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Abstract—Today the software industry may be the fastest 

growing industries in the world. As the industry grows the size 

and cost of the software are also increasing. Hence there is need 

of effective techniques for cost estimation in order to control the 
costs and make the software more competitive. The software 

development techniques are also changing, and now- a- days most 

of the companies using object – oriented techniques for software 

development. UML diagrams are used for analysis and design of 

a software and different UML constructs can be used at different 
stages of software development for estimation of resources like 

efforts & cost etc. Use case point and class point analysis were 

accepted for the estimation of object-oriented software. In class 

point analysis some unknown constants are multiplied with 

known values of product attributes, like no. of methods, classes 
etc. These add impurities to the estimation model. So in this 

paper we have applied Artificial Neural model for estimation 

directly from known attributes and we find that it gives good 

results than class point analysis. 

 

Keywords-Effort estimation; Artificial Neural Networks; Use 
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I.  INTRODUCTION  

Now-a-days Object oriented technology is becoming very 

popular in  software development industry. It is because of the 

features offered by OO programming like Encapsulation, 

Inheritance, Polymorphism, Abstraction, Cohesion and 

Coupling. Modern OO software development technologies 

such as .NET and Java are rich of features those are capable of 

developing highly maintainable, reusable, testable and reliable 

software [16]. 

  

Apart from the advantages of OO technique mentioned above, 

these features are producing obstacles for cost and effort 

estimation of the software. Traditional software estimation 

techniques like COCOMO and Function Point Analysis have 

proven unsatisfactory for measuring cost and effort of all types 

of software [4]. The Lines of Code (LOC) and the Function 

Points (FPs) were both used for procedure oriented software 

projects. But this concept conflicts with the object-oriented 

paradigm. Procedure oriented design split data and procedures 

while object-oriented design combines them. There are 

multiple dimensions that an OO metric must have if it is to 

provide accurate effort or cost prediction. It is important to 

measure the amount of raw functionality the software delivers, 

but it is equally important to include information about 

communication between objects and reuse through inheritance 

in the ‘size’ as well.  

 

Need of accurate estimation is always important for bidding for 

a contract or determin ing whether a project is feasible in the 

terms of a cost-benefit analysis. In present scenario most of the 

project planning depends upon estimates. Here we are try ing to 

develop an ANN based estimation model similar to Class Point 

Analysis, but with better prediction accuracy. 

 

II. REVIEW OF UML BASED EFFORT 

ESTIMATION 

Software effort estimation is the process of predicting the 

most realistic use of effort required to develop or maintain 

software. Effort estimates are used to calculate effort in work-

months (WM) for the Software Development work elements of 

the Work Breakdown Structure (WBS).  

 

The OO paradigm presents some critical challenges to software 

effort and cost estimation. Since object oriented development 

methods are not perfectly match with the way software is 

developed outside of the OO paradigm. OO development 

requires not only different approach to design and 

implementation, it requires a different set of software metrics. 

  

Function Point metrics are used for traditional procedural 

paradigm software, but those are not efficient enough to 

describe OO software. To find the solution we have to move 

upstream in the software development process to requirement 

analysis and design. Currently UML diagrams are widely used 

in the software development industry for requirement analysis 

and detail design before going for coding. 

A.  UML Diagrams 

UML is a modeling tool which is used by software 

professionals all over the world for visualizing, specifying, 
constructing, and documenting the artifacts of a software-

intensive system. It is a graphical notation used for object-
oriented analysis and design [2]. One of the purposes of UML 

was to provide the development community with a stable and 
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common design language that could be used to develop and 

build computer applications. 

