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ABSTRACT 
A two dimensional numerical simulation is carried 
out to study the effect of axial wall conduction in a 
microtube in conjugate heat transfer situations. 
Both, constant wall heat flux and constant wall 
temperature, at the outer surface of the tube are 
analyzed while flow of fluid through the microtube 
is laminar, simultaneously developing in nature. 
The cross-sectional solid faces are considered 
adiabatic. A microtube of length 120 mm and 
internal radius 0.2 mm is considered while the 
thickness of the tube wall is varied. Simulations 
have been performed for a wide range of tube wall 
to convective fluid conductivity ratio (ksf ≈ 0.33 - 
702), tube thickness to inner radius ratio (δsf ≈ 1, 
16), and flow Reynolds number (Re ≈ 100, 1000). 
The results show that ksf plays a dominant role in 
the conjugate heat transfer process. For constant 
heat flux applied on the outer surface of the 
microtube, there exists an optimum value of ksf at 

which the average Nusselt number ( Nu ) over the 
microtube length is maximum; it decreases with 
departure from this optimum ksf value. However, 
for constant wall temperature on the outer surface 
of the microtube, no such optimum ksf value is 

observed at which Nu  is maximum. The value of 

Nu  is found to be increasing with decreasing value 

of ksf. Secondly, thicker wall leads to higher Nu .     

KEYWORDS 
Conjugate heat transfer, Thermally developing 
flow, Axial back conduction, Optimum Nusselt 
number, Constant heat flux and constant 
temperature boundary conditions. 
 
INTRODUCTION 
In recent times there has been an increasing trend 
towards miniaturization of appliances. As a result, 
microtubes are frequently being used for a variety of 
engineering applications. The ratio of the thickness of 
the tube wall to the inner radius in microtubes is very 
high, unlike a conventional tube where this ratio is 
very small. This is due to microscale inner tube 
diameter, along with the physical necessity of certain 
minimum thickness of the tube wall, which otherwise 
cannot be proportionately reduced due to ease in 
handling during and after production. The relative 
thickness of the solid wall of a microtube compared 
to its inner radius leads to multi-dimensional 
conjugate heat transfer, depending on several other 
factors, viz., thermo-physical properties of the solid 
substrate and fluid involved, and flow conditions.  
Unlike a conventional system, negligence of axial 
heat conduction along the solid walls of micro heat 
exchangers frequently leads to erroneous 
conclusions and inconsistencies in the interpretation 
of transport data. Nevertheless, in actual practice, 
the temperature and heat flux distribution at the 
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conjugate wall(s) of the channel(s) depends on 
many factors, such as dimensions of both the solid 
and the fluid domain, thermal properties of 
solid/fluid involved, and flow characteristics of 
working fluid, etc. In reality, the boundary 
condition(s) is (are) applied at a certain finite 
distance from the actual solid-fluid interface, 
whereas the objective ought to be the maintenance  
of  constant heat flux at the solid-fluid interface for 
maximizing the heat transfer coefficient or 
maintaining constant wall temperature for some 
specific applications.  
 
LITERATURE REVIEW 
The study of axial back conduction in the solid 
domain in a convective heat transport system dates 
back to the era of sixties when Bahnke and Howard, 
1964, studied the effect of longitudinal heat 
conduction on the performance of periodic-flow 
heat exchanger. Soon afterwards, Petukhov, 1967, 
studied the effect of thermal conductivity ratio of the 
solid walls and the working fluid, and the tube 
thickness to inner radius ratio on the axial back 
conduction in the solid wall of a circular tube. 
Subsequently, some similar studies were carried out 
by many researchers (Chiou, 1980; Faghri and 
Sparrow, 1980; Cotton and Jackson, 1985). The study 
on axial conduction continued with time, but their 
number was very few. Subsequently, with the 
development of microscale heat transfer devices the 
study on axial conduction has again gained 
momentum, considering the relative importance of 
axial conduction effect in such small geometries, as 
compared to conventional sized heat transfer devices. 
Peterson, 1999, numerically studied conduction 
effects in microscale counter flow heat exchangers. 
Maranzana et al., 2004, introduced axial conduction 
number (M), defined as the ratio of the conductive 
heat flux to the convective counterpart. Maranzana et 
al., 2004, also stated that axial conduction in the solid 
substrate will be negligible if M < 0.01. Based on 
their study on conjugate heat transfer in thick circular 
tubes Li et al., 2007, and Zhang et al., 2010, 
concluded that the criteria proposed by Maranzana et 
al., 2004, for neglecting axial conduction may not be 
always valid in certain cases. Depending on the 
boundary conditions and geometrical parameters, the 
criteria for judging the effect of axial wall conduction 

