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Thermal analysis of an in�nite slab during quenching
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SUMMARY

This paper deals with �nite-element solution of two-dimensional convection–di�usion equation in an in�nite
domain, arising out of quenching of an in�nite slab. The solution gives the quench front temperature as
a function of various model parameters, such as Biot number and Peclet number. The results show good
agreement with available closed-form solutions, thus validates the numerical procedure adopted. It is therefore
expected that the present method of solution may be extended to quenching problems involving heat generation
and precursory cooling, etc., in various other geometries. Copyright ? 2000 John Wiley & Sons, Ltd.
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INTRODUCTION

The process of quenching of hot surfaces is of practical importance in Nuclear, Chemical and
Metallurgical industries. For example, a hypothetical loss-of-coolant accident (LOCA) in water-
cooled nuclear reactors may result in rapid heating of the fuel channels. In order to prevent the
fuel from reaching a metallurgical prohibitive temperature, an emergency core cooling system is
activated to re
ood the core. The time delay in re-establishing the e�ective cooling may result
in a rise of cladding temperature signi�cantly above the saturation temperature. If the cladding
temperature rises above the rewetting temperature, a stable vapour blanket will prevent immediate
return to liquid–solid contact. Rewetting is the re-establishment of liquid contact with a hot cladding
surface and thereby bringing to an acceptable cladding temperature. Such quenching phenomena
also exists in numerous industrial applications, such as metallurgical quenching, drying out of
steam generators or quenching of a container wall during �lling with cryogenic 
uid. The cooldown
process during the quenching is characterized by the formation of a wet patch on the hot surface,
which eventually develops into a steadily moving quench front. As the quench front progresses
along the hot solid, the upstream end of the solid is cooled by convection to the contacting liquid,
while its downstream end is cooled by heat transfer to a mixture of vapour and entrained liquid
droplets, called precursory cooling.
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Estimation of rewetting (quench front) temperature is essential in predicting the rate at which
the coolant quenches a hot surface. The rewetting models for two-dimensional quasi-static heat
transfer with a step change in heat transfer coe�cient at the quench front have been solved for the
single slab [1] and for the composite slab [2]. The one-dimensional transient rewetting equation
with a constant boundary heat 
ux has been solved by Chan and Zhang [3]. The common solution
methods employed are either separation of variables or Wiener–Hopf technique. The main di�culty
in solving the governing equation numerically is due to in�nite domain of the slab and prescription
of the spatial boundary conditions at in�nity. This problem can be alleviated by mapping the
in�nite physical domain to a �nite one. One of the approach in in�nite–�nite mapping involves
using in�nite elements with an appropriate singular shape function [4–5]. In the present paper an
alternative method has been suggested, in which the governing equation is transformed by a suitable
mapping function. The value of the stretching parameter associated with such a transformation has
been found by minimizing the overall heat balance. The numerical procedure proposed herewith
involves Galerkin weighted residual method incorporating an upwinded weighting function and
then solving the simultaneous algebraic equations iteratively. The numerical model is validated by
comparing the results with known analytical solutions.

MATHEMATICAL MODEL

The two-dimensional transient heat conduction equation for the slab is

k
(
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@t
; −�¡x¡� and 0¡y¡L; L→∞ (1)

where L is the length of the slab and 2� is its thickness. The density, speci�c heat and thermal
conductivity of the slab material are �; C and k, respectively. The origin of the co-ordinate frame
is at bottom mid-point of the slab. Because of symmetry about y-axis, one-half of the slab (of
thickness �) is considered in the analysis. The plane of symmetry then becomes equivalent to
an adiabatic wall. To convert this transient equation into quasi-steady-state form, the following
transformation is used:

�x= x; �y=y − ut
where u is the constant rewetting velocity and �x and �y are normal and axial co-ordinates, respec-
tively (Figure 1). Thus the transformed heat conduction equation in a co-ordinate system moving
with the quench front at this velocity is
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k
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=0; 0¡�x¡�; −∞¡ �y¡∞ (2)

In conduction-controlled rewetting analysis, it is believed that the advance of the quench front
is attributed to axial conduction from the dry region ahead of the quench front to the wet region.
Since only axial conduction is considered, the e�ect of coolant mass 
ux, coolant inlet subcooling
and its pressure gradient, etc., are not accounted for explicitly, but only implicitly in terms of wet-
region heat transfer coe�cient. In the present analysis, the heat transfer coe�cient h is assumed to
be constant over entire wet region. The coolant temperature is taken to be equal to its saturation
temperature Ts. On the dry side of the slab, the wall is cooled by the surrounding vapor, which
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Figure 1. Physical and computational domain of in�nite slab.

