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ARTICLE INFO                                           ABSTRACT 
 

 
 

Plasma spraying technique has become a subject of intense research in many industrial 
structural/functional applications because its peculiarity surface properties. This investigation 
explains about plasma sprayed copper surface property. Here industrial waste and low grade ore (i.e. 
Flay-ash+ quartz+ illmenite), used as deposit material which is to be coated on copper substrates. In 
many applications, it is found that for structural modification, surface roughness & porosity 
parameters are very important. To decrease both surface roughness and coating porosity by 
optimizing other necessary properties, different soft computing methods like Artificial Neural 
Network (ANN) and Least Square support vector machine techniques used. The least square 
formulation of support vector machine (SVM) was recently proposed and rooted in the statistical 
learning theory. This technique potentially describes the approximation complexity of inter-relations 
between different parameters of atmospheric plasma spray process and helps in saving time & 
resources for experimental trials for which it is advantageous than all conventional methods. It is 
marked as a new development by learning from examples based on polynomial function, neural 
networks, radial basis function (RBF), splines or other function. From this above two methods 
(Multilayer Feed forward Neural Network& LS-SVM), we conclude that LS-SVM with RBF kernel 
gives better performance over ANN for prediction of surface roughness and coating porosity with 
minimum Mean Square Error. This methodology can provide clear understanding of various co-
relationships across multiple scales of length and time which could be essential for improvement of 
product performance and process. The results of this methodology give a good generalization 
capability to optimize the coating surface roughness& surface porosity.      

  Copy Right, IJCR, 2012, Academic Journals. All rights reserved. 
 
 

 

INTRODUCTION 
 
lasma sprayed technology have received much attention in 
recent years due to their outstanding surface properties when 
compared to those of their conventional processes. Plasma 
spray coating has the advantage of being able to process 
industrial waste and low-grade minerals to produce value-
added products (Satapathy et al., 2010), which are widely used 
in aerospace industry to biomedical industry (Hetmanczyk et 
al., 2007; Muggli et al., 1999; Behera, 2012a; Ohtsu, 2012) 
Plasma spray processes utilize the energy contained in a 
thermally ionized gas to melt prepared powder particle 
partially/fully and propel this molten/semi-molten powder on 
to a substrate surface such that they adhere and agglomerate to 
produce coatings. This technique implements a wide variety of 
materials (metal, ceramic, alloy and its composite) and 
processes (Atmospheric plasma spraying, vacuum plasma 
spraying etc.) for improving surface properties (Singla et al., 
2011; Davis, 2004;  Sampath et al., 2001).   Conventional 
plasma-spraying refers to air or atmospheric plasma spraying 
(APS) process. Plasma generated by the help of an inert gas i.e.  

 

argon or argon+ hydrogen mixture (Zhang et al., 2011).  
Approximately 6000°C to 15000°C temperature can generated 
in the power heating region, which is significantly above the 
melting point of any known material (Heimann, 2008). 
Homogenized powder mixture of fly-ash+ quartz+ illmenite 
having particle size from 40 µm to 100 µm injected into 
plasma flame and then accelerated with a very high velocity to 
impact on substrate surface in the form of molten/semi-molten 
state (Fauchais, 2004; Behera, 2012b).  The coating efficiency 
directly or indirectly depends on many other parameters during 
spraying, in which each one is inter-related with each other.  
Porosity depends on several coating properties such as thermal 
conductivity, coefficient of thermal expansion, elastic modulus 
and dielectric behavior (Deshpande et al., 2004). Also surface 
roughness depends on particle state (molten/semi-molten), 
powder feeding rate etc. Various methods are employed for 
quantitative measurement of surface roughness & porosity and 
form a necessary part of micro structural characterization of 
thermal spray coatings. A variety of prediction models have 
been proposed in the manuscript that include time series 
models, regression models, adaptive neuro-fuzzy inference 
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systems (ANFIS), artificial neural network (ANN) models and 
SVM models. Among these model ANN increasingly used in 
different optimization process. This is mainly because the 
effectiveness and smoothness of ANN modeling systems, 
which improves a great deal in the engineering area. For 
classification and non-linear function estimation, the SVM is 
introduced by Vapnik (Vapnik, 1995; Vapnik, 1999). SVM 
have remarkable generalization performance and many more 
advantages over other methods, so SVM has attracted attention 
and gained extensive application. Suykens and Vandenwalle 
have proposed the use of the LS-SVM for simplification of 
traditional of SVM (Suykens et al., 2002). Not only LS-SVM 
has been used for classification in various areas of pattern 
recognition (Hanbay, 2009) but also it has handled regression 
problems successfully (Zuriani et al., 2011). LS-SVM has 
additional advantage as compared to SVM. In LS-SVM, a set 
of only linear equation (Linear programming) is solved which 
is much easier and computationally more simple. In this paper, 
by MFNN and LS-SVM models we are Predicting Surface 
Roughness and Porosity of Plasma Sprayed Copper. After 
comparing the result obtained by both these models, LS-SVM 
gives better performance to minimize the MSE that of MFNN. 
 