may vary depending on the situation. 
Recently, Moharana et al. 2012, carried out numerical 
analysis of axial conduction in a circular micro tube 
and a square shaped microchannel on a solid 
substrate. Both the circular microtube and the square 
microchannel are subjected to constant wall heat flux. 
Their study, based on wide parametric variations, 
suggests that for both the microtube as well as square 
microchannel on a solid substrate, there exists an 
optimum value of conductivity ratio (conductivity of 
the solid substrate material to conductivity of 
working fluid) which maximizes the average Nusselt 
number over the channel length (for constant heat 
flux boundary condition applied at the outer walls of 
the tube/channel). This observation was based on an 
extensive parametric variation of conductivity ratio, 
flow Re and substrate thickness, while the heating 
perimeter was kept constant, i.e., a square channel of 
constant dimensions and a microtube of constant 
inner diameter.  This can be explained as follows for 
the square microchannel: Higher conductivity ratio 
leads to severe axial back conduction, thus decreases 
average Nu. Very low value of conductivity ratio 
leads to a situation which is qualitatively similar to 
the case of zero thickness substrate with constant heat 
flux applied on one wall only (the other three sides 
being adiabatic). This again lowers the average value 
of Nusselt number.  
Although a number of theoretical (Hetsroni et al., 
2005), experimental (Celata et al., 2006; Hetsroni et 
al.,  2005; Li et al., 2007; Liu et al., 2007; Liu et al., 
2011), and numerical (Li et al., 2007; Avci et al., 
2012) studies have been performed, discerning 
parameters for explicitly isolating the effect of axial 
conduction on transport coefficient are not 
available. In this background, a two-dimensional 
numerical investigation is carried out on using 
commercial Ansys-Fluent® platform, to understand 
and highlight the effect of tube thickness to inner 
radius ratio (δsf), solid wall to working fluid 
conductivity ratio (ksf) and flow Re on the axial wall 
conduction in a steady-state laminar, incompressible, 
simultaneously developing flow in microtubes. Both, 
uniform wall heat flux and uniform wall temperature 
boundary condition is considered, applied at the outer 
surface of the tube, so as to find out the effect of 
these conditions on the axial conduction in the 
microtube and hence on the ensuing heat transfer.  
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The cross-sectional solid faces are considered 
adiabatic. Thermophysical properties of the solid and 
the fluid domain are assumed to be constant. Local 
wall heat flux, wall temperature and average bulk 
fluid temperature are numerically calculated as 
functions of the dimensionless axial distance (x/L), 
thickness to inner radius ratio (δsf), and conductivity 
ratio (ksf). Simulations have been carried out for a 
wide range of ksf (≈ 0.33 - 702) and δsf = 1, 16, Re = 
100, 1000. These parametric variations cover the 
typical range of applications encountered in micro-
fluids/micro-scale heat transfer domains. Wall heat 
flux, wall temperature and average bulk fluid 
temperature along the length of the microtube are 
numerically calculated as functions of the variable 
parameters. Grid independence was also ensured 
before deciding the grid size in all the geometries. 
 
NUMERICAL ANALYSIS 
In this work it is assumed that the flow through the 
microtube is laminar, incompressible with constant 
thermo-physical properties, the heat transfer and 
fluid flow takes place at steady state, and the 
amount of heat loss by radiation or natural 
convection is negligible. Figure 1. shows a 
microtube of inner radius δf, thickness δs, and of 
length L. The value of inner radius δf, and the 
length L are kept constant in the computational 
model at 0.2 mm, and 120 mm respectively. The 
thickness of the microtube is varied (δsf = 1.0, 16.0). 

