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Introduction
1 Introduction

• The estimation of ordered parameters when the ordering is unknown arises in var-

ious ranking and selection problems. One may refer toDudewicz and Koo (1982)

for a detailed bibliography on these problems. The estimation of parameters when

they are known to follow ana priori ordering has also been studied by many au-

thors in the past.This problem has applications in various agricultural, industrial,

economic and medical experiments.

• In testing for a new drug, doses in increasing order are administered to animals in

successive stages. Ifθ1, θ2, . . . , θk denote the mortality rates atk successive

stages, then it is expected thatθ1 ≤ θ2 ≤ . . . ≤ θk for somek. Let

µ1, µ2, . . . , µk denote the inflation rates of a developing economy when the

corresponding petroleum prices areθ1, θ2, . . . , θk; whereθ1 ≤ θ2 ≤ . . . ≤ θk. It

is then natural to expect thatµ1 ≤ µ2 ≤ . . . ≤ µk.
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Introduction

• A detailed account of results on maximum likelihood estimators (MLEs) of or-

dered parameters can be found inBarlow et al. (1972)andRobertson et al. (1988).

• Brown and Cohen (1968)introduced the decision theoretic approach in the prob-

lem of estimating ordered parameters. They obtained sufficient conditions for the

admissibility and minimaxity of the generalized Bayes estimator of the location

parameter(µ1, µ2) with respect to the Lebesgue prior on the space{(µ1, µ2) :

µ1 ≤ µ2}.
• Sackrowitz (1970)andCohen and Sackrowitz (1970)obtained some minimaxity

and admissiblity results when estimating the last mean of a monotone sequence for

both discrete and continuous cases.

• Sackrowitz and Strawederman (1974)andSackrowitz (1982)established some

admissibility results for the MLE of parameters of binomialdistribution when an

ordering among the parameters is knowna priori.
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Introduction

• Kumar and Sharma (1988)considered two normal populationsN(µi, σ
2
i ), i = 1, 2

with known and commonσ2
i andµ1 ≤ µ2. They considered the simultaneous

estimation of(µ1, µ2) with respect to the loss function as the sum of squared

errors. They introduced a class ofmixed estimatorsand some of these estimators

were shown to be minimax. A class of admissible estimators has been obtained

within this class. They have also shown that some of these estimators dominate

the MLE when the variances are unequal.

• Kumar and Sharma (1989)consideredk normal populations with means

µ1, µ2, . . . , µk; µ1 ≤ µ2 . . . ≤ µk and the common variance unity. They proved

that the Pitman estimator for estimating(µ1, µ2, . . . , µk) is minimax. Also they

have discussed the admissibility of the Pitman estimator incertain subclass of

estimators. Fork = 2, the components of the Pitman estimator for estimatingµ1

andµ2 are minimax but fork = 3, the components for estimatingµ1 andµ3 are

shown to be not minimax. The questions of the minimaxity of the second

component was settled in affirmative byKumar and Tripathi (2005)using a

simulation study.
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Introduction

• For simultaneous estimation ofk ordered normal means with unequal but known

variances, the Pitman estimator is shown to be minimax with respect to a scale

invariant loss function (Kumar and Sharma (1993)), but non-minimax with respect

to the loss function as the sum of squared errors (Kumar et al.(2005a)). Further

improvements over the Pitman estimator and MLE of ordered normal means are

obtained inKumar et al.(2005b).

• Gupta and Singh (1992)considered two normal populations with means

µ1, µ2;µ1 ≤ µ2 and common unknown varianceσ2. They showed that the MLEs

of µ1, µ2 andσ2 whenµ1 ≤ µ2; dominate the standard MLEs of these parame-

ters (that is, when there is no ordering amongµ1, µ2) with respect to the Pitman

nearness criterion.

• Elfessi and Pal (1992)considered estimation of the common mean of two normal

populations, when the variances are known to be ordered. They proposed an

estimator dominating the well known Graybill-Deal estimator (Graybill and Deal

(1959)) in the terms of stochastic dominance.Misra and van der Meulen (1997)

generalized the results ofElfessi and Pal (1992)to k normal populations. They

also proved dominance of the new estimator with respect to the Pitman nearness

criteria. . – p.6/31



2 A Minimaxity Result and the Maximum

Likelihood Estimator

• Suppose(X11, X12, . . . ,X1n), (X21, X22, . . . , X2n), . . . , (Xk1, Xk2, . . . ,Xkn)

are independent random samples drawn fromk normal populations with unknown

meansµ1, µ2, . . . , µk respectively and common unknown varianceσ2. We con-

sider simultaneous estimation of quantiles of thek populations;θ = (θ1, . . . , θk),

whereθi = µi + ησ; i = 1, 2, . . . , k. The means follow a known ordering

µ1 ≤ µ2 ≤ . . . ≤ µk.