B. Use of UML Diagrams in Estimation[17] 

 
Macro lifecycle: 

 

 

 

 

 

      + 50%                     + 25%                           + 10% 

Figure 1.  Typical cost estimating accurecies 

    In itially, at the beginning stage, we may be presented with a 

vague definition of the project.  Though the requirements may 

not yet be fully understood, the general purpose of the new 

software can be recognized.  At this point, estimates with an 

accuracy of plus or minus fifty percent are typical for an 

experienced estimator using informal techniques (i.e., historical 

comparisons, Delphi Method, and so on). After the 

requirements are reasonably well understood, a function-

oriented estimate can be prepared.  At that point, estimates with 

an accuracy of plus or minus twenty-five percent are typical for 

an experienced estimator, using above techniques. Finally, after 

the detailed design is complete, an implementation-oriented 

estimate may be prepared.  This estimate is typically  accurate 

within plus or minus ten percent. So we can conclude that 

estimation after detailed design is usually more accurate.  

 

UML is a widely recognized software design tool. There are 

several diagrams in UML, but we focus mainly  on use case 

diagram and class diagram. While functional requirements are 

captured through use case diagram, detail design information is 

provided in class diagrams [2]. 

C. UML based estimation techniques 

 

USE CASE POINTS 

 

The early work starts from use case points, which was first 

given by Karner in 1993  as a software project effort estimation 

model[2].  Use case diagrams contain the functional behavior 

of the target system, determined during the requirement 

analysis phase. UCP effort estimat ion is an extension of 

existing estimation methods, such as function point analysis.  

In this process, first of all actors are characterized as simple, 

average or complex and the total unadjusted actor weight 

(UAW) is calculated by counting the number of actors in each 

category, multiply ing each total by its specified weighting 

factor, and then adding the points. Next, categorization of the 

use cases is done as simple, average or complex, depending on 

the number of transactions, including the transactions in 

alternative flows. Then the unadjusted use case weights 

(UUCW) are calcu lated by Next, the use case points are 

adjusted based on the values assigned to a number of technical 

factors and environmental factors. Each factor is assigned a 

value between 0 and 5 depending on its assumed influence on 

the overall project. Th is step has 3 different formulae:  

 

1.  The Technical Complexity Factor:     

TCF = 0.6 + (.01 * Tfactor)  

2.  The Environmental Factor:       

EF = 1.4 + (-0.03 * Efactor)  

3.  Adjusted use case points:    

UCP = UUCP * TCF * EF  

CLASS  POINTS 

 

The Class Point approach provides a system-level estimation of 

the size of OO products [2]. It has been conceived by recasting 

the ideas underlying the FP analysis within the OO paradigm 

and by suitably combining well-known OO measures based on 

design documentation. In particular, two measures are 

proposed, named CP1 and CP2. CP1 is meant to be used at the 

beginning of the development process to carry out a 

preliminary size estimat ion, which can be later refined by 

applying CP2 when more information is available. The Class 

Point size estimation process is structured into three main 

phases, corresponding to analogous phases in the FP approach.  

 

During the first step the design specifications are analyzed in 

order to identify and classify the classes into four types of 

system components, namely the problem domain type, the 

human interaction type, the data management type, and the task 

management type.  

 

During the second step, each identified class is assigned a 

complexity level, which is determined on the basis of the local 

methods in the class and of the interaction of the class with the 

rest of the system. This is achieved by exploiting suitable 

measures for OO classes. The measures and the way they are 

used to carry out this step represent the substantial difference 

between CP1 and CP2. Indeed, in CP1 the complexity level of 

each class is determined on the basis of the Number of External 

Methods (NEM)[2] and the Number of Services Requested 

(NSR). In CP2, besides the above measures, the Number Of 

Attributes (NOA) measure is taken into account in order to 

evaluate the complexity level of each class.  

 

Once a complexity level of each class has been assigned, such 

information and its type are used to assign a weight to the class. 

Then, the Total Unadjusted Class Point value (TUCP) is 

computed as a weighted sum. Finally, the Class Point value is 

determined by adjusting the TUCP with a value obtained by 

considering global system characteristics as in FPA.  

 

1.  The Technical Complexity Factor:     

TCF = 0.55 + (0.01 * TDI)  

2.  Class Points:    

CP = TUCP * TCF 

 

Concept 
Oriented 

Estimate 

Function 
Oriented 

Estimate 

Implementation 
Oriented 

Estimate 
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D. Comparision of Use Case Point and Class Point 

TABLE I.  COMPASION[2]  

METHOD PROS CONS 

USE 

CASE 

POINTS 

-Simple, easy to apply method. 
 