may be assumed to be adiabatic. Moreover it is assumed that the far upstream of the quench front
(at �y→ −∞), the wet region has been quenched to a temperature Ts, while the far prequenched
zone (at �y→ +∞) is still at the initial slab temperature Tw. Equation (2) can be expressed in
the following dimensionless form:

@2�
@X 2

+
@2�
@Y 2

+ Pe
@�
@Y
=0; 0¡X¡1; −∞¡Y¡∞ (3)

The associated boundary conditions are

@�
@X

=0 at X =0; −∞¡Y¡∞

@�
@X

+ Bi �=0 at X =1; Y¡0

@�
@X

=0 at X =1; Y¿0

� = 0 at Y → −∞
� = 1 at Y → +∞

(4)

The dimensionless quantities used above are

X =
�x
�
; Y =

�y
�
; �=

T − Ts
Tw − Ts ; Bi=

h�
k

and Pe=
�Cu�
k

The main interest of the present analysis is to solve for the quench front temperature T0 for the
given values of Biot (Bi) and Peclet (Pe) numbers. The dimensionless quench front temperature
is de�ned by

�0 =
T0 − Ts
Tw − Ts = �(1; 0)

The in�nite physical domain (−∞¡Y¡+∞) is then mapped to a �nite computational domain
(Figure 1) by the following in�nite–�nite transformation:

�=X; �=0:5(1 + tanh �Y )
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where � is the stretching parameter. The rationale of such a transformation is that the analytical
boundary conditions at in�nity can be used in the discretized equations. The convection–di�usion
Eq. (3) is thus transformed to

@
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+
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@�
+ Pe �

)
=0 (5)

where �y = @�=@Y =2��(1− �). The transformed boundary conditions are

@�
@�
=0 at �=0; 0¡�¡1

@�
@�
+ Bi �=0 at �=1; �¡0:5

@�
@�
=0 at �=1; �¿0:5

�=0 at �=0

�=1 at �=1

�= �0 at �=1; �=0:5

(6)

NUMERICAL SOLUTION

The elliptic scalar �eld Equation (5) can be solved by the conventional Galerkin weighted resid-
ual method (weighting and shape function being identical). However, serious di�culties may
be encountered with dominant convective (�rst derivative) terms [6]. Finite element solution of
Equation (5) may be oscillatory if the element size exceeds a critical value and at high Peclet
numbers acceptable answers can only be obtained by excessive reduction in the element size.
Heinrich et al. [6] showed that with particular choice of weighting functions, with orders higher
than that of shape functions, it is possible to generate the upwind scheme. Employing Galerkin
upwind scheme (weighting and shape function being di�erent), Equation (5) can be integrated to
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where Dx =1=�y and Dy = �y. The element sti�ness matrices are then developed by integrating
Equation (7), using bilinear four-noded isoparametric rectangular elements in a natural coordinate
system. Within the element, temperature can be interpolated in terms of nodal temperatures by
�=

∑
Ni�i (for i=1; : : : ; 4); where � is the temperature at any point in the element and �i is its
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value at ith node of that particular element. The following de�nitions for Weighting function (Wi)
and Shape function (Ni) in a natural coordinate system (r; s) are adopted from Reference [6]:

Ni = 1
4 (1 + rri)(1 + ssi)

Wi =
(1 + rri)

2

[
(1 + ssi)

2
− 3
4
�si(1− s2)

]

where i is the number of functions with ri= − 1; 1; 1;−1 and si= − 1;−1; 1; 1 for i=1; : : : ; 4,
respectively. The upwinding parameters are de�ned as

�= coth(
=2)− (2=
)

=Pe b=Dy

where a and b are sides of the rectangular element in � and � direction, respectively. The non-
dimensional co-ordinates of the isoparametric elements for nodes 1–4 are (−1;−1); (1;−1); (1; 1)
and (−1; 1), respectively. The natural co-ordinates are de�ned as

r=2(�− �c)=a
s=2(�− �c)=b

where �c; �c are co-ordinates of the centroid of each element. The element sti�ness matrices are
thus obtained as
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)
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[KM ] =
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Bi Dxb
6
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
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0 0 0 0

0 2 + 1:5� 1 + 1:5� 0

0 1− 1:5� 2− 1:5� 0

0 0 0 0




For internal elements as well as boundary elements on the dry side, ([Kx] + [Ky]){�(e)}=0. For
the boundary elements on the wet side, ([Kx] + [Ky] + [KM ]){�(e)}=0:
Although standard elimination routines (e.g. Frontal or Skyline) do exist to solve a set of

simultaneous equations with an unsymmetric matrix, an iterative solution has been adopted in the
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present case. The advantage of an iterative solution may be recognized in case of re-solution,
where the previous solution can be a good starting matrix for the next solution. The nine-point
representation of elliptic scalar �eld Equation (5) can be written in the general form as