 

 
Figure 1: Microtube and its computational domain 

In actual computations, two-dimensional Cartesian 
coordinate system (here named as r-z) with 
axisymmetric about the tube axis is considered. As 
discussed earlier, a constant heat flux as well as 
constant wall temperature boundary condition is 
respectively applied on the outer surface of the tube 
and the cross-sectional solid faces are insulated, as 
shown in Fig. 1.  
The continuity, Navier-Stokes, and energy 
equations are as follows: 
Liquid domain: 
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
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Solid domain: 
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The associated boundary conditions are as follows: 
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Above equations are solved using commercial 
platform Ansys-Fluent®.  For pressure discretization 
the ‘standard’ scheme was used. The SIMPLE 
algorithm was used for velocity-pressure coupling 
in the multi-grid solution procedure. The 
momentum and energy equations were solved using 
‘second-order upwind’. An absolute convergence 
criterion for continuity and momentum equations is 
taken as 10-6 and for energy equation it is 10-9. 
Water is used as the working fluid; it enters the 
microtube with a slug velocity profile, at an inlet 
temperature of 300K. Thus, the flow is 
hydrodynamically as well as thermally developing 
in nature at the tube inlet.   
The computational domain was meshed using 
rectangular elements and the grid independence test 
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was carried out before finalizing the grid size. As an 
example, local Nusselt number, calculated for a 
microtube with δsf = 0 (zero wall thickness), for 
three mesh sizes of 8×960, 10×1200 and 12×1440 
(for half of the transverse section as shown in Fig. 
1b.), for Re = 250, is as shown in Fig. 2. The local 
Nusselt number at the fully developed flow regime 
(near the tube outlet) changed by 0.2% from the 
mesh size of 8×960 to 10×1200, and changed by 
less than 0.1% on further refinement to mesh size of 
12×1440. 
Moving from first to the third mesh, no appreciable 
change is observed. So, the intermediate grid 
(10×1200) was selected, which corresponds to 
actual physical average spacing of 0.02 mm along 
the radial direction and 0.1 mm along the transverse 
direction (z-axis). It can also be observed in Fig. 2. 
that the local Nusselt number values in the fully 
developed region coincides with NuT = 3.66 where 
NuT is the Nusselt number for fully developed flow 
in a tube subjected to constant wall temperature. 
Finer meshing was used at the tube entrance and at 
the boundary layer. 
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Figure 2: Variation of local Nusselt number 
calculated along the streamwise direction of a 
microtube of length 120 mm and δsf = 0 for three 
different mesh sizes. 
 
DATA REDUCTION 
The main parameters of interest are (a) local heat 
flux (b) local bulk fluid temperature (c) local wall 
temperature. These parameters allow us to 
determine the extent of axial conduction on the 
local Nusselt number. The conductivity ratio (ksf) is 
defined as the ratio of thermal conductivity of the 

tube wall (ks) to that of the working fluid (kf). The 
axial coordinate, z, in dimensionalized as:  

* z
z

L
                     (6) 

For constant heat flux boundary condition, the heat 
flux applied on the outer surface of the tube is: 

o
s f
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q
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                  (7) 

where, Q is the total heat input to the outer surface 
of the tube. The ideal heat flux at the solid fluid 
interface is given by: 
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The non-dimensional local heat flux at the fluid-
solid interface is given by: 

zq / q                (9) 

where, zq  is the local heat flux transferred at the 

solid-fluid interface along the tube length. The 
dimensionless bulk fluid and tube inner wall 
temperatures are given by:  
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where, fiT  and foT  are the average bulk fluid 

temperature at the tube inlet and outlet respectively;   

fT  is the average bulk fluid temperature at any 

location and wT  is the wall temperature at the same 

location. The local Nusselt number is then given by: 

z zNu h D / kf           (12) 

where, the local heat transfer coefficient is: 

w
z

w f
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          (13) 