- Provides 13 technical, 8 

environmental factors for 
guidance. 

 

- Lacks information, only 
counting the number of actors 
and use cases. 

 
- Not addressing a change in 
requirements or use cases. 
 

- TCF & EF is outdated. 

CLASS 

POINTS 

- Exploiting many UML 
diagrams. 
 
- Method can be totally 

automated and its output is in 
terms of SLOC, so can be 
compared with well known 
standard like FP.  

- Uses expert decision on 
component type, complexity 
level, degree of influence etc, 
which are highly dependent 

on the expert’s decision. 
 
- Goes deep into UML design, 
i.e. sequence and state 

diagrams, hence makes it  a 
late design activity instead of 
early analysis one. 

 

III. MOTIVATION  

 
Drawback of Class Point Analysis 

  In Class Point Analysis both the forms CP1 and CP2 are 
based on three object oriented metrics - NEM, NSR and NOA. 

The class complexities are measured through these three 
parameters. Then Total Unadjusted Class Points (TUCP) is 

computed by multiply ing the no. of classes in each category 

with weighting values. Finally this is mult iplied with Technical 
Complexity Factor (TCF) to produce the CPs. So the basis of 

Class Point Analysis is those three metrics. If we can predict 
the effort from these values only then the accuracy should 

increase. We have planned to use Artificial neural network for 
effort estimat ion of OO projects using OO metrics, i.e. NEM, 

NSR and NOA [2].  

NEM 

The Number of External Methods (NEM) measures the size of 

the interface of a class and is determined by the number of 
locally defined public methods.  

NSR 

The Number of Services Requested (NSR) provides a measure 

of the interconnection of system components. It is again 
applicable to a single class and is determined by the number of 

different services requested from other classes. 

NOA 

When computing CP2, the number of attributes is also taken 

into account in order to evaluate the complexity level of a class. 

Can we use ANN? 

Artificial Neural Network is used in effort estimation due to 
its ability to learn from previous data. It is also able to model 

complex relationships between the dependent (effort) and 

independent variables (cost drivers). In addition, it has the 

ability to generalize from the training data set thus enabling it 
to produce acceptable result for previously unseen data [10]. 

IV. ARTIFICIAL NEURAL NETWORKS  

Artificial Neural Network (ANN) is a massively parallel 

adaptive network of simple nonlinear computing elements 
called Neurons, which are intended to abstract of the human 

nervous [9,14,15]. An artificial neural network comprises of 
eight basic components (i)neurons, (ii)activation function, 

(iii)signal function, (iv)pattern of connectivity, (v)activity 
aggregation rule, (vi) activation rule, (vii) learning rule and 

(viii)environment [12]. 

x1                                                                          bk                                   

                                                                  Activation function 

x2                                                                                             Uk                                 Output(Yk) 

..  ..                     Aggregation Rule                                       

xm                                                                 

              

Figure. 2.  Architecture of an artificial neuron 
 

In mathematical notation, any neuron-k  can be represented 
as follows: 

 
          

and
         

 

where x1 ,x2, …,xm are the input signals , wk1,wk2,….,wkm 

are the synaptic weights of the corresponding neuron, uk is the 
linear combiner output, bk is the bias, φ(.) is the activation 

function  and  yk is the output signal of  the  neuron. 

 After an ANN is created it must go through the process of 

learning or training. The process of modifying the weights in 

the connections between network layers with the objective of 

achieving the expected output is called training a network. 

There are two approaches for training– supervised and 

unsupervised [14,15]. In supervised training, both the inputs 

and the outputs are provided. The network then processes the 

inputs, compares its resulting outputs against the desired 

outputs and error is calculated. In unsupervised training, the 

network is provided with inputs  but not with desired outputs. 

The system itself must then decide what features it will use to 

group the input data [9]. 