Experimental Procedure 
 
Flay-ash premixed with quartz and illuminate mixture taken 
(weight percentage ratio of 60:20:20) and homogenized by 
Planetary ball mill for 3 hour. This homogenized mixture used 
as coating material which is to be coated on Mild Steel 
substrate of dimension 3 mm thickness and 1 inch diameter. 
Four different sizes i.e. 40 µm, 60 µm, 80 µm and 100 µm are 
separated out by the application of sieve. Alumina grit blasting 
was made at a pressure of 3 kg/cm2 to create surface roughness 
of about 5Ra, for better bonding. By acetone substrates surface 
were cleaned which is followed by plasma spraying. The 
coating process made at the Laser & Plasma Technology 
Division, BARC, Mumbai. Here 40 kW DC non-transferred 
arc mode atmospheric plasma spray system used. Input power 
level varies from 11kW to 21 kW in spray gun. Coating 
powder material injects externally from the torch nozzle and 
directed towards the plasma flow.  
 
Ar/ H2/N2 gas may be used as carrier gas. The major 
subsystems of the set up include the plasma spraying torch, 
power supply, powder feeder, and carrier gas supply, torch to 
substrate surface distance, control console, cooling water and 
spray booth. A four stage closed loop centrifugal pump water 
cooling used for retrieving the heat generated during the 
process, regulated at a pressure of 10kg/cm2 supply. The 
specifications of spraying process parameters are given in table 
1. Flow rate of plasma gas (Ar) and Secondary gas (N2) are 
kept constant. With increasing power level; powder feed rate, 
powder size and stand of distance of torch are varied. 
Measurement of coating surface roughness done by 
‘Taylor/Hobson Surtronic 3+’ instrument and experimental 
value of porosity was measured by image analyzer technique. 
In image analyzer technique the porosity of coatings was 
measured by putting polished cross sections of the sample 
under a microscope (Neomate) equipped with a CCD camera 
(JVC, TK 870E). This system is used to obtain a digitized 
image of the object. The digitized image is transmitted to 
VOIS image analysis software. The total area captured by the 

objective of the microscope or a fraction can be accurately 
measured by the software. Hence the total area and the area 
covered by the pores are separately measured. To find out 
some of the better surface property, there is a software 
programs used by implementation of MATLAB version 10.1. 
Back Propagation Algorithm (BPA) is used to train the 
network. The sigmoid function represented by equation (3.1) is 
used as the activation function for all the neurons except for 
those in the input layer. 
 
S(x) = 1 / (1+e-x)      (3.1) 

 
Choice of Hidden Neurons 
 

The choice of optimal number of hidden neurons, Nh is the 
most interesting and challenging aspect in designing the 
MFNN. Simon Haykin (Simon, 1999) has specified that Nh 
should lie between 2 and ∞ (Hecht-Nielsen, 1990). Hecht-
Nielsen uses ANN interpretation of Kolmogorov’s theorem to 
arrive at the upper bound on the Nh for a single hidden layer 
network as 2(Ni+1), where Ni is the number of input neurons. 
However, this value should be decided very judiciously 
depending on the requirement of a problem. A large value of 
Nh may reduce the training error associated with the MFNN, 
but at the cost of increasing the computational complexity and 
time. For example, if one gets a tolerably low value of training 
error with certain value of Nh, there is no point in further 
increasing the value of Nh to enhance the performance of the 
MFNN. The input and the output data are normalized before 
being processed in the network as follows: 
 

In this scheme of normalization, the maximum values of the 
input and output vector components: 

 

  ,max maxi in n p p=1 …Np ,i= 1….Ni (3.2) 
                                               
Where Np is the number of patterns in the training set and Ni is 
the number of neurons in the input layer. Again, 
  

  ,max maxk kO o p p=1,....Np, k=1,...Nk       (3.3) 
 

Where, Nk is the number of neurons in the output layer. 
 Normalized by these maximum values, the input and output 
variables are given as follows. 