 
RESULTS AND DISCUSSION 
Under ideal conditions (zero wall thickness and 
constant wall temperature), the non-dimensional 
fluid temperature must asymptotically approach the 
wall temperature with a negative exponent as it 
flows through the tube in the streamwise direction. 
In contrast, under ideal conditions (zero wall 
thickness and constant heat flux boundary 
condition), the non-dimensional fluid temperature 
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increases linearly in the entire flow domain 
(developing as well as fully developed). In this case 
however, the wall temperature increases non-
linearly in the developing region while for fully 
developed region, it follows a linear increase. 
Hence, the difference between the wall and bulk 
fluid temperature is a constant in the fully 
developed region.  
In this background, the case of constant wall 
temperature on the outer surface of the tube is 
considered first and axial variation of dimensionless 
average bulk fluid and tube inner wall temperature 
are shown in Fig. 3. For the case when flow Re = 
100, ksf = 702 (Fig. 3a), the system nearly follows 
the ideal behaviour (for both δsf). However, keeping 
the flow Re same and reducing the ksf to 0.33 
(Fig. 3b) drastically changes the variation of both 
the wall as well as the bulk fluid temperature. The 
wall temperature is no more constant at the fluid 
solid interface. Also, the fluid temperature now 
changes and tends towards a linear variation (dotted 
line included for comparison). In this case, 
increasing δsf from 1 to 16 also has a profound 
effect of the axial variation of both temperatures; 
they drift further away from ideal behaviour with 
increasing tube thickness.    
In Figs. 3c and 3d, the flow Re is increased to 1000, 
and ksf are changed to 702 and 0.33, respectively. In 
Fig. 3c. it can be observed that the wall temperature 
is almost constant except near the inlet, and the 
variation of fluid temperature is quite different from 
ideal, tending to be closer to ‘linear’. In addition, 
the results are independent of δsf. With increasing 
Re and decreasing ksf, the most dramatic change in 
the system behaviour is observed. The trends for 
axial variation of wall and fluid now come closer to 
the ‘ideal’ case of constant heat flux condition, 
rather than constant wall temperature condition. 
Thus, the constant temperature boundary condition 
imposed at a distance from the actual fluid-solid 
interface manifests itself as if the actual fluid-solid 
interface was supplied with a constant heat flux 
boundary condition. Thus, increasing Re and 
decreasing ksf leads to a situation very similar to the 
case of a tube subjected to constant heat flux 
boundary condition. It is therefore expected that this 
situation will lead to higher Nusselt number among 
all other combinations reported here. 
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Figure 3: Variation of dimensionless local wall and 
local bulk fluid temperature along the channel 
length. 
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Figure 4: Variation of local Nusselt Number along 
the channel length. 

In addition to the above, it can also be concluded 
from the general trends of Fig. 3 that the thickness 
of the tube (i.e. δsf) plays a role at lower flow Re 
only; with increasing flow Re the effect of δsf 
diminishes. Secondly, the effect of δsf further 
becomes negligible with higher ksf. The contents in 
Fig. 3. represent higher and lower limits of ksf, Re 
and δsf values considered in this study. 
The direct implication of the axial variation of wall 
and bulk fluid temperature, as outlined in Fig. 3., 
decides the value of local Nusselt number, as 
presented next in Fig. 4. For benchmarking, the 
fully developed Nusselt number values for constant 
wall heat flux (Nuq = 4.36) and constant wall 
temperature (NuT = 3.66) are also depicted. As 
expected, the fully developed Nusselt number 
values for ksf = 702 and Re = 100 (corresponding to 
Fig. 3a), as depicted in Fig. 4a. is closer to the 
‘ideal’ case of NuT. In contrast, for ksf = 0.33 and 
Re = 1000 (corresponding to Fig. 3d), it is clear that 
the local Nusselt number will eventually be higher, 
closer to ideal case of constant heat flux boundary 
condition, Nuq. It is clear from this discussion that 
boundary condition, as experienced by the fluid can 
be drastically altered by axial conduction coupled 
with the developing nature of the flow. 
To understand the explicit effect of ksf on heat 
transfer more clearly, the variation of average 

Nusselt number ( Nu ) over the length of the tube, as 
a function of ksf, while varying flow Re and δsf, is 
presented in Fig. 5a., where constant wall 
temperature condition is applied on the tube outer 
surface.  It can be seen that for fixed value of Re 

and δsf, the value of Nu   increases, as the value of 
ksf decreases. The slope of this curve changes 

rapidly below ksf less than 100 and the value of Nu  
increases sharply, as the value of ksf approach 
towards zero, suggesting that lower ksf results in 

higher Nu . With increasing flow Re at constant ksf, 

the Nu  value increases due to increase in flow 
development length. Secondly, it can also be 
observed that for all other parameters remaining the 
same, higher wall thickness leads to higher value of 

Nu . Finally, the gap between the curves at δsf = 1 
and 16 increases with decreasing value of ksf. 
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Figure 5: Variation of Nu  as a function of ksf for a 
microtube subjected to boundary condition of (a) 
constant wall temperature (b) constant heat flux at 
its outer surface. 
 
Figure 5b. depicts the corresponding plot for 
constant wall heat flux applied on the outer surface 
of the microtube. For this case, the presence of 
optimum ksf at which the average Nusselt number is 
maximum, can be observed clearly. Secondly, all 
other parameters remaining constant, the average 
Nusselt number decreases as the value of δsf 
increases from 1 to 16. This is exactly opposite to 
that of Fig. 5a. This is because axial conduction in a 
microtube subjected to constant heat flux at the 
outer surface drifts the condition at the inner surface 
of the tube towards a conventional constant wall 
temperature boundary condition. On the other hand, 
axial conduction in a microtube subjected to 
constant wall temperature at the outer surface drift 
the condition at the inner surface of the tube 
towards a conventional constant heat flux boundary 
condition. 

