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Abstract— This paper describes the design of a new self-tuning 
controller to control tip trajectory and tip deflection of a two-link 
flexible manipulator handling variable payloads based on 
nonlinear autoregressive with moving average and exogenous 
input (NARMAX) model. This proposed adaptive controller 
consists of a multivariate proportional integral and derivative 
(PID) feedback loop. The gains of the PID controllers are 
calculated in real-time based on the kinship between PID and 
generalized minimum variance control laws. Parameters of the 
NARMAX model are estimated in real-time using an adaptive 
filter based on the recursive least square (RLS) algorithms. 
Simulation results envisage that the NARMAX based self-
tuning controller tracks a desired tip trajectory while 
suppressing the tip deflection under load pick-up and 
release operation. 

Keywords- Flexible robot, self-tuning PID control, NARMAX, 
RLS  

I.  INTRODUCTION  
Flexible-link manipulators offer several advantages such as 

high-speed operation, lower energy consumption, and increase 
in payload carrying capacity for some specific applications 
like space robots where rigid-link robots are unsuitable [1]. 
However, controlling a flexible-link robot is difficult owing to 
its distributed link flexure thus the dynamics of the 
manipulator becomes distributed parameter system, other 
control complexity encountered in controlling the robot are 
due to its non-minimum phase behavior, under actuation, non-
collocation [1]. Further, control of a flexible-link robot 
becomes more challenging when it has to handle variable 
payloads. In order to achieve good tip trajectory tracking 
while suppressing tip deflection with varied payloads in a 
flexible-link robot, adaptive controller are employed, which 
provide appropriate control torques to the actuators to achieve 
the above two-control tasks (good tip trajectory tracking and 
suppression of tip deflection). 

Different identification and control methods have been 
applied to estimate flexible robot dynamics. Yurkowich et.al 
[1] developed identification and control strategy of a single-
link flexible robot using on-line frequency domain linear 
model, and an ARMA model with weighted recursive least 
square (RLS) algorithm is used for parameter adaptation in 
[2]. Yazdizadeh et.al proposed a dynamic neural network 
using dynamic neurons for identification of a two-link flexible 
robot in [3]. However, disadvantages of the above methods are 
that linear model is considered, also which is in appropriate to 
capture the non-linear dynamics of the flexible-link robot. 

Recent works by Kukreja et.al [4] and Tsai et.al [5] 
proposed NARMAX model based identification for nonlinear 
ankle dynamics systems and manipulator dynamics 
respectively which show good approximation of the models. 
Also self-tuning control methods applied to process control for 
cement plants in [7] and [8] show outstanding results. Also 
there is no work that emphasis NARMAX modeling based 
flexible robot adaptive control design. Motivated by the above 
mentioned reasons, an attempt has been made in this paper to 
control the tip trajectory tracking and suppression of tip 
deflection for a flexible using NARMAX model as proposed 
by Chen and Billings in [6]. 

II. DYNAMIC MODEL OF THE TLFM 
The schematic diagram of a planar TLFM is shown in Fig.1, 
 

 
Fig.1 Schematic diagram of a planar TLFM 

 
where τi is the actuated torque of the ith link, θi is the joint 
angle of the ith joint and di(li, t) represents the deflection along 
ith link. The outer free end of the TLFM is attached with 
payload mass, Mp. The dynamics of the TLFM is given by [14] 
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where M is the positive-definite symmetric inertia matrix, c1 
and c2 are the vectors containing of Coriolis and Centrifugal 
forces respectively, K is the stiffness matrix and D is the 
damping matrix. If the output is taken as tip position, the 
overall manipulator system becomes non-minimum phase [4]; 
hence, the redefined output is given by  
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where li is length of the ith link. TLFM dynamics (1) can be 
rewritten in state space form as 

( ) ( )i i if g ux x x= +&
    (3) 

with x as the state vector i.e. 
T

i i i ix , , ,⎡ ⎤= θ θ δ δ⎣ ⎦
& & and 
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iδ and iδ&  being the modal displacement and modal velocity 
for the ith link respectively and the actual output vector, y is 
given by 

i iy ,⎡ ⎤= θ θ⎣ ⎦
&

 To express the dynamics of the TLFM in terms of the 
redefined tip position and tip velocity, the states are redefined 
as pi piy y,⎡ ⎤ζ = ⎣ ⎦&

 
The new state space representation of the TLFM using 
redefined output can be expressed as 

( ) ( )i i ivζ = ζ + ζ& h D     (4) 
where vi is the ith torque input with respect to the redefined 
output ζ 
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and ( ) ( ) 1
i i i i iv M , −
ζ = θ δ τD

 where iδ and iδ&  are the modal displacement and modal 
velocity for the ith link respectively.