 

   
,

,max

i
i nor

i

n p
n p

n
 , p = 1….Np,  i = 1,…Ni  (3.4)  

                                        and 

   
,

,max

k
k nor

k

o p
o p

o
 , p = 1,...Np,  i = 1,…Nk      (3.5) 

After normalization, the input and output variable lay [13] in 
the range of 0 to 1. 
 

Choice of ANN Parameters  
 

The learning rate, η and the momentum factor, α have a very 
significant effect on the learning speed of the BPA. The BPA 
provides an approximation to the trajectory in the weight space 
computed by the method of steepest descent method (Ghosh et 
al., 1999). If the value of η is considered very small, this 
results in slow rate of learning, while if the value of η is too 
large in order to speed up the rate of learning, the MFNN may 
become unstable (oscillatory). A simple method of increasing 
the rate of learning without making the MFNN unstable is by 
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adding the momentum factor α (Rumelhart et al., 1986). The 
values of η and α should lie between 0 and 1 (Simon, 1999). 
 
Weight Update Equations 
 
The weights between the hidden layer and the output layer are 
updated based on the equation as follows: 
 

       
    

wb j, k, m 1 wb j, k, m 1 k m Sb j

wb j, k, m wb j, k, m 1

 



    

   
      (3.6) 

 

Where m is the number of iterations, j varies from 1 to Nh and 
k varies from 1 to Nk. δk(m) is the error for the kth output at the 
mth iteration. Sb(j) is the output from the hidden layer 
(Mohanty et al., 2010). Similarly, the weights between the 
hidden layer and the input layer are updated as follows: 
 

       
    

Wa i, j,m 1   wa i, j, m 1 j m Sa j

 wa i, j, m wa i, j, m 1

 



    

   
    (3.7) 

 

Where i varies from 1 to Ni as there are Ni inputs to the 
network, δj(m) is the error for the jth output after the mth 
iteration and Sa(i) is the output from the first layer. The δk(m) 
in equation (3.6) and δj(m) in equation (3.7) are related as 
 

     
1

, ,
K

j k b
k

m m w j k m 

         (3.8) 

 

Evaluation Criteria 
 
The Mean Square Error Etr for the training patterns after the 
mth iteration is defined as  
 

  2

1 2
1

1P

tr b p b p
p

E V V m
P

        
  

         (3.9)   

 

Where V1p is the experimental value of (Surface roughness in 
first case and Porosity of Plasma Sprayed Copper in second 
case), P is the number of training patterns and V2p (m) is the 
estimated value of (Surface roughness in first case and Porosity 
of Plasma Sprayed Copper in second case) after mth iteration. 
The training is stopped when the least value of Etr has been 
obtained and this value does not change much with the number 
of iterations. 
 
Least Square Support Vector Machine 
 
The formulation of LS-SVM is introduced as follows. Consider 
a given training set  , , 1,2,..., ,i ix y i N with input data 

ix R and output data iy R . The following regression 
model can be constructed by using non-linear mapping 
function   (x) (Zegnini et al., 2011). 
 

 Ty w x b                  (4.1)                          
 

Where w  is weight vector and b is the bias term. As in SVM, 
it is necessary to minimize a cost function C containing a 
penalized regression error, as follows: 
 

  2

1

1 1min ,
2 2

N
T

i
i

C w e w w e


                          (4.2) 

Subject to equality constraints  

  ,T
i iy w x b e   1,2,....,i N   (4.3) 

 

The first passssrt of this cost function is a weight decay which 
is used to regularize weight sizes and penalize large weights. 
Due to this regularization, the weights converge to similar 
value. Large weights deteriorate the generalization ability of 
the LS-SVM because they can cause excessive variance. The 
second part of eq. (4.2) is the regression error for all training 
data. The parameter , which has to be optimized by the user, 
gives the relative weight of this part as com-pared to the first 
part. The restriction supplied by eq. (4.3) gives the definition 
of the regression error. To solve this optimization problem, 
Lagrange function is constructed as 

  2 2

1

1, , ,
2

N

i
i

L w b e w e 


  � �

  
1

T
i i i i

i
w x b e y 



                        (4.4) 

 

Where αi are the Lagrange multipliers. The solution of eq. (4.4) 
can be obtained by partially differentiating with respect to w, 
b,ei and αi 
Then 
 

   
1 1

N N

i i i i
i i

w x e x   
 

         (4.5) 

 

Where a positive definite Kernel is used as follows: 

     , T
i j i jK x x x x        (4.6) 

 
An important result of this approach is that the weights (w) can 
be written as linear combination of the Lagrange multipliers 
with the corresponding data training (xi). Putting the result of 
eq. (4.5) into eq. (4.1), the following result is obtained as 
 