A9i; j�i; j = A1i; j�i; j+1 + A
2
i; j�i+1; j+1 + A

3
i; j�i+1; j + A

4
i; j�i+1; j−1

+A5i; j�i; j−1 + A
6
i; j�i−1; j−1 + A

7
i; j�i−1; j + A

8
i; j�i−1; j+1 (8)

The coe�cients Ai; j of Equation (8) have been found by assembling the element sti�ness matrices
at each individual element level and thus the formation of a global temperature matrix has been
avoided. The simultaneous algebraic equations thus formed are then solved by modi�ed strongly
implicit procedure [7], which employs the strategy of [L][U ] decomposition because of the sparse-
ness of the resulting matrix. The present analysis adopts the above block iterative procedure as it
seems to be computationally faster than the point iterative schemes. All computations have been
carried out using a non-uniform structured mesh system with 20× 160 elements. Since steep tem-
perature gradients are encountered near the quench front, a mesh system has been adopted with
�ner elements near the quench front and progressively coarser elements away from it (Figure 1).
A convergence criterion of 0.01 per cent change in � at all nodes has been selected to test the
convergence of the iterative scheme. Sample calculations were also carried out by doubling the
mesh size to ensure that the results are independent of mesh system.
Since the main objective of the present study is to estimate the quench front temperature as

correctly as possible, it is essential that the temperature �eld satis�es the heat balance. This is
done by integrating Equation (5) over the entire computational domain, that gives

Pe=Bi
∫ 0:5

0

�
2��(1− �) d� (9)

The heat balance Equation (9) has been derived with the assumption that the temperature �eld is
su�ciently 
at at far upstream (�=0) and downstream (�=1) of the quench front, so that the far-
�eld temperature gradient in the � direction may be neglected. The integral on the right-hand side
of Equation (9) has been calculated by Simpson’s 1=3 rule. Since the integral becomes improper
at �=0, the indeterminate form at this location has been avoided by applying L’Hospital rule. The
absolute di�erence between the right- and left-hand sides of the above equation is �rst divided by
minimum of the two values and then multiplied by 100 to get the percentage di�erence.
If the percentage heat balance so obtained is assumed to be objective function, then the stretch-

ing parameter associated with mapping can be treated as an independent variable. Thus, starting
from an arbitrary base point (�¿0), the variable can be moved towards an optimum based on
sequential minimization of the objective function. To reduce the number of function evaluations,
an optimization technique (Golden Section Search) is used that does not require the derivative of
the function. A tolerance limit of 0.01 per cent change of the function value has been selected,
below which the search process is terminated. The heat balance, achieved through minimization
as above, establishes the accuracy of the temperature �eld obtained and determines the optimal
value of the stretching parameter, �.

RESULTS AND DISCUSSION

The dependence of quench front temperature on Peclet number for various values of Biot number is
shown in Figure 2. �0 is found to increase with increase in Pe and with decrease in Bi; re
ecting the
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Figure 2. Variation of quench front temperature for various Biot and Peclet numbers.

fact that a quench front progresses more easily when the heat transfer to the coolant is increased.
The solution has been compared with the analytical solution of Olek [1]. The numerical results are
in good agreement with the analytical ones for low Biot numbers, while the accuracy deteriorates
as the Biot number becomes large. This is probably due to the existence of the mismatch boundary
conditions (normal temperature gradient, i.e. @�=@�) at the quench front as evident from Equation
(6). Apparently, the strength of the discontinuity increases with increase in Biot number and the
accuracy of the solution deteriorates with increase in Bi. The present �nite element solution may
be bene�cial in case of solving the non-linear rewetting equations arising due to temperature-
dependent thermo-physical properties, whereas a plausible analytical solution may not exist.

CONCLUSION

A numerical solution for solving in�nite domain problems arising out of rewetting analysis has
been suggested. The in�nite physical domain can be mapped to a �nite computational domain
by transforming the governing equation. The value of the stretching parameter used for in�nite–
�nite transformation can be obtained by minimizing the heat balance. Quench front temperature
is observed to increase with increase in Peclet number and with decrease in Biot number. It is
felt that the present solution procedure, in principle, may be extended to other in�nite domain
rewetting problems in various other geometries.

APPENDIX: NOTATION

a; b element sides
Bi Biot number
C speci�c heat
h heat transfer coe�cient
k thermal conductivity
[K] sti�ness matrix
L length of the slab
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N shape function
Pe Peclet number
r; s natural co-ordinate system
t time
T temperature
u quench front velocity
W weighting function
x; y physical co-ordinates
�x; �y co-ordinates in quasi-steady state
X; Y dimensionless co-ordinates in quasi-steady state

Greek symbols

�; 
 upwind parameter
� stretching parameter
� half-thickness of the slab
� density
� dimensionless temperature
�; � co-ordinates after in�nite-�nite transformation

Subscripts

s saturation condition
w wall condition
0 quench front
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