UML Based Object Oriented Software Development
Effort Estimation Using ANN

Jagannath Singh

Department of Computer Sc. and Engineering
National Institute of Technology Rourkela
Rourkela, India
E-mail: jagannath.singh@gmail.com

Abstract—Today the software industry may be the fastest
growing industries in the world. As the industry grows the size
and cost of the software are also increasing. Hence there is need
of effective techniques for cost estimation in order to control the
costs and make the software more competitive. The software
development techniques are also changing, and now- a- days most
of the companies using object — oriented techniques for software
development. UML diagrams are used for analysis and design of
a software and different UML constructs can be used at different
stages of software dewvelopment for estimation of resources like
efforts & cost etc. Use case point and class point analysis were
accepted for the estimation of object-oriented software. In dass
point analysis some unknown constants are multiplied with
known values of product attributes, like no. of methods, dasses
etc. These add impurities to the estimation model. So in this
paper we hawve applied Artificial Neural model for estimation
directly from known attributes and we find that it gives good
results than class point analysis.

Keywords-Effort estimation; Artificial Neural Networks;, Use
case Points;Class Points; NEM; NSR; NOA.

. INT RODUCTION

Now-a-days Object oriented technology is becoming very
popular in software development industry. It is because of the
features offered by OO programming like Encapsulation,
Inheritance, Polymorphism, Abstraction, Cohesion and
Coupling. Modern OO software development technologies
such as .NET and Java are rich of features those are capable of
developing highly maintainable, reusable, testable and reliable
software [16].

Apart from the advantages of OO technique mentioned above,
these features are producing obstacles for cost and effort
estimation of the software. Traditional software estimation
techniques like COCOMO and Function Point Analysis have
proven unsatisfactory for measuring cost and effort of all types
of software [4]. The Lines of Code (LOC) and the Function
Points (FPs) were both used for procedure oriented software
projects. But this concept conflicts with the object-oriented
paradigm. Procedure oriented design split data and procedures
while object-oriented design combines them. There are
multiple dimensions that an OO metric must have if it is to

Bibhudatta Sahoo

Department of Computer Sc. and Engineering
National Institute of Technology Rourkela
Rourkela, India
E-mail: bdsahu@nitrkl.ac.in

provide accurate effort or cost prediction. It is important to
measure the amount of raw functionality the software delivers,
but it is equally important to include information about
communication between objects and reuse through inheritance
in the ‘size’ as well.

Need of accurate estimation is always important for bidding for
a contract or determining whether a project is feasible in the
terms of a cost-benefit analysis. In present scenario most of the
project planning depends upon estimates. Here we are trying to
develop an ANN based estimation model similar to Class Point
Analysis, but with better prediction accuracy.

1. REVIEW OF UML BASED EFFORT
ESTIMATION

Software effort estimation is the process of predicting the
most realistic use of effort required to develop or maintain
software. Effort estimates are used to calculate effort in work-
months (WM) for the Software Development work elements of
the Work Breakdown Structure (WBS).

The OO paradigmpresents some critical challenges to software
effort and cost estimation. Since object oriented development
methods are not perfectly match with the way software is
developed outside of the OO paradigm. OO development
requires not only different approach to design and
implementation, it requires a different set of software metrics.

Function Point metrics are used for traditional procedural
paradigm software, but those are not efficient enough to
describe OO software. To find the solution we have to move
upstream in the software development process to require ment
analysis and design. Currently UML diagrams are widely used
in the software development industry for requirement analysis
and detail design before going for coding.

A. UML Diagrams

UML is a modeling tool which is used by software
professionals all over the world for visualizing, specifying,
constructing, and documenting the artifacts of a software-
intensive system. It is a graphical notation used for object-
oriented analysis and design [2]. One of the purposes of UML
was to provide the development community with a stable and

common design language that could be used to develop and
build computer applications.

B. Use of UML Diagrams in Estimation[17]

M acro lifecycle:

Concept Function Implementation
Oriented |:> Oriented |:> Oriented
Estimate Estimate Estimate

+ 50% + 25% + 10%

Figure 1. Typical cost estimating accurecies

Initially, at the beginning stage, we may be presented with a
vague definition of the project. Though the requirements may
not yet be fully understood, the general purpose of the new
software can be recognized. At this point, estimates with an
accuracy of plus or minus fifty percent are typical for an
experienced estimator using informal techniques (i.e., historical
comparisons, Delphi Method, and so on). After the
requirements are reasonably well understood, a function-
oriented estimate can be prepared. At that point, estimates with
an accuracy of plus or minus twenty-five percent are typical for
an experienced estimator, using above techniques. Finally, after
the detailed design is complete, an implementation-oriented
estimate may be prepared. This estimate is typically accurate
within plus or minus ten percent. So we can conclude that
estimation after detailed design is usually more accurate.

