — éllﬁfUia if X; < Xo
(5.12) = 5, TX1> X, i=1,2
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6 Numerical Comparison

In this section the risk functions of various estimatorswar in previous sections
have been tabulated when the loss is given by (2.1). Theursitibns of the best
affine equivariant estimataf... and the MLE (when there are no restrictions on
(1;S) are constant and depe_nd l@handn only. The risk functions of the mixed
estimatorg ,+ and the estimator&; are functions o, || andr = #2>£L with
respect to the loss functidai2.1). All the risk functions are functions of. For
numerical evaluations of various risks functions 2000@oan samples of size
each were generated froM(u1, %) and N (u2, o) populations respectively.
For evaluation of integrals in various estimators numeérmdagration has been
used. In Tables 6.1 to 6.4 risk values of estimatirs MLE (with no
restrictions)), MLE (with restrictions)d, the mixed estimatos, ,,, the estimator
d5,,the generalized Bayes estimatorand the heuristic estimatods,,;, 0%,
5%, have been tabulated for valuesof= 4, 8,12, 16, 20, 24; n = 1, 2 and
different values of-.
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The following conclusions can be drawn from Tables 6.1 to 6.4
(i) The risk functions of all the estimators are increasimg;| and decreasing in.

(i) The risk functions of all estimators converge to a certalue as increases except
for the estimatorzﬁm. The risk functions oﬂg* and Q are constant with respect
to 7. The risk functions ob, /2 _;0, 6 increases and converge towards a certain

value. The risk functions of ;, d;,;;, 05, first decrease and then increase and

converge towards a fixed value asncreases. The risk function ét,,, does not
converge.

(i) The restricted MLES uniformly dominates the usual ML& We conjecture thad
theoretically improve$.

(iv) Among estimator®, d.«, 0y /9, 05,, the estimatob; was shown to be the best
and it is observed in tables also.
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(v) The estimatoby; is seen to improve the restricted MIdEalso except for a couple
of values ofn andr. We further conjecture that; theoretically dominateé.

(vi) The risk performance of the heuristic estimatéts,;, 47, andds;,, is good for
some moderate values of In fact for this region they are better thap. also.

(vii) We recommend using estimatdf as its performance seems to be the best for all
values ofn, n andr. Only for some very specific region ef heuristic estimators
may be used.

(viii) Similar observations were made for some other valles andn and we omit the
tables here.
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