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Abstract: This paper presents a study of the dynamic behavior of a 
multilayered viscoelastic rotor-shaft system, where the material 
damping in different layers of the rotor shaft introduces rotary 
dissipative forces well known to cause instability of the rotor-shaft 
system. For the sake of modelling, material constitutive relationships of 
different layers are represented in the time domain with the help of 
Differential time operators and Anelastic Displacement Field (ADF) 
variables as this combination enables easy representation of general 
linear viscoelastic behaviour. Equations of motion of a rotor-shaft 
system are obtained in time domain after discretizing the shaft- 
continuum by using finite beam elements. The equations thus developed 
have been used to find the stability of a rotor-shaft system in terms of 
Stability Limit of spin-Speed (SLS) as well as the frequency response 
when the rotor-shaft-system is subject to dynamic forcing due to disc-
unbalance. Effect of thickness and placement of viscoelastic layers is 
studied numerically for a 2-layered, 2-disc simply supported rotor-shaft 
system for an example. 

1 INTRODUCTION 
Unlike elastic materials, the viscoelastic materials store energy and also 

dissipate it when subject to dynamic loading. For this reason, viscoelastic materials 
are extensively used for vibration control; [1] has reported many such applications. 

Tangential forces in rotor shaft systems e.g. due to shaft material damping, 
friction forces between disc and shaft in built-up rotors, fluid film forces, steam 
induced forces etc. play an important role to decide dynamic behaviour of rotors. 
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Unlike in structures, spin of rotors introduces rotary damping force or forces, that 
act tangential to the rotor orbit, and is well known to cause instability in rotor-shaft 
systems after certain spin speed. Thus, a reliable model considering all sources of 
tangential forces is indeed necessary to represent the rotor internal damping for 
correct prediction of stability limit of spin speed of a rotor-shaft system. However 
this work concentrates on studying the effect of tangential force due to viscoelastic 
shaft material damping on the dynamics of a multilayered viscoelastic rotor-shaft 
system, which is light, sufficiently stiff and is good for cold operating 
environment.   

Viscous and hysteretic damping models were used by a number of researchers 
e.g. [5],[6],[7] to take into account the frequency dependent and independent portions 
of energy dissipated for representation of shaft material damping. Voigt model (2-
element model) was used to represent the shaft material constitutive relationship by 
[8],[9] who discretized shaft continuum using finite beam elements to derive 
equations of motion and study dynamic behaviour of rotor-shaft systems.  

However both viscous and hysteretic damping models are unsuitable for proper 
representation of viscoelastic material behaviour. In viscoelastic materials, stress 
and strain are not generally in phase under dynamic deformation, the frequency of 
which for cyclic deformation has considerable influence on energy storage and 
dissipation. For this reason, in linear viscoelastic solids, the instantaneous stress is 
obtained by operating the instantaneous strain by the modulus operator E ( ), a 
function of differential time operators; the function being a constant (the Young’s 
modulus) for the special case of linear elastic behaviour. Different multi-element 
spring-damper models [2] like the 2, 3, 4 element models as well as internal variable 
models e.g. Augmenting Thermodynamic Field (ATF) by [3] and Anelastic 
Displacement Field (ADF) by [4] are used to represent the operator and also the 
constitutive relationship of linear viscoelastic material. 

Of few authors reporting viscoelastic rotor models for studying the dynamic 
behaviour of rotors are the reports by [10],[11],[12], where authors of the first used a 3-
element material model and the authors of the latter used ATF approach 
respectively for the constitutive relationship and studying dynamic behaviour of a 
viscoelastic rotor-shaft system discretized with finite beam elements. Recently [13] 
used a generic operator based approach to represent the constitutive relationship 
and derive the equations of motion of viscoelastic rotor-shaft system after 
discretizing the shaft continuum by finite beam elements. While all the approaches 
(multi-element, ATF, ADF) are essentially the same, yet the mathematical 
advantage of using a generic operator approach is that it may be suitably tailored 
according to the material constitutive relationship to obtain the equations of motion 
in time domain.  