 Equation (4) can be rewritten as
 ( )i i i ivx L x ,=&      (5) 

where 
( ) ( ) ( )i i i i i i i iv f g vL x , x x= +

  

III. PROPOSED SELF-TUNING CONTROLLER BASED ON 
NARMAX MODEL OF THE TLFM 

A. Representation of the TLFM using NARMAX model  
The NARMAX model for describing the input-output 
relationship of the nonlinear multi-input multi-output (MIMO) 
systems can be written as [9] 
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where 
 

yi(k)    Nonlinear autoregressive (NAR) vector 
ui(k)    Exogenous (X) vector

 

ξi(k)    Moving average (MA) variable vector
 

Fi        Nonlinear function with ith input and output
 

n         Order of the nonlinearity
 

ny, nξ, and nu   Order of NAR, MA, and X respectively 
 

In order to represent the TLFM dynamics as a NARMAX 
model we need to discretized the derivative terms of ix& given 
in (4) using the forward difference method at t=kT by 

( ) ( ) ( )kT T kT
kT

T
x x

x
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=&  

where T is the sampling time at kth instant. Using the above 
relati 
-onship the discrete time representation of equation (4) is 

( ) ( ) ( ) ( )( )ik 1 k T k v kx x + L x ,+ =
  

(7) 
To express the dynamics of the TLFM in terms of the 
redefined tip position and tip velocity, the states are redefined 
as i pi piy y,⎡ ⎤ζ = ⎣ ⎦& using equation (2). Now, the input-output 
representation of TLFM dynamics using redefined output ζi is 
given as [4]

 ( ) ( ) ( ) ( )i i ik 2 A B v kx + xζ + =    (8) 
where  
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Representing the difference equation given in (7) as 
NARMAX representation defined in (5), with order of the 
nonlinearity as n=2, yi=ξi, ui=vi and ny, nu, nξ are found to be 2. 
Using the above representation equation (7) can be rewritten 
as  

( ) ( ) ( ) ( )
i

T
i i iy k k w k e k= φ +

   (9) 
 

where 
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B. Identification of the TLFM based on NARMAX model 
Fig.2 shows the structure for estimation of NARMAX 
parameters using RLS algorithm. The principle of least square 
is to estimate wi defined in eq. (13) to the true parameter such 
that it minimizes the sum of squared errors J(θi) [9]: 

( ) ( )
N

2
i i i i

k 1
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= =∑    (10) 

The NARMAX parameters are estimated using the RLS 
algorithm given as [9] 

 

Fig.2 Structure for estimation of NARMAX parameters for TLFM 
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where ( ) ( ) ( )nnum nden 1 nnum nden 1
iP k + − × + −∈ℜ  with 1λ ≤ is the 

forgetting factor , ( )i i nmum nden 1P 0 I + −= Γ and Г is large value. 
To be able to estimate the system parameters uniquely the 

number N in eq. (14) must not be less than the number of 
unknown parameters and thus can be gaining using PID. The 
result of the estimation based on Nth iteration the recursive 
parameter estimate given by eq. (15) with any initial condition 
is equal to the optimal least squares estimation based  on the 
data provided i.e Pi(0)= Гi I. 

C.  Multivariate PID (MPID) control design 
The multivariate PID control law with ei(t) = yi(t)- θdi(t) and 
the output ui(t) is given as  
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where Ki is the gain, TI is the integral time and TD is the 
derivative time. Now, rewriting the eq. (18) in discrete domain 
we get 
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where Ts is the sampling time and z is the Z-transform 
parameter. The trapezoidal approximation used for the integral 
mode and backward difference formula is used for derivative 
mode in (18). On cross multiplying (19) we get 
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We divide by z2 and invert (20), to obtain 
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where Δ ui(k) = ui(k)- ui(k-1). Let Li(z-1) be a polynomial 
defined as  
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Then (21) can be rewritten as 

( ) ( ) ( ) ( ) ( )1 1
i i i i diL z y k u k L z k 0− −+Δ − θ =

 (19) 
The polynomial Li(z-1) for the MPID control law is tuned vial 
minimum variance control law derived as follows. 

D. Tuning of PID parameters using minimum variance 
control law 

Fig.3 shows the NARMAX based self-tuning controller for 
TLFM. 

 
Fig.3 NARMAX model based self-tuning controller for TLFM 

In order to tune the PID parameters based on the principle of 
minimum variance a performance index is considered as 
follows 
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where Гi in eq. (20) is the weighting factor with respect to the 
control input, Pi(z-1) is the user defined polynomial of the form 

( )1 1 2
i i 1 i 2P z 1 p z p z, , − − −= + +

  (21) 
and Ri(z-1) defined in eq. (20) is determined using eq. (17) and 
eq. (19). 