UML is a widely recognized software design tool. There are
several diagrams in UML, but we focus mainly on use case
diagram and class diagram. While functional requirements are
captured through use case diagram, detail design information is
provided in class diagrams [2].

C. UML based estimation techniques

USE CASE POINTS

The early work starts from use case points, which was first
given by Karner in 1993 as a software project effort estimation
model[2]. Use case diagrams contain the functional behavior
of the target system, determined during the requirement
analysis phase. UCP effort estimation is an extension of
existing estimation methods, such as function point analysis.
In this process, first of all actors are characterized as simple,
average or complex and the total unadjusted actor weight
(UAW) is calculated by counting the number of actors in each
category, multiplying each total by its specified weighting
factor, and then adding the points. Next, categorization of the
use cases is done as simple, average or complex, depending on
the number of transactions, including the transactions in
alternative flows. Then the unadjusted use case weights
(UUCW) are calculated by Next, the use case points are
adjusted based on the values assigned to a number of technical
factors and environmental factors. Each factor is assigned a

value between 0 and 5 depending on its assumed influence on
the overall project. This step has 3 different formu lae:

1. The Technical Complexity Factor:

TCF = 0.6+ (.01 * Tfactor)
2. The Environmental Factor:

EF = 1.4 + (-0.03 * Efactor)
3. Adjusted use case points:

UCP =UUCP * TCF * EF

CLASS POINTS

The Class Point approach provides a system-level estimation of
the size of OO products [2]. It has been conceived by recasting
the ideas underlying the FP analysis within the OO paradigm
and by suitably combining well-known OO measures based on
design documentation. In particular, two measures are
proposed, named CP1 and CP2. CP1 is meant to be used at the
beginning of the development process to carry out a
preliminary size estimation, which can be later refined by
applying CP2 when more information is available. The Class
Point size estimation process is structured into three main
phases, corresponding to analogous phases in the FP approach.

During the first step the design specifications are analyzed in
order to identify and classify the classes into four types of
system components, namely the problem domain type, the
human interaction type, the data management type, and the task
management type.

During the second step, each identified class is assigned a
complexity level, which is determined on the basis of the local
methods in the class and of the interaction of the class with the
rest of the system. This is achieved by exploiting suitable
measures for OO classes. The measures and the way they are
used to carry out this step represent the substantial difference
between CP1 and CP2. Indeed, in CP1 the complexity level of
each class is determined on the basis of the Number of External
Methods (NEM)[2] and the Number of Services Requested
(NSR). In CP2, besides the above measures, the Number Of
Attributes (NOA) measure is taken into account in order to
evaluate the complexity level of each class.

Once a complexity level of each class has been assigned, such
information and its type are used to assign a weight to the class.
Then, the Total Unadjusted Class Point value (TUCP) is
computed as a weighted sum. Finally, the Class Point value is
determined by adjusting the TUCP with a value obtained by
considering global system characteristics as in FPA.

1. The Technical Complexity Factor:
TCF=0.55+ (0.01*TDI)
2. Class Points:
CP=TUCP*TCF

D. Comparision of Use Case Point and Class Point
TABLE I. COMPASION[2]
METHOD | PROS CoNns
-Simple, easy to apply method. Lacks information, only
USE counting the number of actors
CASE - Provides 13 technical, 8 and use cases.
POINTS environmental factors for
guidance. - Not addressing a change in
requirements or use cases.
- TCF & EF isoutdated.
- Exploitingmany UML - Usesexpert decision on
CLASS diagrams. component type, complexity
POINTS level, degree of influence etc,

- Method can betotally
automated and its output is in
terms of SLOC, s can be
compared with well known
standard like FP.

which are highly dependent
onthe expert’s decision.

- Goes deep into UML design,
i.e. sequence and state
diagrams, hence makes it a
late design activity insead of
early analysisone.