A. ANN Architecture 

Depending upon the architecture the ANN is of two types. 
A feed-forward ANN, is the architecture in which the network 

has no loops. But feed-back  (recurrent) ANN is an architecture 

in which loops occurs in the network [14,15]. An ANN can be 
a single-layer perceptron or a multi-layer perceptron. In single 

layer perceptron consists of a single layer of output nodes, the 
inputs neurons are connected directly to the outputs neurons via 

a series of weights. But in mult i layer perceptron an additional 
layer of neurons present between input and output layers. That 

layer is called hidden layer.  Any number of hidden layers can 

be added in an ANN depending upon the problem domain and 

Wk2 

 

Wkm 

∑ 

Wk1 
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accuracy expected. In this paper we have used multiple layer 

feed forward ANN for simulation. 

       

      Feed-forward                            Feed-back 

Figure. 3.  Architecture of an artificial neuron network(ANN) 
 

Most of the work in the application of neural network to effort 

estimation made use of feed-forward  mult i-layer Perceptron, 

Back-propagation algorithm and sigmoid function. However 

many researchers refuse to use them because of their 

shortcoming of being the “black boxes” that is, determining 

why an ANN makes a particular decision is a difficu lt task. 

But then also many different models of neural nets have been 
proposed for solving many complex real life problems  [11] . 

The 7 steps for effort estimation using ANN can be 

summarized as follows: 

Steps in effort estimation 

1. Data Collection:      Collect data for prev iously  

developed projects like LOC, method used , and other 

characteristics. 

2. Division of dataset: Divide the number of data into 

two parts – training set & validation set. 

3. ANN Design: Design the neural network with number 

of neurons in input layers same as the number o f 

characteristics of the project. 

4. Training: Feed the train ing set first to train the neural 

network. 

5. Validation: After train ing is over then validate the 

ANN with  the validation set data. 

6. Testing: Finally test the created ANN by feeding test 

dataset. 

7. Error calculation: Check the performance of the  

ANN. If satisfactory then stop, else again go to step 

(3) ,make some changes to the network parameters 

and proceed. 

 
Once the ANN is ready, simulat ion with the ANN  can be 

conducted with  the parameter of any new project, as show in 

fig.4 and it will output the estimated effort for that project. 

                        Input layer             Hidden layer        Output layer    

 
  NEM 
                                                                                                  EFFORT 

  NOA 
 
  NSR 
   

 
Figure. 4.  Diagram of feed-forward multilayer ANN used in this paper 

V. RELATED WORKS 

        Gennaro Costagliola, et al.[1] had proposed the concept 

of Class Point . In  this approach he had presented a FPA like 

approach for OO software project. He had used two 

measurements of size ,CP1 & CP2. CP1 is for estimation at 

the beginning stage of development and CP2 is for later 

refinement when more information is available. He had 

considered three metrics NEM, NSR and NOA to find the 

complexity of a class.  Here he had proposed 18 system 

characteristics to find Technical Complexity. From the 

experiment over 40 pro ject dataset he found that the 

aggregated MMRE of CP1 is 0.19 and CP2 is 0.18.  

 

Wei Zhou and Qiang Liu [6] in the year 2010 has extended the 

above paper in two ways. First they have added a size 

measurement named CP3 based on CPA. Second, in-order to 

improve the precision of estimat ion , they have taken 24 

system characteristics instead of 18 in the previous one. From 

this they found that where the original CP1 gives MMRE 0.22 

, this give 0.19 and incase of CP2 it was 0.18 , now it  is 0.14.  

 

S.Kanmani, et a l. [7] has used the same CPA with a little 

change, by using neural network in mapping the CP1 and CP2 

into effort. In the base paper of Gennaro[1],he had used 

regression method to find the values of the constants that can 

be multip lied and added with computed CP1 and CP2 to find 

the effort. Here in this paper Kanmani has used neural network 

to find those values. The aggregate MMRE is improved from 

0.19 to 0.1849 for CP1 and from 0.18 to 0.1673 for CP2. 

