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Effects of axial conduction in the fluid on
cryogenic regenerator performance
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Although axial conduction in the matrix has been recognized as a major source of
irreversibility in cryogenic regenerators, axial conduction in the fiuid phase has largely been
neglected. However, in spite of the negligible intrinsic thermal conductivity of most gases
the effective conductivity of the gaseous medium in a porous bed may be quite significant,
due to eddy diffusion and the consequent mixing of sections of gas at different temperatures.
The governing equations of a thermal regenerator have been written in terms of the reduced
length, A, reduced period, I1, and an axial conduction parameter, A, which depends only on
the void fraction and the bed length to particle diameter ratio for a flow Reynolds number
Re > 2. Numerical solutions, using the finite difference technique developed by Willmott
and co-workers, have been obtained for several values of the three parameters. It has been
established that axial conduction in the fluid phase is important, particularly when the design

reduced length A > 1/4.
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A regencrator essentially consists of a porous medium
called the matrix, through which a hot and a cold fluid
flow alternately. The exchange of encergy between the two
fluid streams takes place by heat transfer from the hot
fluid to the matrix and subscquent transfer to the cold
fluid. This is why regenerators are often called storage-
type heat exchangers, in contrast with recuperators or
transfer-type heat exchangers.

Regenerative heat exchangers have been used in hot-air
engines, Cowper stoves in steel making, gas turbines and
air separation systems. In recent years, they have been
used extensively in small cryogenic refrigerators based on
the Stirling, Gifford McMahon and similar cycles, in
which they constitute the most important components.
The classical design procedure for regencrators has been
given by Hausen'. The cffectiveness is expressed graphi-
cally in terms of two dimensionless parameters, reduced
Jlength, A, and reduced period, 1, defined as
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where:
h = hcat transfer coefficient (W m~2 K71

A = heat transfer area per unit volume (m2 m™3)
L =length of regenerator (m)

P = time period for hot/cold blow (s)

G = fluid mass velocity (kgm™2s71)

p.. = density of the matrix (kg m™3)

Cn. C, = specific heats of matrix and fluid respectively
Jkg ' K™Y

Ideal regenerator model

Hausen’s derivation of the governing equations is based
on an idcalized modect of the regencrator first proposed by
Schumann?. This model is based on the following
assumptions:

1 fluid flow through the regenerator is parallel and
uniform throughout any cross-section;

2 the thermal conductivity of the matrix is zero in the
direction of fluid flow and infinite perpendicular to it.
Therefore, the regenerator may be characterized by
the temperature profile along the flow axis, the
temperature being uniform over any cross-section;

3 thereis no conduction of heat through the fluid in the
axial direction;

4 thc convective heat transfer coefficient is constant
throughout the regencrator;

5 the thermal properties of the fluid and the matrix
materials are constant;

6 fluid hold-up and pressure cycling have no effect on
the performance of the regenerator;

7 no phase change of the working fluid takes place
within the regenerator;

8 the boundaries are adiabatic and there is no heat
exchange with the surroundings;
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9 the regenerator is in balance operation, that is,
G,=G¢cand P, = P¢; and
10 regular periodic conditions have been established for
all matnix elements.

In a real regenerator, however, some of these idealiz-
ations are not strictly valid, particularly assumptions 2
and 3 (above) regarding zero axial conduction through the
matrix and the fluid. The significant effect of axial
conduction in the matrix is particularly evident in the
works of Bahnke and Howard?. They have expressed the
matrix axial conduction effects in terms of a non-
dimensional parameter, 4, = k.,/(GC,L), and computed
the performance of the regenerator in terms of A, IT and
/m. The axial conduction effects have been found to be
particularly dominant at higher values of A.

Axial conduction in the fluid phase

The effect of axial conduction in the working fluid,
however, has largely been neglected in analytical studies
in view of the small intrinsic {(molecular) conductivity of
most gases. However, when a gas flows through a packed
bed there is eddy diffusion and conscquent mixing of fluids
in the axial direction. Just as molecular diffusion is related
to molccular conductivity, eddy diffusion also causes an
cquivalent thermal conductivity in the axial direction.
Since heat and mass transfer take place by the same
mechanism, the mass diffusivity, D, and the thermal
diffusivity, a = k/pC,,, including both molccular and eddy
components may be assumed to be the same quantity®.
Thus, the Lewis number, Le = a/D, is assumed to be unity.