The importance of multi-viscoelastic layers arises from using the stiffness, 
damping and specific gravity of different elastomeric materials for tailoring the 
dynamic behaviour of a rotor-shaft system. The multilayered rotor-shaft is assumed 
to be made of a number of perfectly bonded linear viscoelastic layers of several 
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materials. The instantaneous stress for different layers is obtained by operating the 
instantaneous strain by a linear differential time operator. The ADF approach is 
used for writing the constitutive relationships and next the differential time 
operator, where the coefficients of the operator are formed by ADF parameters are 
used to write the equations of motion of a rotor-shaft system after discretizing the 
continuum using finite beam element.  

For an example, the equations of motion of a 2-layered, 2-disc simply supported 
rotor shaft system has been derived and the same has been used to obtain the 
eigenvalues numerically for studying stability limit of the spin speed as well as the 
Campbell Diagram. The equations of motion are further used to study the 
unbalanced vibration response within the stable zone of spin speed. The effect of 
placement of layers as well as their ratio of thicknesses is also studied for getting 
an idea of maximizing the stability limit speed as well as the first critical speed. 

2 CONSTITUTIVE RELATIONS 
The constitutive relationship for each layer is assumed to be represented by a 

single ADF (Anelastic Displacement Field) and obtained from the Helmholtz free 
energy density function, 'H  representing a thermodynamic potential, where the 
total strain is the sum of elastic strain and the anelastic strain. The Helmholtz free 
energy for j

'

th layer is given by equations (1) after following [4] and corresponding 
material constitutive relations are given by equations (2). 

 ( 22 2
1
2

A A A
j j jj j jE EEε εε ε−= +H )  (1) 

 (j A
j jEσ

ε
)jε ε

∂
= =

∂
−

H
 (2a) 

 ( )j

jA A
jj jA

j

E Cσ ε ε
ε
∂

= − = −
∂

H  (2b) 

In the preceding equations, E is the elastic modulus, σ  is the total stress, ε  is 
the total strain, Aσ  is the anelastic stress, Aε  is the anelastic strain,  is the 

anelastic material property and 

AE
AEC

E
=  is a coupling parameter. j represents the 

jth layer  
The relaxation equation (ref.[4]) for jth layer is written as 
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where Bj
, is the inverse of relaxation time for the jth layer and D= / .d dt

 
Putting the 

value of A
jε  from (3b) in (2a), the constitutive relationship is rewritten as 
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It may be seen that the time operator portion of E ( ) yields a non-zero value 
only if the strain is dynamic and gives rise to dynamic stress. 

3 FINITE ELEMENT FORMULATION 
The finite element model of the viscoelastic rotor shaft system is based on the 

Euler-Bernoullie beam theory. A beam element of length ' '  with nodal 
displacement variables is shown in fig. 1. Mechanical and anelastic displacements 
are denoted by , ( 1 to 4) and  (where 

l

i i,y zq q i = k k,z zp p k = 1 to 2) respectively, 

where k ,yp   are the coordinates showing the internal variable (single ADF). kzp

l

x

Fig.  1 A damped beam bending element showing the nodal displacements of two fields
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The displaced cross-section of a multilayer rotor-shaft at any distance ‘x’ from 

the left end is shown in fig. 2, where different layers have been shown with 
different colours. The inner and outer radius of the jth layer are  and  

respectively. Coordinates of the shaft centre at any instant of time,‘t’, are given by 
the coordinates (v(x,t), w(x,t)) along ‘y’ and ‘z’, the transverse directions 
respectively, where ‘x’, ‘t’ are the spatial and temporal variables. Angle‘Ωt’ 
denotes the instantaneous orientation of the radius vector which is the 
instantaneous deflection R(x,t), shown in the fig. 2 as ‘R’ for convenience. An 
infinitesimal element, of thickness ‘dr’, subtending an angle ‘d(Ωt)’ at the centre, 
chosen at a radius ‘r’ and angular location ‘Ωt’, where ‘Ω’ and ‘ω’ denote 
respectively the spin and whirl frequencies of the rotor in radians per second. 

jir jor
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Figure 2: Displaced position of the shaft cross-section
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The mechanical strain εx induced in the infinitesimal element in the ‘x’ 

direction is expressed after following [8] as  

( )[ ] 2

2 ),(cos
x
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−Ω−= ωε  (5) 