VI. EXPERIMENT 

A. Dataset  Preparation 

We have used data from 40 Java systems developed during 

two successive semesters of graduate courses on Software 

Engineering [1]. Table II reports the data of the 40 pro jects, 

having attributes Effort (EFH), CP1, CP2, NEM, NSR and 

NOA. Thus, the first ten projects form the first test set, the 

subsequent ten projects form the second one, and so on. 

B. ANNs  Preparation 

In this experiment we have created a feed-forward neural 

network, as shown in fig.5 and compare it ’s performance with 

Class Point Approach. MATLAB10 NN tool is used for this 

experiment. For the neural networks 3-5-1 arch itecture is used, 

i.e. 3 neurons in input layer, 5 neurons in hidden layer and 1 

neuron in output layer. Train ing algorithm used is ‘trainlm’. 

For training the dataset is divided into three divisions -for 

training 32(80%), for validation 4(10%) and for testing 

4(10%). Stopping criteria was set by number of epochs as 

1000 and goal as 0.00. 

 
Figure 5.  The Feed-Forward  ANN using  MATLAB 
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TABLE II.  DATASET   

Project No. EFFORT CP1 CP2 NEM NOA NSR 

1 286 103.18 110.55 142 170 97 

2 396 278.72 242.54 409 292 295 

3 471 473.9 446.6 821 929 567 

4 1016 851.44 760.96 975 755 723 

5 1261 1263.12 1242.6 997 1145 764 

6 261 196.68 180.84 225 400 181 

7 993 718.8 645.6 589 402 944 

8 552 213.3 208.56 262 260 167 

9 998 1095 905 697 385 929 

10 180 116.62 95.06 71 77 218 

11 482 267.8 251.55 368 559 504 

12 1083 687.57 766.29 789 682 362 

13 205 59.64 64.61 79 98 41 

14 851 697.48 620.1 542 508 392 

15 840 864.27 743.49 701 770 635 

16 1414 1386.32 1345.4 885 1087 701 

17 279 132.54 74.26 97 65 387 

18 621 550.55 418.66 382 293 654 

19 601 539.35 474.95 387 484 845 

20 680 489.06 438.9 347 304 870 

21 366 287.97 262.74 343 299 264 

22 947 663.6 627.6 944 637 421 

23 485 397.1 358.6 409 451 269 

24 812 676.28 590.42 531 520 401 

25 685 386.31 428.18 387 812 279 

26 638 268.45 280.84 373 788 278 

27 1803 2090.7 1719.25 724 1633 1167 

28 369 114.4 104.5 192 177 126 

29 439 162.87 156.64 169 181 128 

30 491 258.72 246.96 323 285 195 

31 484 289.68 241.4 363 444 398 

32 481 480.25 413.1 431 389 362 

33 861 778.75 738.7 692 858 653 

34 417 263.72 234.08 345 389 245 

35 268 217.36 198.36 218 448 187 

36 470 295.26 263.07 250 332 512 

37 436 117.48 126.38 135 193 121 

38 428 146.97 148.35 227 212 147 

39 436 169.74 200.1 213 318 183 

40 356 112.53 110.67 154 147 83 

VII. SIMULATION & RESULTS 

      After feeding data of 40 pro jects into the ANN and 

complet ing the training , then the ANN is used for prediction 

of  results. We have partitioned the data into 4 sets taking 10 

project data in each one. Then these data sets were given to the 

ANN for calcu lating the efforts. The tables given below 

compares the prediction of our ANN with those of CP1 and 

CP2. 