• This is equivalent to saying thatθ1 ≤ θ2 ≤ . . . ≤ θk. The loss function is taken

to be thesum of scale invariant quadratic losses;

L(µ, σ, a) =
k

∑

i=1

(

ai − θi

σ

)2

,(2.1)

whereµ = (µ1, µ2, . . . , µk), a = (a1, a2, . . . , ak).
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A Minimaxity Result

• Let X̄i = 1
n

∑n
j=1 Xij andS2

i =
∑n

j=1(Xij − X̄i)
2 denote the mean and the

sum of squares of deviations from the mean respectively of the ith sample. It can

be seen that(T , S) is a complete sufficient statistic,whereT = (X̄1, . . . , X̄k)

andS2 =
∑k

i=1 S
2
i .

• We introduce affine invariance in the estimation problem. Consider the transfor-

mationXij → aXij + bi, wherea > 0, bi ∈ R, j = 1, . . . , n; i = 1, . . . , k. The

decision problem is invariant under this transformation and this further induces

transformationsX̄i → aX̄i + bi, S
2 → a2S2, µi → aµi + bi, σ

2 → a2σ2, θi →
aθi + bi, i = 1, . . . , k.

• The form of anaffine equivariant estimatorof θ is seen to be

d(T , S) = T + cS

= dc say,(2.2)

wherec = (c1, . . . , ck) ∈ Rk.
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A Minimaxity Result

• The mnimizing choice forc has been obtained with respect to the loss (2.1) and

is obtained asc∗ = eηbk(n−1)+1 , andbν = Γ(ν/2)√
2Γ(ν+1)/2

for ν = 2, 3, . . . and

e = (1, . . . , 1).

• The estimatordc∗ is minimax for estimatingθ , when there are no restrictions on

µi’s and the loss function is(2.1); (seeZidek (1971)). The risk ofdc∗ is constant

and is calculated as

R(µ, σ, dc∗) =
k

n
+ kη

2[1− k(n− 1)b2k(n−1)+1]

= R, say.(2.3)

• Next we prove a general result on the minimaxity of estimators for quantilesθ

whenµi’s are known to be ordered. The result is an extension of Theorem 2.1 of

Kumar and Sharma (1988), which applies to the problem of simultaneous

estimation of ordered location parameters.
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A Minimaxity Result

• Theorem 2.1 LetΩ be a subset ofRk such that there exists a sequence

{an = (an1, . . . , ank) : n ≥ 1} for which

lim
n→∞

inf{(µ1, . . . , µk) : (µ1 + an1, . . . , µk + ank) ∈ Ω} = Rk
.(2.4)

Letd be an estimator withR(µ, σ, d) ≤ R < ∞, wheneverµ ∈ Ω, σ > 0, where

R is the constant risk of the estimatordc∗ . Thend is a minimax estimator ofθ for

µ ∈ Ω, σ > 0.

• Corrolary 2.1 Letd be an estimator ofθ with

R(µ, σ, d) ≤ R for µ1 ≤ . . . ≤ µk, σ > 0,

whereR is the constant risk ofdc∗ . Thend is a minimax estimator ofθ for

µ1 ≤ . . . ≤ µk, σ > 0.

• Remark 2.1 Takingd = dc∗ in Corollary 2.1, it is seen thatdc∗ is also a

minimax estimator ofθ for µ1 ≤ . . . ≤ µk, σ > 0.
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Maximum Likelihood Estimator

• The maximum likelihood estimators ofµ andσ, when there are no restrictions on

µis areµ̂i = X̄i, i = 1, . . . , k; σ̂2 = S2

kn
. Using these and the invariance property

of MLE, one getsthe MLE of θ as θ̂ = (θ̂1, . . . , θ̂k), whereθ̂i = µ̂i + ησ̂, i =

1, . . . , k.