The mechanism of eddy energy transport through
packed beds has been extensively studied several years
ago®* “®. Onc of the most significant works in this arca is
that by Edwards and Richardson®. Based on extensive
experimental results, they derived an empirical correl-
ation between the longitudinal dispersion cocfficient, D,
and the Reynolds number, Re, as

Pe = [(0.38/Re) + (0.5Re/(5.0 + Re))] ™! (2

where the two dimensionless quantitics, Re and Pe, arc
defined as

Re = Gd,/u

and
Pe=Gd,/fipD = Gd,/fpa=Gd, C,/Bk 3)

where:

d, = particle diameter (m)
u = viscosity (kgm~!s7!)
fi = porosity (void fraction) of the matrix (dimension-
less)
k = equivalent thermal conductivity of the fluid (W m~
K™Y
p = average fluid density (kg m™3)

1

A plot of In(Pe) versus In(Re) shows® a power law
dependence for Re < 2 and a constant value of Pe(Pe x 2)
for Re> 2.

A dimensionless axial conduction parameter can be

defined as

Lk d, \
"= GC,L "~ PepL @

When the flow Reynolds number is > 2, 4 may be written
as

A= d, 5

T28L ©)
Thus the axial conduction parameter. 4, depends only on
the void fraction, f, and the dimensionless quantity, L/d,.
when. for the fluid, Re > 2.

Example. Consider a cryogenic regenerator, 30 mm in
diamcter and 300 mm long. filled with lead balls of | mm
diameter with a helium flow ratc of 0.1 g s ™' atan average
temperature of 40 K and 10 atm* pressure. Using the
Edwards and Richardson correlation®, we can compute
the effective thermal conductivity of the fluid phasc.
Taking the viscosity of helium at 40K as
5.5x107° kg m™' s™! (reference 7) and the porosity of
a randomly packed bed of spheres as 0.39 (reference 8)
we get Re=Gd /u=257. Hence, Pe=2 and i=
1/(2 x 0.39 x 300) = 0.0043.

Mathematical model

The present regenerator model is the same as the Schu-
mann model?, except that it excludes the assumption that
there is no conduction of heat through the fluid in the
axial direction i.c., in this Paper, the axial conduction in
the fluid phasc is considered to be finite. By considering
encrgy conservation relations over a differential element
of the regencrator, the dimensionless governing equations
are derived as follows

a0,

= = 0 —0.) (6)

and

g(ﬁ=/\(0,,, —0)+1
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where

90,
W ‘7’
0=(T-T)T, — T,)
y=y*/L
t=1*/P

(dimensionless temperature)
(dimensionless axial distance)
(dimensionless time co-ordinate)
T, and T; are the inlet temperatures of the hot and cold
fluids, respectively. During the hot and cold blow periods

the associated boundary and periodicity conditions are,
respectively,

Oly=0,0=1
and
0y=11)=0

*1 atm =101 kPa



and for0<y <1

On(v.t+2)=6.(y. 1)

Numerical solution

Numerical scheme

Referring to the grid array shown in Figure [ and
following the method developed by Willmott®'°, Equa-
tions (6) and (7) may be put in finite difference form

Onli. )= 0,0 j— 1)+ 0.SMA[Oi, j — 1)+ O4di, j)
=0l j~ D) =0, j)] ®)
and
Oi. j) = 0di — 1. ) + O.SAAY0,(i = 1. j) + 0,(i. j)
—0di— 1, jy = 0di, )] + 2A_v [0 -2, ))
= O = 1 jy=0di, j) + O + 1., )] )
where i and j refer to the length and time co-ordinates,
respectively, during the hot blow period. Equations (8)
and (9) may be simplitied to give 0,0, j) and 0, j)
explicitly in the following form
O 0i. ) =C 000 j - 1)+ Co00i, j = D)+ Cy0di, j) (10

and

Oi, )= D06 — 1)+ D, 0.6, j) + D0, = 2. )
+ D0~ 1 j)+ DsOdi + 1, j) (1

where
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Figure 1 Grid array used in the numerical solution

and

A AAyy A A(Ay)?
D4=<A_v—-§— 5 )/<§+A_v+ (2}>

During the cold blow period, i and j are replaced by fand g
for length and time co-ordinates, respectively, f being
counted from the cold end.

The boundary and reversal conditions are now ex-
pressed as follows. Boundary conditions: during the hot
blow period

0. )=1 1<j<N+1

and during the cold biow period

04l g)=1 1<g<N+1

Reversal conditions: at the end of the hot blow period
0 D=0 M+2—f. N+1)

and at the end of the cold blow period

O, D=0 (M+2~i, N+1)

Peniodicity condition for all f

ABSLL0Wf N + D}y = (00 N + D}y -1y 1<

where & is an crror parameter and subscripts ¢y and
(cy — 1) refer to the present and previous cycles, respec-
tively. While Equations (10) and (11) work well for
intermediate values of i, they fail at the boundaries. In
particulitr, it may be seen that 0fi— 2, j) at i=2 and
Odi + 1, jyat i =M + | arc undefined. Therefore, special
forms of Equation (11) have to be used while computing
02, jy and 0(M + 1, j). The finite difference form of
(¢20,/0y?) used to derive Equation (9) uses an average
value of (220/0y?) between grid points (i, j) and (i — 1, j). At
the boundarics one of these terms becomes undefined.
Thercfore, assuming that (720,/0y?) remains constant over
at least one grid spacing, Ay, the following applies ncar the
boundaries

)] 1 ) . .