TABLE III.  ESTIMATION  FOR SET1  

  
Actual 
Effort CP1 MRE CP2 MRE ANN MRE 

1 286 328.83 0.15 340.57 0.19 321.5 0.12 

2 396 476.81 0.20 460.95 0.16 446.2 0.13 

3 471 641.35 0.36 647.05 0.37 485.4 0.03 

4 1016 959.62 0.06 933.75 0.08 1012.8 0.00 

5 1261 1306.66 0.04 1373 0.09 1268.8 0.01 

6 261 407.65 0.56 404.68 0.55 396.7 0.52 

7 993 847.46 0.15 828.54 0.17 986.3 0.01 

8 552 421.66 0.24 429.96 0.22 480.4 0.13 

9 998 1164.94 0.17 1065.11 0.07 1016.5 0.02 

10 180 340.16 0.89 326.45 0.81 163 0.09 

MMRE 0.28 0.27 0.11 

TABLE IV.  ESTIMATION FOR SET2  

  
Actual 
Effort CP1 MRE CP2 MRE ANN MRE 

1 482 459.51 0.05 458.95 0.05 478 0.01 

2 1083 801.62 0.26 941.26 0.13 1080.5 0.00 

3 205 289.86 0.41 283.79 0.38 233.8 0.14 

4 851 809.86 0.05 804.28 0.05 847.9 0.00 

5 840 945.64 0.13 919.9 0.10 820.5 0.02 

6 1414 1371.1 0.03 1483.89 0.05 1404.2 0.01 

7 279 349.28 0.25 292.83 0.05 300.6 0.08 

8 621 689.95 0.11 615.53 0.01 550.2 0.11 

9 601 680.83 0.13 668.27 0.11 619.4 0.03 

10 680 639.84 0.06 634.5 0.07 686.5 0.01 

MMRE 0.15 0.10 0.04 

TABLE V.  ESTIMATION FOR SET3 

  

Actual 

Effort CP1 MRE CP2 MRE ANN MRE 

1 482 459.51 0.05 458.95 0.05 478 0.01 

2 1083 801.62 0.26 941.26 0.13 1080.5 0.00 

3 205 289.86 0.41 283.79 0.38 233.8 0.14 

4 851 809.86 0.05 804.28 0.05 847.9 0.00 

5 840 945.64 0.13 919.9 0.10 820.5 0.02 

6 1414 1371.1 0.03 1483.89 0.05 1404.2 0.01 

7 279 349.28 0.25 292.83 0.05 300.6 0.08 
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8 621 689.95 0.11 615.53 0.01 550.2 0.11 

9 601 680.83 0.13 668.27 0.11 619.4 0.03 

10 680 639.84 0.06 634.5 0.07 686.5 0.01 

MMRE 0.15 0.10 0.04 

 

TABLE VI.  ESTIMATION FOR SET4 

  
Actual 
Effort CP1 MRE CP2 MRE ANN MRE 

1 484 473.47 0.02 450.26 0.07 434.6 0.10 

2 481 636.98 0.32 609.09 0.27 409.89 0.15 

3 861 893.98 0.04 910.27 0.06 853.38 0.01 

4 417 451.19 0.08 443.49 0.06 463.9 0.11 

5 268 411.42 0.54 410.45 0.53 379.17 0.41 

6 470 478.26 0.02 470.31 0.00 527.52 0.12 

7 436 325.72 0.25 343.87 0.21 282.9 0.35 

8 428 351.02 0.18 364.19 0.15 447.08 0.04 

9 436 370.56 0.15 412.06 0.05 384.86 0.12 

10 356 321.47 0.10 329.34 0.07 372.07 0.05 

MMRE 0.17 0.15 0.15 

 

 
Figure 6.  Performance comparison of CP1, CP2 and ANN 

 

TABLE VII.  PERFORMANCE COMPARESION  

  Aggregate MMRE 

CP1 0.192 

CP2 0.165 

ANN 0.097 

 

VIII. CONCLUSION 

Estimation is one of the crucial tasks in object o riented 

software project management. In this paper we have tried to 

use UML class diagram documents for effort estimat ion and 

compare with those of Class Points Approach. Here we have 

used  MATLAB10 NN toolbox for creat ing and training  a 

feed-forward ANN. The results from our simulation shows 

that the aggregated MMRE of CP1 is 0.192 , CP2 is 0.165 and 

that of ANN is found to be 0.097. This shows that a Feed- 

forward neural network g ive the better performance than that 

of CP1 or CP2. We have experimented with  one of the dataset 

and further investigation can be done with other datasets.   
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