• However, whenµis are ordered, the MLEs ofµ andσ2 get modified. Following

representations inLee (1981)and Gupta and Singh (1992), we can write these

restricted MLEs as

µ̃i = min
i≤t

max
s≤i

Av(s, t) and σ̃
2 =

1

kn

k
∑

i=1

n
∑

j=1

(Xij − µ̃i)
2
,

whereAv(s, t) = 1
t−s+1

∑t
j=s X̄j . Therefore, the MLE ofθ under order

restrictions onµis is θ̃ = (θ̃1, . . . , θ̃k), whereθ̃i = µ̃i + ησ̃, i = 1, . . . , k.
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Maximum Likelihood Estimator

• For the case ofk = 2 populations, the expressions for the MLEs ofµ1, µ2 andσ2,

whenµ1 ≤ µ2, reduce to

µ̃1 = min{X̄1,
1

2
(X̄1 + X̄2)},

µ̃2 = max{X̄2,
1

2
(X̄1 + X̄2)},

and σ̃
2 =

S2

2n
, if X̄1 ≤ X̄2;

=
S2

2n
+

1

4
(X̄1 − X̄2)

2
, if X̄1 > X̄2.

• Lee (1981)proved that the restricted MLẼµi is better than the usual MLÊµi,

i = 1, . . . , k under the mean squared error criteria.Gupta and Singh (1992)

showed that the restricted MLẼσ2 is better than̂σ2 under the squared error as

well as Pitman Nearness criterion. We have shown using a simulation study that̃θ

improves over̂θ under the loss function(2.1), whenµ1 ≤ µ2.
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3 The Mixed Estimators

• Let δ = (δ1, δ2) be an estimator ofθ. Whenθ1 ≤ θ2, the mixed estimator ofδ is

defined by

δα+(δ) = (αδ1 + (1− α)δ2, (1− α)δ1 + αδ2),(3.1)

where

α = 1 when δ1 ≤ δ2,

= α
+ when δ1 > δ2,

whereα+ is a constant. We state a lemma due toKatz (1963) andKumar and

Sharma(1988).

• Lemma 3.1 Let the loss function for estimatingθ = (θ1, θ2) be of the form

W (δ1 − θ1) +W (δ2 − θ2), where W is a convex, even and nonnegative function.

If Pθ(δ1 > δ2) > 0 for someθ = (θ1, θ2), θ1 ≤ θ2, then the mixed estimator

δα+(δ) given by(3.1) improvesδ whenθ1 ≤ θ2 and0 ≤ α+ < 1.
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The Mixed Estimators

• Remark 3.1 It is easily seen that the above lemma is applicable to the quantile

estimation problem considered in this paper. Henceforth wewill use the term

mixed estimator for the mixed estimator of the best affine equivariant estimator

dc∗. Combining Remark2.1 and Lemma3.1, we get the following result.

• Theorem 3.1 For estimating quantilesθ = (θ1, θ2) with respect to the loss

function(2.1), the class of mixed estimators ofdc∗, that is,

{δα+(dc∗) : 0 ≤ α+ ≤ 1} is a class of minimax estimators whenµ1 ≤ µ2.

• The risk of the mixed estimator is given by

R(µ, σ, δα+(dc∗)) =
2

n
[1 + 2(1− α

+)2ξ(φ(ξ) + ξΦ(ξ))− 2α+(1− α
+)Φ(ξ)]

+2η2[1− 2(n− 1)b22n−1](3.2)

• Remark 3.2 Comparing the risk expressions in(2.4) and(3.2) and using the

fact thatφ(ξ) + ξΦ(ξ) > 0 for all ξ, it is seen that the risk ofδα+(dc∗) is less

than or equal to the risk ofdc∗ for ξ ≤ 0 and0 ≤ α+ ≤ 1 . This is a direct

verification of Theorem3.1.
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The Mixed Estimators

• Theorem 3.2 The estimatorδα+ is inadmissible forα+ > 1
2

and admissible for

α+ ≤ 1
2

among the class of mixed estimators.

• Next, we introduce anew class of estimatorsfollowing Kumar and Sharma (1988).

Consider

δ
∗
β = T + c

∗
S, if X̄1 ≤ X̄2,

= (βX̄1 + (1− β)X̄2)e+ c
∗
S, if X̄1 > X̄2.(3.3)

• The risk ofδ∗β can be evaluated as

R(µ, σ, δ∗β) =
1

σ2

[
∫

X̄1≤X̄2

‖T + c
∗
S − µ− ησe‖2dP

+

∫

X̄1>X̄2

‖(βX̄1 + (1− β)X̄2)e+ c
∗
S − µ− ησe‖2dP

]

,

wheredP denotes the integration with respect to the probability measures ofX̄1,

X̄2 andS.
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The Mixed Estimators

• After some mathematical calculations and simplifications we get,

R(µ, σ, δ∗β) =
2

n
[1 + (β2 + (1− β)2))g(ξ)− Φ(ξ)] + 2η2[1− 2(n− 1)b22n−1]

+
2
√
2η√
n

(1− 2β)(1− 2(n− 1)b22n−1)(φ(ξ) + ξΦ(ξ)).(3.4)

• In the next theorem we obtain a class of minimax estimators for quantilesθ.