Following [8] the bending moments at any instant of time about the y and z-axes 
are expressed as 
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Substituting σx from equation (4) in the expressions for bending moment 
(equations (6a) ) and utilizing the expressions of εx in equation (5), the expression 
for bending moments for N layered rotor are rewritten as 
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After performing the integrations, it can be rewritten as 
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where, Ij is the area moment of inertia of jth layer.  
For the 2-noded finite beam element with 4 degrees of freedom per node the 

displacements v (x,t), w(x,t) along and slopes Φ(x,t), Γ(x,t) about ‘y’ and ‘z’ axes 
are given by equation (7), where the arguments ‘x’, ‘t’ are dropped for convenience 
and ( ){ }q t  denotes the nodal displacement vector. 

 ( ) ( ){ };
Tv

x q t
w

φ
⎧ ⎫

⎡ ⎤=⎨ ⎬ ⎣ ⎦
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;w
x
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Γ =
∂

 (7) 

The differential bending energy is given by 
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may be integrated over the length of the element to obtain the expression of the 
total bending energy, which comprises strain energy and dissipation function, is 
given as 
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At any instant of time, the generalized force vectors due to the bending action 
are obtained, in terms of nodal displacement vector and time derivatives, by 
utilizing the equation (6c) and equation (7) in (8), the bending energy expression. 
The stiffness, circulatory as well as damping matrices (which are commonly 
identified in a rotating system) may be obtained from the expression of generalized 
forces. The diagonal elements of bending moment expression give rise to direct 
elements (e.g. direct stiffness, direct damping matrix) whereas the off-diagonal 
elements give rise to cross coupled elements i.e. circulatory matrix. For an example 
the generalized force vectors in x-y and z-x plane for two layered rotor are given by 
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The expression of [ ]bK  and [ ]cK  are given as 
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, in 

which, ( ) ,xφ⎡ ⎤⎣ ⎦ is the Hermite shape function matrix in x-y and z-x plane. 
By incorporating these forces with the inertia forces, which are obtained from 

the expression of kinetic energy [14], the equation of motion for two layer rotor are 
given as 
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[ ]{ } [ ]{ } { } { }M q G q F P+ =+  (10a) 

In the Eq.(10a) { }P  is the external nodal force vector, 

 
 is the translational mass matrix, 

 is the rotary inertia matrix,  is the gyroscopic matrix. The 

expressions of translational mass matrix, rotary inertia matrix and gyroscopic 
matrix are given below after following 
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where, A & I are the area & moment of inertia of the whole cross section. 
After operating the operand on the nodal displacement vector and time 

derivatives, the equation of motion for constant angular speed is rewritten as. 
[ ]{ } [ ]{ } [ ]{ } [ ]{ } [ ]{ } { }0 1 2 3 4 qA q A q A q A q A B+ + + =+  (10b) 
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It may be noted that the order of differential equations of motion depends on the 
number of viscoelastic layer as well as the material model. 

4 RESULTS AND DISCUSSION 
This section shows the numerical results to study the dynamic behavior of a 

two layered rotor-shaft system. The stability limit of spin speed (SLS) and 
steady state synchronous unbalance response amplitude (UBR) and time 
response have been obtained for two orientations of two layers. 

4.1 The rotor shaft system 
A simply supported two layered rotor shaft with two discs, as shown in the fig. 

3(a), has been considered as an example. Fig. 3(b) shows the cross section of the 
shaft having two concentric layers of different materials of densities ρi and ρo. The 
radius ratio of the section and equivalent density are defined respectively as 

,i

o

r

r
R = ( )i o 1ρ ρρ = + −2

R
2
R  (11) 
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If the inner and outer materials are interchanged keeping the respective masses 
unchanged the radius ratio becomes 
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1′ − 2
R = R  (12) 
As  the whole cross section is filled by the outer material of density 0→R oρ  

and  signifies the cross section is made of inner material of density 1→R iρ . The 
radius ratios are used for finding out their effects and influences on the dynamics 
of a two layered rotor. 