 
 

Figure 6: Temperature contour in the solid and the 
fluid domain along the transverse plane of a 
microduct subjected to constant wall temperature   
T = 360 K at Re =100, ksf = 12.8 and (a) δsf = 1.0, 
(b) δsf = 16. 
 
Figure 6a and 6b shows the temperature contour in 
the solid and the fluid domain along the transverse 
plane of a microduct subjected to constant wall 
temperature   T = 360 K at Re =100, ksf = 12.8 for 
two geometries of δsf = 1.0 and 16 respectively. The 
solid fluid interface is represented by the horizontal 
line between the solid and the fluid domain. For δsf 
= 1.0, the temperature at the solid-fluid interface is 
uniform throughout the length of the microduct and 
equal to the applied value at the outer surface (top 
face in Fig 6). This can be observed in Fig. 6a. 
However, for δsf = 16, this is not true. Due to higher 
wall thickness compared to inner radius, the axial 
back conduction causes deviation from uniform 
wall temperature at the solid-fluid interface. It can 
be seen in Fig. 3b, for similar conditions, the axial 
variation of wall temperature at the solid-fluid 
interface drifts more towards the trend of constant 
heat flux rather than constant wall temperature. This 
causes higher Nusselt number compared to thinner 
tube wall thickness, which can also be observed in 
Fig. 5a for Re =100, ksf = 12.8 and δsf = 1.0, and 16. 
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SUMMARY AND CONCLUSIONS 
A two dimensional axisymmetric numerical 
investigation is carried out for flow through a 
microtube of length 120 mm and inner radius 0.2 
mm. Varying tube wall thickness (δsf ~ 1, 16), tube 
material (ksf ~ 0.33 - 702) and flow condition (Re ~ 
100, 1000) is used to find their effect on axial back 
conduction in the solid wall of the tube. Flow is 
simultaneously developing in nature.  
It is shown that a constant temperature boundary 
condition applied on the outer surface of the tube 
can manifest itself as a constant heat flux boundary 
condition on the actual fluid-solid interface, 
depending on the control parameters, i.e. ksf, Re, 
and δsf.  The thermal conductivity ratio plays the 
most important role.  
For constant heat flux boundary condition on the 
outer surface of the tube, it is found that there exists 

an optimum conductivity ratio (ksf) at which Nu  
over the microtube length maximizes. However, no 

such maxima in Nu  is observed corresponding to 
any value of conductivity ratio for constant wall 
temperature boundary condition. For this case (i) 

Nu  decreases with increasing ksf and, (ii) thicker 

wall leads to higher value of Nu . 
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NOMENCLATURE 

Cp specific heat of working fluid, J/kg-K 
D diameter (inner) of the tube, m 
hz local heat transfer coefficient, W/m2-k 
kf thermal conductivity of working fluid, W/m-K 
ks  thermal conductivity of tube wall, W/m-K 
ksf ratio of ks and kf (-) 
L length of the tube, m 
Nuz local Nusselt number (hzD/kf) 

Nu  average Nusselt number over the channel 
length 

Pr Prandtl number (Cpμ/kf) 
Q applied heat on outer surface of the tube, W 

q   average heat flux experienced at the inner 
surface of the tube, W/m2 

oq  applied heat flux on tube outer surface, W/m2 

Re  Reynolds number (ρuD/μ)  
T temperature, K 
T   average temperature, K 
u average fluid velocity at the tube inlet, m/s 
z axial coordinate 
z* non-dimensional axial distance along the 

microtube (-) 
 

Greek symbols 

δf inner radius of the tube, m 
δs thickness of the tube wall, m 
δsf ratio of δs and δf (-) 
µ dynamic viscosity, Pa-s 
ρ density, kg/m3 
   non-dimensional local heat flux (-) 
Θ non-dimensional temperature (-) 
 

Subscripts 

f fluid 
i  inlet condition 
o outlet condition 
q refers to the case of constant heat flux 
 boundary condition 
s solid 
T refers to the case of a constant wall temperature 
 boundary condition 
w wall surface 
z axial length along the channel 
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