1I. MOTIVATION

Drawback of Class Point Analysis

In Class Point Analysis both the forms CP1 and CP2 are
based on three object oriented metrics- NEM, NSR and NOA.
The class complexities are measured through these three
parameters. Then Total Unadjusted Class Points (TUCP) is
computed by multiplying the no. of classes in each category
with weighting values. Finally this is multiplied with Technical
Complexity Factor (TCF) to produce the CPs. So the basis of
Class Point Analysis s those three metrics. If we can predict
the effort from these values only then the accuracy should
increase. We have planned to use Artificial neural network for
effort estimation of OO projects using OO metrics, i.e. NEM,
NSR and NOA [2].

NEM

The Number of External Methods (NEM) measures the size of
the interface of a class and & determined by the number of
locally defined public methods.

NSR

The Number of Services Requested (NSR) provides a measure
of the interconnection of system components. It is again
applicable to a single class and is determined by the number of
different services requested from other classes.

NOA

When computing CP2, the number of attributes is also taken
into account in order to evaluate the complexity level of a class.

Can we use ANN?
Artificial Neural Network is used in effort estimation due to

its ability to learn from previous data. It is also able to model
complex relationships between the dependent (effort) and

independent variables (cost drivers). In addition, it has the
ability to generalize from the training data set thus enabling it
to produce acceptable result for previously unseen data [10].

V. ARTIFICIAL NEURAL NETWORKS

Acrtificial Neural Network (ANN) is a massively parallel
adaptive network of simple nonlinear computing elements
called Neurons, which are intended to abstract of the human
nervous [9,14,15]. An artificial neural network comprises of
eight basic components (i)neurons, (ii)activation function,
(iii)signal function, (iv)pattem of connectivity, (v)activity
aggregation rule, (vi) activation rule, (vii) learning rule and
(viii)environment [12].

X (> b
<

Activation function

iy Ouput(n)

Aggregation Rule

Figure. 2. Architecture of an artificial neuron

In mathematical notation, any neuron-«k can be represented
as follows:

up = X0 Wi ¥; and Vi = @luy + by)

where X ,%, ...,xym are the input signals , Wiq,Wko,....,Wkm
are the synaptic weights of the corresponding neuron, uy is the
linear combiner output, by is the bias, ¢(.) is the activation
function and vy is the output signal of the neuron.

After an ANN is created it must go through the process of
learning or training. The process of modifying the weights in
the connections between network layers with the objective of
achieving the expected output is called training a network.
There are two approaches for training— supervised and
unsupervised [14,15]. In supervised training, both the inputs
and the outputs are provided. The network then processes the
inputs, compares its resulting outputs against the desired
outputs and error is calculated. In unsupervised training, the
network is provided with inputs but not with desired outputs.
The system itself must then decide what features it will use to
group the input data [9].

A ANN Architecture

Depending upon the architecture the ANN is of two types.
A feed-forward ANN, is the architecture in which the network
has no loops. But feed-back (recurrent) ANN is an architecture
in which loops occurs in the network [14,15]. An ANN can be
a single-layer perceptron or a multi-layer perceptron. In single
layer perceptron consists of a single layer of output nodes, the
inputs neurons are connected directly to the outputs neurons via
a series of weights. But in multi layer perceptron an additional
layer of neurons present between input and output layers. That
layer is called hidden layer. Any number of hidden layers can
be added in an ANN depending upon the problem domain and

accuracy expected. In this paper we have used multiple layer
feed forward ANN for simulation.

Hidden
Input

Hidden
Input ./—\
N

040
o

Feed-forward

Feed-back
Figure. 3. Architecture of an artificial neuron network(ANN)

Most of the work in the application of neural network to effort
estimation made use of feed-forward multi-layer Perceptron,
Back-propagation algorithm and sigmoid function. However
many researchers refuse to use them because of their
shortcoming of being the “black boxes” that is, determining
why an ANN makes a particular decision is a difficult task.
But then also many different models of neural nets have been
proposed for solving many complex real life problems [11] .
The 7 steps for effort estimation using ANN can be
summarized as follows:

Steps in effort estimation

1. Data Collection: Collect data for previously
developed projects like LOC, method used , and other
characteristics.

2. Division of dataset: Divide the number of data into
two parts — training set & validation set.

3. ANN Design: Design the neural network with number
of neurons in input layers same as the number of
characteristics of the project.