L1

x

y

Fig. 3 Schematic diagram of the rotor

C

z

BA D

L2

Ω
(a)

1 432 5 6 7

ri

ro

(b)  
The materials forming the layers are assumed to be Poly-Vinyl-Chloride (PVC) 

and a polymer ‘X’ and the discs are assumed to be made of PVC. Following [15] the 
material properties of PVC at 24°C are taken as E = 4.0569e07 Pa, ρ = 1390 Kg/m3 
and the viscoelastic parameters in ADF approach are as B = 378.3029, C = 1.8591. 
The corresponding values for polymer ‘X’ at 75°F are E = 1.621e9 Pa, ρ = 1500 
Kg/m3, B = 430.411, C = 1.433 as given in [16]. The length and diameter of the rotor 
are 0.5 m, 0.05 m respectively. The disc dimensions are given in table (1) below. 

 
 Outer diameter 

(m) 
Thickness 

(m) 
Mass unbalance 

(Kg m) 
Node 

Disc 1 0.15 0.030 10e-6 3 

Disc 2 0.20 0.015 10e-6 5 

Table 1: Disc parameters 

4.2 The stability limit of spin speed and Campbell diagram 
Stability Limit of the Spin speed (SLS) of the rotor–shaft system has been 

found out by plotting the maximum real part of all eigenvalues vs. spin speed. 
SLS corresponds to the spin speed when the maximum value of all real parts 
touches the zero line. The first natural frequency (FNF) is obtained by 
intersecting the imaginary part of first eigen value with the synchronous whirl 
(ω = Ω) line. 

Fig. 4 shows the percentage increase of SLS and FNF for various radius 
ratios. Considering SLS and FNF the shaft performance is good when PVC is 
inside and polymer X forms the outside layer. This is obvious as polymer X is 
much stiffer than PVC and is placed outside. The SLS and FNF increase with 
radius ratio however after certain radius ratio, it decreases again. The equivalent 
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density increases with radius ratio. So there is a critical radius ratio for which 
maximum SLS and FNF can be achieved. 
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Fig. 4: Stability limit of spin speed and first natural frequency 

The Campbell diagram of a rotating shaft is the plot between the eigen-
frequency versus spin speed. Fig. 5 shows the Campbell diagram for different 
radius ratio when PVC is the inner layer. Only the forward and backward whirl 
for first displacement mode has been drawn. Due to gyroscopic effect the two 
whirl speed diverge at higher spin speed. It is seen from the figure that the value 
of eigen-frequency increases with high value of radius ratio. 

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

200

400

600

800

1000

1200

1400

1600

1800

2000

2200
PVC inside

Ω  (rpm)

ω
 (r

pm
)

 

 

ℜ = 0.3

ℜ = 0.2

ℜ = 0.0

Backward whirl
Forward whirl

ω = Ω

 
Fig. 5: The Campbell diagram 

4.3 The synchronous unbalance response 
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The maximum real part of all eigenvalues vs. spin speed is plotted in fig. 
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6(a), for different radius ratios, keeping PVC as the inner layer. When it touches 
the zero line, the system becomes unstable and does not reach any steady state. 
It is seen from figure that the SLS as well as relative stability increase with 
increase in radius ratio as system becomes stiffer. Steady state synchronous 
Unbalance Response Amplitude (UBR) of the second disc is plotted in fig. 6(b) 
within the respective stable speed zones of operation (i.e. below the unstable 
zone marked by UZ). With increasing value of the radius ratio, the response 
amplitude decreases, as the shaft becomes stiffer.  

Fig. 7 shows the time response of the second disc due to unbalance for two 
different radius ratios, when the rotor is assumed to rotate at about a speed of 
1000 rpm. The rotor orbit is found to increase in amplitude monotonically for 