Theorem 3.3 Consider the estimators of the formδ∗β , given by(3.3) for

estimating quantilesθ = (θ1, θ2) with respect to the loss function(2.1) when

µ1 ≤ µ2. (i) Whenη ≥ 0, {δ∗β : 1
2
≤ β ≤ 1} is a class of minimax estimators.

(ii) Whenη < 0, {δ∗β : 0 ≤ β ≤ 1
2
} is a class of minimax estimators.

Proof: Note that the first term on the right hand side of(3.4) achieves its maximum

atβ = 0 andβ = 1, which is smaller than2
n

. Using the fact thatφ(ξ)+ξΦ(ξ) ≥ 0

for all ξ, we get the result.
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The Mixed Estimators

• Next we derive an essentially complete class of estimators among estimators of the

form δ∗β . Defineβ0 = 1
2
+ η(1− 2(n− 1)b22n−1)

√

n
π

.

• Theorem 3.4 (i) Whenη ≥ 0, the estimatorδ∗β is inadmissible forβ < β0 and

admissible forβ ≥ β0 among the class of estimators of the formδ∗β . (ii) When

η < 0, the estimatorδ∗β is inadmissible forβ > β0 andadmissible forβ ≤ β0

among the class of estimators of the formδ∗β .

• Remark 3.3 Note that the mixed estimatorδα+(dc∗) for α+ = 1
2

and the

estimatorδ∗β for β = 1
2

are the same. An application of Theorem3.4 then proves

the following corollary.

• Corrolary 3.1 The mixed estimatorδ 1
2
(dc∗) is inadmissible, whenη 6= 0.

Proof: Note thatβ0 > 1
2

whenη > 0 andβ0 < 1
2

whenη < 0. Theorem3.4 then

yields thatδ 1
2
(dc∗) = δ∗1

2

is improved byδ∗β0
.
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4 A Generalized Bayes Estimator

• Let X ∼ N(µ, I), µ ∈ C ⊆ Rk, whereC is a closed convex set with nonempty

interior. Consider estimation ofµ with respect to the loss function as the sum of

squared errors. LetδJ denote the generalized Bayes estimator ofµ with respect to

the non-informative prior (Jeffrey’s prior) overC. Hartingan (2004)showed that

δJ improvesX whenµ ∈ C. Motivated by this, we in this section, consider the

Jeffrey’s improper priorand derive the generalized Bayes estimator of quantiles

θ = (θ1, θ2) with respect to the loss function sum of squared errors.

• The Jeffrey’s prior for(µ, σ) is obtained as

h1(µ, σ) =
1

σ3
, µ1 ≤ µ2, σ > 0.(4.1)

• The generalized Bayes estimator ofθ = (θ1, θ2) with respect to the loss function

as the sum of squared errors is the posterior expectation ofθ and is given by

δJ = E(θ|x̄1, x̄2, s).(4.2)
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A Generalized Bayes Estimator

• After some simplifications, for the casek = 2, the components of generalized

Bayes estimator are given by

δJ1 =

∫∞
0

{(x̄1 + ησ)Φ(v)− σ√
2n

φ(v)} 1
σ2n+1 e

− s
2

2σ2 dσ

∫∞
0

Φ(v) 1
σ2n+1 e

− s
2

2σ2 dσ

,(4.3)

and

δJ2 =

∫∞
0

{(x̄2 + ησ)Φ(v) + σ√
2n

φ(v)} 1
σ2n+1 e

− s
2

2σ2 dσ

∫∞
0

Φ(v) 1
σ2n+1 e

− s
2

2σ2 dσ

,(4.4)

where

v =

√

n

2

(

x̄2 − x̄1

σ

)

.(4.5)

• Remark 4.1 The risk ofδJ has been evaluated using simulations. In some

regions of the parameter space it is seen to have satisfactory performance as

compared to other estimators considered in this paper.
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5 Some Heuristic Estimators

• Let the prior density function for(µ1, µ2) be

g1(µ1, µ2) = 1, µ1 ≤ µ2,(5.1)

and the varianceσ2 is assumed to be known. Now the sufficient statistics for this

problem isT = (X̄1, X̄2). The generalized Bayes estimator ofµ = (µ1, µ2) is

δU = E(µ|x̄1, x̄2).(5.2)