4. Training: Feed the training set first to train the neural
network.

5. Validation: After training is over then validate the
ANN with the validation set data.

6. Testing: Finally test the created ANN by feeding test
dataset.

7. Error calculation: Check the performance of the
ANN. If satisfactory then stop, else again go to step
(3) ,make some changes to the network parameters
and proceed.

Once the ANN is ready, simulation with the ANN can be
conducted with the parameter of any new project, as show in
fig.4 and it will output the estimated effort for that project.

Input layer

Hidden layer Output layer

NEM

NOA

NSR

Figure. 4. Diagram of feed-forward multilayer ANN used in this paper

V. RELATED WORKS

Gennaro Costagliola, et al.[1] had proposed the concept
of Class Point . In this approach he had presented a FPA like
approach for OO software project. He had used two
measurements of size ,CP1 & CP2. CP1 is for estimation at
the beginning stage of development and CP2 is for later
refinement when more information is available. He had
considered three metrics NEM, NSR and NOA to find the
complexity of a class. Here he had proposed 18 system
characteristics to find Technical Complexity. From the
experiment over 40 project dataset he found that the
aggregated MMRE of CP1is 0.19 and CP2 is 0.18.

Wei Zhou and Qiang Liu [6] in the year 2010 has extended the
above paper in two ways. First they have added a size
measurement named CP3 based on CPA. Second, in-order to
improve the precision of estimation , they have taken 24
system characteristics instead of 18 in the previous one. From
this they found that where the original CP1 gives MMRE 0.22
, this give 0.19 and incase of CP2 it was 0.18 , now it is 0.14.

S.Kanmani, et al. [7] has used the same CPA with a little
change, by using neural network in mapping the CP1 and CP2
into effort. In the base paper of Gennaro[1],he had used
regression method to find the values of the constants that can
be multiplied and added with computed CP1 and CP2 to find
the effort. Here in this paper Kanmani has used neural network
to find those values. The aggregate MMRE is improved from
0.19 to 0.1849 for CP1 and from 0.18to 0.1673 for CP2.

VI EXPERIMENT

A Dataset Preparation

We have used data from 40 Java systems developed during
two successive semesters of graduate courses on Software
Engineering [1]. Table Il reports the data of the 40 projects,
having attributes Effort (EFH), CP1, CP2, NEM, NSR and
NOA. Thus, the first ten projects form the first test set, the
subsequent ten projects formthe second one, and so on.

B. ANNs Preparation

In this experiment we have created a feed-forward neural
network, as shown in fig.5 and compare it’s performance with
Class Point Approach. MATLAB10 NN tool is used for this
experiment. For the neural networks 3-5-1 architecture is used,
i.e. 3 neurons in input layer, 5 neurons in hidden layer and 1
neuron in output layer. Training algorithm used is ‘trainlm’.
For training the dataset is divided into three divisions-for
training 32(80%), for validation 4(10%) and for testing
4(10%). Stopping criteria was set by number of epochs as
1000 and goal as 0.00.