The control law minimizing the performance index J eq. 
(20) is given by the following equation [8] 

( ) ( ) ( ){ } ( )1 1 1 1
i pi i i i i i diF z E z C z u P z 0 − − − −θ + +μ − θ = (22) 

where the Ei (z-1) and Fi (z-1) are found out by solving the 
following Diophantine equation  
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Next, in eq. (22) the term Ei(z-1) Ci(z-1) µi be assumed to be 

( ) ( )1 1
i i i iE z C z v − − +μ =

   (25) 
then eq. (23) can be written as  
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Therefore using eq. (26) and eq. (19), PID parameters 
c1 c2 D ik k T T, , , can be calculated as follows. 
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  (27) 

The parameters of Pi(z-1) is designed based on the response 
considering the overshoot and settling time, and µi is chosen 
according to the system stability criteria. Thus Pi(z-1) 
parameters are pi1=-e-ρi and pi2=-e-ρi/£I, where ρi and £I are 
defined by 

i
i

Ts 0i 45,£ .ρ = =σ     (28) 

and £I and ρi denote the rise-time and damping ratio. 

E. Controller realization in steps 
The proposed NARMAX based adaptive controller can be 

realized via following steps. 
1) Chose Pi(z-1) and µi 
2) Estimate wi by using RLS algorithm in eq. (15) 
3) Solve the Diophantine eq. (24) 
4) Calculate vi based on (26) 
5) Calculate the PID parameters using eq. (28) 
6) Based on the eq. (28) calculate the control input 

given in eq. (17) 
For each iteration kth update the parameters and return to step-
2 

IV. RESULTS AND DISCUSSIONS 

A. Simulation Results 
The numerical simulation of the NARMAX based controller 

is performed using MATLAB/SIMULINK®.  
The proposed NARMAX based PID adaptive controller has 

been applied to the TLFM available in advanced robotics 
research Lab., NIT, Rourkela. To validate the tip trajectory 
tracking performances, the desired trajectory vector for two 
joints θdi(t) i=1,2 are chosen as 

( ) ( ) ( ) ( )( )
i

5 4 3

d 0 f 05 4 3
d d d

t t tt t 6 15 10 t t
t t t

⎡ ⎤
θ = θ + − + θ − θ⎢ ⎥

⎣ ⎦
 (29) 

where θdi(t) =[θd1, θd2]T, θd(0) ={0,0} are the initial positions 
of the links and θf(0) ={π/4, π/6} are the final positions for 
link-1 and link-2, td is the time taken to reach the final 
positions which is taken as 4 sec and total simulation time is 
10 sec. 

The physical parameters of the studied TLFM are given in 
Table I. 

 

 

Using the above control parameters along with the TLFR 
parameters the simulations were carried out. The results are 
shown in Fig.3 to Fig.7. Fig.4 shows the NARMAX 
parameters estimation using the RLS algorithm defined in eqs. 
(11)-(13). It is clear from Fig.4 that the parameters are updated 
with the change in operating conditions i.e. load pick-up and 
load release operation. Next in Fig.5 to Fig.7, the performance 
of the adaptive controller are shown with respect to tip 
trajectory tracking, tip deflection and control signals with 
respect to the desired tip trajectory defined in eq. (29). Fig.5 
shows the tip trajectory tracking error for link-1 and link-2 
respectively. It is clear from Fig.5 that in spite of change in 
operating conditions the controller tracks the given trajectory 
with minimum error. 

 

Table I: Physical parameter of the TLFM 
Parameter Symbol Value 
Link length L1, L2 0.201m, 0.2m 
Elasticity E1=E2 2.0684 × 1011(N/m2) 

Rotor moment of 
Inertia 

Ks1, Ks2 6.28 10-6, 1.03 10-6 (kg m2) 

Drive moment of 
Inertia 

J11, J21 7.361× 10-4, 44.55× 10-6 (kg m2) 

Link moment of 
Inertia 

J21, J22 0.17043, 0.0064387(kg m2) 

Gear ratio N1, N2 100, 50 
Maximum 
Rotation 

R1, R2 (+/-90, +/-90) deg. 

Drive Torque 
constant 

Kt1, Kt2 0.119; 0.0234(Nm/A) 

 

× ×
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Fig.4 Estimated NARMAX parameters 

 

 
Fig.5 Tip trajectory tracking errors for TLFR 

 

 
Fig.6 Tip deflection trajectories for TLFR 

 
Fig.7 Control torque trajectories for TLFR 

 
Fig.6 shows the link deflection during the robot operation, 

from the Fig.6 it is clear that the proposed controller 
considerably reduces the tip oscillation for both link-1 and 
link-2, thus suppressing the overall link vibration even in 
addition of a payload. Also in Fig.7 the control inputs to both 
the actuators are given. From the results shown in Fig.7 it is 
clear that the control input to the actuators are small. Thus it 
can be said that the proposed adaptive controller provides 
good tip trajectory tracking while suppressing tip deflection 
with varied payloads. 

V. CONCLUSIONS 
An adaptive controller using NARMAX representation of 

the two-link flexible robot is proposed. Unlike the adaptive 
controller formulated in [1] and [2] using a linear model, a 
nonlinear model is considered here. The proposed controller 
efficiently tracks the given tip trajectory while simultaneously 
damping the link vibration. Another advantage of the proposed 
method is that the PID parameters are tuned via a minimum 
variance performance index giving rise to a near optimal 
control input. 
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