5),; = Ay LOd10) = 2042, j) + 0,3, )]

and

(ﬂ()r ! . . .
prel = W[Or(M = 1,j)=204M, j) + 0(M + 1, j)]

for i=2 and M + 1, respectively. Thus, for points (2, j)
and (M + 1, j), Equation (11) reduces to the following
special forms

OI’(Z' .1) = Dla()m“’j) + Dlaom(zvj) + D4aof(lsj)

+ D5, 043. )) (11a)
and
O0(M + 1, j) =D ,0(M, j) + D;,0(M + 1, j)
+ D3 0dM — 1, j) + D4, 0M, j) (11b)
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In the numerical solution process, Equations (11a) and
(11b) replace Equation (11) while computing 042, j) and
0(M + 1, j), respectively.

A(Ay)?
D, =D,, = (2' )

Solution procedure

Starting with an arbitrary initial matrix temperature
profile, Equations (10) and (11) [or (1 la)fori=2and (11b)
fori= M + 1] arc uscd to compute the matrix and the gas
temperatures over the grid array shown in Figure 1. The
initial matrix temperature profile is estimated by the
following procedurc. An initial estimate of the overall
cfliciency of thc regencrator is made using Tipler's
formula’

A n
& = ﬁtanh T3

The boundary temperatures at the start of the hot blow
period are assumed to be

(12)

0.1, 1)=2¢; -1
and
0. M+1,1)=0

A linear profile between these two boundary temperatures
is assumed, thus

0,(i, 1)=0,(1, 1)+ [0(M + 1, 1) —
=(2er — IYM + 1 —i)/M

0n(1, D) = 1)/M
(13)

Starting with this initial temperature profile and the
relevant boundary conditions, 0,(i, j) and G, j} are
evaluated column by column.

When using Equation (11) for the evaluation of (i, j),
O(i + 1, j) is needed. Hence, a gas temperature profile is
guessed initially for each column, these are then corrected
by an iterative procedure till all the 0; values converge
within 1 x 1073, When one column is complete, the
solution proceeds to the next until j = M + 1. At this point
the reversal conditions are used to set the initial condition
for the cold blow period. At the end of the cold blow
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Figure2 Ineffectiveness shown as a function of reduced length, A.
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period, reversal conditions are again used to provide the
initial condition for the hot blow period.

The resulting matrix temperature profile 1s compared
with the corresponding profile at the beginning of the
previous cvcle. Cyclic equilibrium is achieved when the
two matrix temperature profiles agree within an error of
1.0 x 107*, Sometimes a large number of cycles are
nceded before equilibrium is reached. In such cases, the
acceleration scheme proposed by Willmott and Kulak-
owski'' has been used to reduce computer time. Six
normal cycle calculations are performed between two
acceleration steps. This eliminates the perturbations
caused by the acceleration process.

When convergence 1s finally achieved for the entire
temperature profile, the average exit temperature of the
fluid over a hall cycle is computed by the following
formula

l P
0= | OdL.0)dt
(= p '[) AL 1)
Numerically, 8, is computed by integrating 0dM + 1, j)
using Simpson’s rule. The efficiency is related to the
average exit temperature by

£=(1 = Ohormiow = (etabiow

Results and discussion

Computed inctliciencies (1 —¢) have been plotted in
Figures 2a to ¢ against reduced length, A, for several
vidues of reduced period, TIH{TT= A/8, A/4 and A 2) and
axial conduction parameter, A(4 = 0,0.001 and 0.005). For
A =0, that is, in the absence of axial conduction, the
computed values are identical to those given by Hausen',
But for finite values of the axial conduction parameter, 4,
the ineffectiveness s significantly higher. When A > 1/4,

the ineffectiveness 1s mainly determined by the latter
parameter and 1s fairly independent of regenerator size,
denoted by reduced length A.

Looking at the example discussed earlier. the axial
conduction parameter was found to be 0.0043. Assuming
A =500 and I = A 8. which arc quite common in cryo-
genic practice, from Figure 2a we find that the resulting
ineffectiveness is almost twice that occurring in the
absence of axial conduction. Thus axial conduction in the
fluid phasc. caused mainly by eddy diffusion, plays a
significant rele in high A regenerators and it should be
considered along with effects such as axial conduction in
the matrix. fluid hold-up and pressure cycling.
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