   
1

N
T

i i
i

y x x b  


       (4.7) 

 

 For a point iy to evaluate it is:  
 

   
1

N
T

i i i j
i

y x x b  


      (4.8) 

 

The vector follows from solving a set of linear equations: 
 

0
y

A
b
   

   
   

      (4.9) 

 
Where A is a square matrix given by 
 

1

1 0

N

T
N

IK
A 

    
  

                 (4.10) 

 
Where K denotes the kernel matrix with ijth element in eq. (4.5)  
and I denotes the identity matrix NN,  
1N = [1 1 1…..1]T. Hence the solution is given by: 
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1

0
y

A
b
    

   
   

       (4.11) 

 
All Lagrange multipliers (the support vectors) are non-zero, 
which means that all training objects contribute to the solution 
and it can be seen from eq. (4.10) to eq. (4.11). In contrast with 
standard SVM the LS-SVM solution is usually not sparse. 
However, by pruning and reduction techniques a sparse 
solution can easily achieved. Depending on the number of 
training data set, either an iterative solver such as conjugate 
gradients methods (for large data set) can be used or direct 
solvers, in both cases with numerically reliable methods. 
In application involving nonlinear regression it is not enough 

to change the inner product of    ,i jx x   eq. (4.7) by a 

kernel function and the ijth element of matrix K equals to eq. 
(4.5). 
 

This show to the following nonlinear regression function: 
 

 
1

,
N

i i
i

y K x x b


      (4.12) 

 

For a point jx to be evaluated, it is: 

 ,
N

j i i j
i

y K x x b     (4.13) 

 

For LS-SVM, there are lot of kernel function (Radial basis 
function, Linear polynomial), sigmoid, bspline, spline, etc. 
However, the kernel function more used is a simple Gaussian 
function, polynomial function and RBF. They are defined by: 
 

 
2

2, exp i j
i j

sv

x x
K x x


 

   
 

� �
              (4.14) 

 

   ,
dT

i j i jK x x x x t                (4.15) 

 
Where d is the polynomial degree and 2

sv is the squared 
variance of the Gaussian function, to obtained support vector it 
should be optimized by user. For α of the RBF kernel and d of 
the polynomial kernel, in order to achieve a good 
generalization model it is very important to do a careful model 
selection of the tuning parameters, in combination with the 
regularization constant γ. 
 
Evaluation Criterion 
 

The Mean Square Error Etr for the training patterns after the 
mth iteration is defined as  
 

  2

1 2
1

1P

tr b p b p
p

E V V m
P

        
  

                   (4.16)   

 

Where V1p is the experimental value of (Surface roughness in 
first case and Porosity of Plasma Sprayed Copper in second 
case), P is the number of training patterns and V2p (m) is the 
estimated value of (Surface roughness in first case and Porosity 
of Plasma Sprayed Copper in second case) after mth iteration. 
The training is stopped when the least value of Etr has been 

obtained and this value does not change much with the number 
of iterations. 
 

RESULT AND DISCUSSION 
 
With the help of 56 sets of experimental input-output patterns, 
the proposed modeling are carried out; 44 sets of input-output 
patterns used for training both networks and for testing purpose 
the remaining 12 sets are used. The software programs 
developed are used for implementation using MATLAB 
version 10.1. 
 

Table 1. Experimental plasma sprayed operating parameters. 
 

Operating parameters Parametric variations 
Plasma arc current (Amp) 
Arc voltage (volt) 
Torch input power (kW) 
Plasma gas (argon) flow rate (IPM) 
Secondary gas (N2) flow rate (IPM) 
Carrier gas (Ar) flow rate (IPM) 
Powder feed rate (gm/min) 
Powder Size (µm) 
Torch to base distance (mm) 

270, 300, 400& 420  
40,45 & 50  
11,15,18 & 21  
28  
3  
12  
12, 15 & 18  
40, 60, 80 & 100  
100  

 
Surface Morphology of plasma spray coating 
 

Figure 2 shows SEM image of coating surface. Here the fly-
ash+ quartz+ illmenite composite powder is deposited on 
copper at 21 kW, 12 gm/min feed rate, 100mm torch to base 
distance with varying the power level. It is observed that 
surface contains some amount of pore with little surface 
roughness. In spraying the exact power level cannot be 
specified, because thermally sprayed coatings are very 
complex and incorporate process dependent defects such as 
splat gaps/interlamellar pores, globular pores, cracks (for 
ceramics), etc. It is clear that there is a close agreement of 
porosity measurement by the MFNN, LS-SVM and the 
experimental study, which indicates that the both the models 
can be used for predicting the amount coating porosity. 
Porosity formation by inter-splat position also depends on the 
mode of heat transfer through the substrate or prior deposited 
splats. This also similar to splat quenching by the Duwez gun 
technique. Inadequate amount of heat flow which results  
molten/semi-molten particles gather in a way to form more 
pore. 
 