• The components ofδU = (δU1, δU2) are obtained as

δU1 = x̄1 −
σ√
2n

Ψ(v),(5.3)

and

δU2 = x̄2 +
σ√
2n

Ψ(v), whereΨ(v) =
φ(v)

Φ(v)
.(5.4)
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Some Heuristic Estimators

• Now we construct some heuristic estimators for quantilesθ = (θ1, θ2) whenµ1 ≤
µ2 by replacing in(5.3) and(5.4), the standard deviationσ by its estimators. If

we replaceσ by S√
2n

, we get a heuristic estimator

δ
1
HU = (δ1HU1, δ

1
HU2)(5.5)

given by

δ
1
HU1 = X̄1 −

S

2n
Ψ(v1) + η

S√
2n

,(5.6)

and

δ
1
HU2 = X̄2 +

S

2n
Ψ(v1) + η

S√
2n

,(5.7)

wherev1 = n(X̄2−X̄1)
S

.
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Some Heuristic Estimators

• If we replaceσ by S∗ where

S
2
∗ =

S2

2n
+

(X̄1 − X̄2)
2

4
,(5.8)

we get the estimator

δ
2
HU = (δ2HU1, δ

2
HU2)(5.9)

given by

δ
2
HU1 = X̄1 −

S∗√
2n

Ψ(v2) + ηS∗,(5.10)

and

δ
2
HU2 = X̄2 +

S∗√
2n

Ψ(v2) + ηS∗,(5.11)

wherev2 =
√

n
2
( X̄2−X̄1

S∗

).
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Some Heuristic Estimators

• Further, we may use restricted MLE ofσ as σ̃ to get another heuristic estimator

δ3HU = (δ3HU1, δ
3
HU2), where

δ
3
HUi = δ

1
HUi, if X̄1 ≤ X̄2

= δ
2
HUi, if X̄1 > X̄2, i = 1, 2.(5.12)
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6 Numerical Comparison

• In this section the risk functions of various estimators derived in previous sections

have been tabulated when the loss is given by (2.1). The risk functions of the best

affine equivariant estimatordc∗ and the MLE (when there are no restrictions on

µis) are constant and depend on|η| andn only. The risk functions of the mixed

estimatorsδα+ and the estimatorsδ∗β are functions ofn, |η| andτ = µ2−µ1

σ
with

respect to the loss function(2.1). All the risk functions are functions ofτ . For

numerical evaluations of various risks functions 20000 random samples of sizen

each were generated fromN(µ1, σ
2) andN(µ2, σ

2) populations respectively.

For evaluation of integrals in various estimators numerical integration has been

used. In Tables 6.1 to 6.4 risk values of estimatorsdc∗ , MLE (with no

restrictions)̂θ, MLE (with restrictions)θ̃, the mixed estimatorδ1/2, the estimator

δ∗β0
,the generalized Bayes estimatorδJ and the heuristic estimatorsδ1HU , δ

2
HU ,

δ3HU have been tabulated for values ofn = 4, 8, 12, 16, 20, 24; η = 1, 2 and

different values ofτ.
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Numerical Comparison

The following conclusions can be drawn from Tables 6.1 to 6.4.

(i) The risk functions of all the estimators are increasing in |η| and decreasing inn.

(ii) The risk functions of all estimators converge to a certain value asτ increases except

for the estimatorδ2HU . The risk functions ofdc∗ and θ̂ are constant with respect

to τ. The risk functions ofδ1/2, δ
∗
β0
, θ̃ increases and converge towards a certain

value. The risk functions ofδJ , δ
1
HU , δ

3
HU first decrease and then increase and

converge towards a fixed value asτ increases. The risk function ofδ2HU does not

converge.

(iii) The restricted MLEθ̃ uniformly dominates the usual MLÊθ. We conjecture that̃θ

theoretically improveŝθ.

(iv) Among estimatorŝθ, dc∗ , δ1/2, δ
∗
β0
, the estimatorδ∗β0

was shown to be the best

and it is observed in tables also.
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Numerical Comparison

(v) The estimatorδ∗β0
is seen to improve the restricted MLẼθ also except for a couple

of values ofn andτ. We further conjecture thatδ∗β0
theoretically dominates̃θ.

(vi) The risk performance of the heuristic estimatorsδ1HU , δ
2
HU andδ3HU is good for

some moderate values ofτ. In fact for this region they are better thanδ∗β0
also.

(vii) We recommend using estimatorδ∗β0
as its performance seems to be the best for all

values ofn, η andτ. Only for some very specific region ofτ, heuristic estimators

may be used.

(viii) Similar observations were made for some other valuesof n andη and we omit the

tables here.
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