Layer

|

Figure 5. The Feed-Forward ANN using MATLAB

Layer

Input Qutput

TABLE II. DAT ASET VII. SIMULATION & RESULTS

1 286 10318 | 11055 | 142 170 97 completing the training , _then the ANN is used for pred_lctlon
of results. We have partitioned the data into 4 sets taking 10
2 3% | 2/872 | 24254 | 409 | 2% | 2% project data in each one. Then these data sets were given to the
3 471 4739 4466 821 929 | 567 ANN for calculating the efforts. The tables given below
mpares the prediction of our ANN with th f CP1 an
4 1016 85144 | 76096 | 975 | 755 | 723 E:?sza es the prediction of ou ose of CP1 and
5 1261 | 126312 | 12426 | 997 | 1145 | 764
5 261 Tooes | 18081 | 225 | 200 | 181 TABLE IIl. ESTIMATION FORSET1
7 993 7188 | 6456 | 589 | 402 | 944 Adual
: : Effort CPl | MRE| cP2 | MRE| ANN MRE
8 552 2133 | 20856 | 262 | 260 | 167 1| 286 | 32883 | 015 | 34057 | 019 | 3215 012
9 998 1095 905 697 | 385 | 929 2 | 3% 47681 | 020 | 46095 | 0.16 | 4462 0.13
10 180 11662 95.06 71 77 218 3 471 64135 | 036 | 64705 | 037 | 4854 0.03
11 482 2678 | 25155 | 368 | 559 | 504 4 | 1016 | 95962 | 006 | 93375 | 008 | 101238 0.00
12 1083 68757 | 76629 | 789 | 682 | 362 5 | 1261 | 130666 | 0.04 1373 | 009 | 126838 001
13 205 59.64 64.61 79 98 41 6 261 407.65 0.56 404.68 0.55 396.7 0.52
14 851 69748 620.1 542 508 392 7 993 84746 | 0.15 82854 | 0.17 | 9863 001
16 1414 | 138632 | 13454 | 885 | 1087 | 700 9 | 998 | 116494 | 017 | 1065.11 | 007 | 10165 0.02
- 279 1251 | 742 97 &5 | 387 10 | 180 34016 | 089 | 32645 | 081 | 163 0.09
18 621 55055 | 41866 | 382 | 293 | 654 MMRE 028 0.27 011
19 601 53935 | 47495 | 387 | 484 | 845 TABLE IV. ESTIMATION FOR SET 2
20 680 48906 | 4389 | 347 | 304 | 870 Actual
Effort CP1 | MRE cP2 MRE | ANN | MRE
21 366 28797 | 26274 | 343 | 299 | 264
1| 482 45951 | 005| 45895 | 005| 478 0.01
22 947 663.6 6276 | 944 | 637 | 421
2| 1083 80162 | 026 94126 | 0.13| 10805 0.00
23 485 3971 3586 | 409 | 451 | 269 3| 205 28986 | 041 28379 | 038 | 2338 0.14
24 812 | 67628 | 59042 | 531 | 520 | 401 4| 851 | 80986 | 005| 80428 | 005| 8479 | 000
25 685 | 38631 | 428.18 | 387 | 812 | 279 5| 840 | 94564 | 013 9199 | 010| 8205 | 002
26 638 26845 | 28084 | 373 788 | 278 6| 1414 13711 | 003 | 148389 | 005 | 14042 001
27 1803 20907 | 171925 | 724 | 1633 | 1167 7| 279 34928 | 025 29283 | 005 3006 0.08
28 369 1144 1045 192 | 177 | 126 8| 621 689.95 [011 61553 | 001 | 5502 0.11
29 439 16287 156.64 169 181 | 128 9 601 680.83 013 668.27 011] 6194 0.03
30 291 20872 | 24696 | 3z | 288 | 105 10 | 680 63984 | 006 6345 | 007 | 6865 0.01
31 484 289.68 2414 | 363 | 444 | 398 MMRE 0.15 0.10 004
32 481 48025 | 4131 | 431 | 389 | 362 TABLE V. ESTIMATION FOR SET 3
33 861 778.75 7387 692 | 858 | 653 Actual
Effort CP1 | MRE CP2 MRE | ANN | MRE
34 417 26372 | 23408 | 345 | 389 | 245
1| 482 45951 | 005| 45895| 005| 478 0.01
35 268 21736 | 19836 | 218 | 448 | 187
2| 1083 | 80162 | 026| 94126| 013]| 10805 | 0.0
36 470 | 29526 | 26307 | 250 | 332 | 512 3| 205 | 28086| 041| 28379 o038| 2338 | 014
38 428 14697 | 14835 | 227 212 | 147 5 840 94564 | 013 9199 | 010| 8205 0.02
39 436 16974 | 2001 213 | 318 | 183 6| 1414 | 13711 | 003 148389 | 005]| 14042 | 001
40 356 11253 | 11067 | 154 | 147 | 83 7| 279 34928 | 025| 29283 | 005| 3006 0.08

8| 621 | 68995 | 011| 61553 | 001 | 5502 | 0.1
9| 601 | 68083 | 013| 66827 | 011 | 6194 | 003
10| 680 | 63084 | 006| 6345| 007 | 685 | 001
MMRE 015 010 004
TABLEVI. ESTIMATION FOR SET4
Actual
Effot | CP1 | MRE | CP2 | MRE | ANN | MRE
1| 484 | 47347 | 002 | 45026 | 007 | 4346 | 010
2| 481 | 63698 | 03260909 | 02740989 | 015
3| 861 [89398 | 00491027 | 00685338 | 001
4| 417 | 45119 | 008 | 44349 | 006 | 4639 | 0.1
5| 268 |41142| 054|41045 | 05337917 | o041
6| 470 | 47826 | 002 | 47031 | 00052752 | o012
7| 43 [32572 | 02534387 | o021 2829 | 035
8| 428 [35102 | 01836419 | 01544708 | 004
9| 43 [37056 | 015|41206 | 00538486 | 012
10| 35 | 32147 | 010 [32034| 007]|37207 | 005
MMRE 017 015 045
Performance
0.3
0.25 \\
0.2 \\
w \\ ——CP1
% 0.15 A R
0.1 ANN
0.05 _—
0
SET1 SET2 SET3 SET4