Table 2. Variation of MSE (Etr) with Nh (η1=0.3,  = 0.6 and 
iteration = 400) 

h Etr 
1 4.2056× 10-5 
2 6.0379 × 10-6 
3 1.9029 × 10-6 
4 9.9219 × 10-7 
5 8.5546 × 10-7 
6 5.8662 × 10-7 
7 3.3196 × 10-7 
8 1.9942 × 10-7 
9 1.6227 × 10-7 
10 1.4296 × 10-7 

 
MFNN Modeling 
 

From Tables 2 and Figure 3, it is quite obvious that when Nh = 10, 
 = 0.6 and η1= 0.3, the MSE for training data is the lowest at 1.4296 
× 10-7.  The sequential mode of training has been adopted. It may be 
noted that the range of the values of  η1 and  should be between 0 
and 1and value of Nh should not more than 10 as per the Hecht-
Nielsen criteria. Hence we have stopped at Nh = 10 in Table1, we 
have stopped at η1= 0.3 and  = 0.6. 
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Fig. 1. Multilayer feed forward neural network 

 
 

Fig. 2. Surface morphology of plasma coated copper specimen 
(Spraying at 21KW power level). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 3. Variation Mean Square Error (Etr) with number of 
iterations (η1=0.1, = 0.6 and Nh=10) 

 
LS-SVM Modeling 
 
From Figure 4, it is quite obvious that when  =0.31 , Sig2=5780.87 
and  iteration = 400, the data is well separated from LS-SVM hyper 
plane and mean square error (MSE) for training data is the lowest and 
equals to 7.15×10-7. It may be noted that if the value of iteration is 

increased MSE will decrease. Finally the test data are calculated by 
simply passing the input data in the LS-SVM and using  and b  for 
the kernel parameter. 
 

RESULT OBTAINED 
 
Table 3 depicts the comparison between the MSE for the training data 
and testing data obtained from two different models using different 
techniques. As may be seen from Table-3 that LS-SVM model is 
better than MFNN model. This can be confirmed from the values of 
MSE.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4. Shows the change of output parameter with respect to different input for training sample. 
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AC- Arc current, V-Voltage, PFR- Powder Flow Rate, PD- 
Powder size, JSA- Jet Spray Angle, CT-Coating Thickness, 
ESR- Experimental Surface roughness, EPPSR- Experimental 
Plasma Sprayed Copper, PSRN- Predicted Surface roughness 
using neural network, PPPSRN- Predicted Plasma Sprayed 
Copper using neural network, PSRS- Predicted Surface 
roughness using LSSVM, PPPSRS-  Predicted Plasma Sprayed 
Copper using LSSVM. 
 

Conclusions 
 

In this study, a LS-SVM with RBF Kernel and feed forward 
neural network (MFNN) using Back Propagation algorithm 
was designed, trained and tested for prediction of surface 
roughness and porosity of plasma spray coating. The selected 
LS-SVM model successfully exhibited a good prediction 
capability with a low MSE for training and testing data than 
that of MFNN network. This can lead to reduce the time and 
cost of the process and improve the quality of the product. 
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Table 3. Comparison of MSE for training & testing data of two models 
 

AC V PFR PD JSA  CT ESR EPPSR PSRN PPPSRN PSRS PPPSRS 
270 40 12 40 30 300 14.33 22 14.0206 21.6591 14.18 21.93 
300 50 12 60 60 350 12.4 28 12.5157 27.3736 12.4 27.843 
400 45 12 80 80 290 12.4 23 12.7141 21.4914 12.4 22.62 
420 50 12 100 100 280 14.06 18 13.7215 19.2354 14.06 17.642 
270 40 15 40 30 315 14.01 24 14.4761 23.8616 13.85 24 
300 50 15 60 60 360 13.8 26 13.9018 27.7279 13.8 26 
400 45 15 80 80 300 13.9 21 13.7836 21.4816 13.9 21.326 
420 50 15 100 100 290 14 20 13.8591 20.2544 14 20 
270 40 18 40 30 320 14.5 28 14.4925 26.7921 14.5 27.89 
300 50 18 60 60 340 13.8 27 13.6921 27.3341 13.8 27 
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