= 0.3 and quenches for = 0.5. This is due to the fact that spin speed in the 
first case is above, and in the second case, below the SLS.  
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Fig. 6: UBR at second disc within stable zone  
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5 CONCLUSIONS 
This paper reports a study of dynamics of rotors made of multilayered linearly 

viscoelastic materials. Building the equations of motion by taking into account the 
constitutive relationship of each layer in terms of a function of differential time 
operators forms the primary contribution. Finite element method is used to 
discretize the continuum. The material property or the constitutive relationship as 
well as the number of layers decide the order of the differential equations of 
motion. An eigen-analysis has been reported in this work, however, an important 
and interesting task of eigen-vector analysis or the analysis of modes demands 
careful attention particularly for higher order problems as in this case. The layers 
should be arranged in the order of increasing stiffness from inside to outside. The 
results show, that optimum values of thickness of different layers, as well as their 
placements are important; hence an optimization technique may be used for a given 
purpose. Lastly the inspiration for using the multilayered architecture and the 
associated formulation is obtained by appreciating the importance of light, yet 
sufficiently strong rotor-shafts, at least for the cold working environments.  

REFERENCES 
[1]  Nakra B.C., “Vibration Control in Machines and Structures using 

Viscoelastic Damping”, Journal of Sound and Vibration, vol. 211(3)., pp. 
449-465, 1998. 

[2]  Bland D.R., “Linear Viscoelasticity”, Pergamon Press, Oxford, 1960. 
[3]  Lesieutre G.A. and Mingori D.L., “Finite Element Modelling of 

Frequency-Dependent Material Damping Using Augmenting 
Thermodynamic Fields", AIAA Journal of Guidance, Control and 
Dynamics, vol. 13(6)., pp. 1040-1050, 1990. 

[4]  Lesieutre G.A., Bianchini E. and Maiani A., “Finite Element Modelling of 
One-Dimensional Viscoelastic Structures Using Anelastic Displacement 
Fields," Journal of Guidance and Control, vol. 19(3)., pp. 520-527, 1996. 

[5]  Dimentberg M., “Flextural Vibration of Rotating Shafts”, Butterworth, 
London, England, 1961. 

[6]  Tondl A., “Some Problems of Rotor Dynamics”, Prague Publishing House 
of Czechoslovak Academy of Sciences, pp. 17-69, 1965. 

[7]  Genta G., “Dynamics of Rotating Systems”, Springer Verlag, 2005. 
[8]  Zorzi E.S. and Nelson H.D., “Finite Element Simulation of Rotor-bearing 

Systems with Internal Damping”, Journal of Engineering for Power, 
Transactions of the ASME, vol. 99., pp. 71-76, 1977. 

[9]  Ozguven H.N. and Ozkan Z.L., “Whirl Speeds and Unbalance Response of 
Multibearing Rotors Using Finite Elements”, Journal of Vibration, 
Acoustics, Stress, and Reliability in Design, Transactions of the ASME, 
vol. 106., pp. 72 -79, 1984. 



H. Roy, J. K. Dutt, S. Chandraker  

 
 

12

[10]  Grybos R., “The Dynamics of a Viscoelastic Rotor in Flexible Bearing.” 
Archive of Applied Mechanics, Springer Verlag, vol. 61., pp. 479-487, 
1991. 

[11]  Roy H., Dutt J.K. and Datta P.K., “Dynamics of a Viscoelastic Rotor 
Shaft Using Augmenting Thermodynamic Fields — a Finite Element 
Approach”, International Journal of Mechanical Sciences, vol. 50., pp. 
845-853, 2008. 

[12]  Friswell M.I., Dutt J.K., Adhikari S. and Lees A.W., “Time domain 
analysis of a viscoelastic rotor using internal variable models”, vol. 52., 
pp. 1319–1324, 2010. 

[13]  Dutt J.K. and Roy H., “Viscoelastic Modelling of Rotor-Shaft Systems 
using an operator based approach”, Journal of Mechanical Science, 
IMechE, Part-C, vol. 224., pp. 73-87, 2011. 

[14]  Rao J.S., “Rotor Dynamics”, New Age International Publishers, 1996. 
[15]  Roy H., “Study of Dynamics of Viscoelastic Rotors-A Finite Element 

Approach”, Ph.D. Thesis from Indian Institute of Technology, 
Kharagpur, India, June 2008. 

[16]  Roy H., Dutt J.K., Datta P.K., “Dynamic Behaviour of a Viscoelastic 
Beam using ATF and ADF – A Finite Element Approach”, Accepted for 
publication in the Advances in Vibration Engineering Journal, 2011. 

 
 
 
 
 