Figure 6. Performance comparison of CP1, CP2 and ANN

TABLE VII. PERFORMANCE COMPARESION
Aggregate MMRE
CP1 0.192
CP2 0.165
ANN 0.097
VIII. CONCLUSION

Estimation is one of the crucial tasks in object oriented
software project management. In this paper we have tried to
use UML class diagram documents for effort estimation and
compare with those of Class Points Approach. Here we have

used MATLAB10 NN toolbox for creating and training a
feed-forward ANN. The results from our simulation shows
that the aggregated MMRE of CP1is 0.192, CP2is 0.165and
that of ANN is found to be 0.097. This shows that a Feed-
forward neural network give the better performance than that
of CP1 or CP2. We have experimented with one of the dataset
and further investigation can be done with other datasets.

REFERENCES

[1] Gennaro Costagliola and Genoveffa Tortora, “Class Point: An Approach
for the Size Edimation of Object-Oriented Systems”, IEEE
TRANSACT IONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 1,
JANUARY 2005,page 52-74

[2] Vineet Khera,”UMLBased Effort Estimation In Component Based
Systems”, M.E. Thesis, Thapar University,June2009.

[3] AndaB., Benesad H. C., Hove S. E., "A multiple-case study of software
effort egimation based on use case points’, 2005 International
Symposium, p 407-416, 2005 .

[4 Arlene F. Minkiewicz, “Measuring Object Oriented Software with
Predictive Object Points”, Report prepared by PRICE Systems,LLC,
1997.

[5] Stein Grimstad, Magne Jorgensen, Kijetil Molokken-Ostvold ,”Software
effort estimationterminology: The tower of Babe”l, Elsevier, 2005.

[6] Wei Zhou and Qiang Liu,” Extended Class Point Approach of Size
Estimation for OO Product”, IEEE sponsred 2nd International
Conference on Compuer Engineering and Technology,2010,Vol-4
,Page:117-122.

[71 S Kanmani, J. Kathiravan, S. Senthil Kumar and M. Shanmugam,”
Neural Network Based Effort Estimation using Class Points for OO
Systems”, IEEE-Intemational Conference on Compuing: Theory and
Application(ICCT A’07),2007.

[8] LF. Barcelos Tronto, J.D. Simoes da Silva, N. Sant. Anna , “Comparison
of Artificial Neural Network and Regression Models in Software Effort
Estimation”, INPE ePrint, Vol.1, 2006.

[9] Simon Haykin, “Neural Networks: A Comprehensive Foundation”,
Second Edition, Prentice Hall, 1998.

[10] Jagannath Singh and Bibhu Datta Sahoo, “Software Effort Estimation
with Different Artificial Neural Network ”, IJCA Special Issue on-2nd
National Conference- Computing, Communication and Sensor Network,
Sl. No.27, 2011.

[11] Ali Idri and Taghi M. Khoshgoftaar& Alain Abran,”Can Neural
Networks be easily Interpreted in Software Cost Estimation”, IEEE
Transaction, 2002, page:1162-1167.

[12] Satish Kumar, “Neural Networks: A Classroom Approach”, Tata
McGraw-Hill, 2004.

[13] Howard Demuth and Mark Beale, “Neural Network Toolbox-For use
with MATLAB”,User’s Guide, Version-4,Page-5.28.

[14] N.K.Bose and P.Liang, “Neural Network Fundamentals with Graphs,
Algorithms and Applications”, Tata McGraw Hill Edition,1998.

[15] B. Yegnanarayana, ““Artificial Neuwral Networks”, Prentice Hall of India,
2003.

[16] Nasib S. Gill and Sunil Sikka, “New Complexity Model for Classes in
Object Oriented System”, ACM SIGSOFT Software Engineering Notes,
Sept 2010, Vol-35, No-5.

[17] WilliamRoetzheim, “Estimating Effort Using Use-Case and UML Class-
Method Points’, UML World Intemational Conference,2006.

