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Infinitesimal transformations

Infinitesimal transformations: Consider a one-parameter Lie
group of transformations x∗ = X (x ; ε) with identity ε = 0 and law
of composition φ. If we expand x∗ = X (x ; ε) about ε = 0 we get

x∗ = x + ε(∂X
∂ε

)ε=0 + ε2

2 (∂2X
∂ε2 )ε=0 + · · ·

x∗ = x + ε(∂X
∂ε

)ε=0 + O(ε2)
= x + εξ(x)

where ξ(x) = (∂X
∂ε

)ε=0. This is called infinitesimal
transformation of x∗ = X (x ; ε) and the components of ξ(x) are
called infinitesimals of x∗ = X (x ; ε).
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Infinitesimal generator

Infinitesimal generator: The infinitesimal generator of the
one-parameter Lie group of transformations x∗ = X (x ; ε) is the
operator

X = X (x) = ξ(x).∇ =

n∑

i=1

ξi(x)
∂

∂xi

where

∇ = (
∂

∂x1
,

∂

∂x2
,

∂

∂x3
, · · · · · ·

∂

∂xn
)

For any differentiable function F (x) = F (x1, x2, x3, · · · · · · xn)

XF (x) = ξ(x).∇F (x) =

n∑

i=1

ξi(x)
∂F (x)

∂xi
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Problem analysis

We consider the system of equations which governs the one
dimensional modified shallow water equations as follows [?]

ht + hux + uhx = 0,

ut +
g(h + H)

h
hx + uux = 0, (1)

where x , t are the independent variables denoting the space
and time respectively and

u = x-component of fluid velocity,
h = variable depth
g = acceleration due to gravity, H = k0/g.
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Firstly, we consider Lie group of transformations with
independent variables x,t and dependent variables u, h for the
problem

x̃ = x̃(x , t , h, u; ε),

t̃ = t̃(x , t , h, u; ε), (2)

ũ = ũ(x , t , h, u; ε),

h̃ = h̃(x , t , h, u; ε).
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where ε is the group parameter. The infinitesimal generator of
the group (2) can be expressed in the following vector form

V = ξx ∂

∂x
+ ξt ∂

∂t
+ ηu ∂

∂u
+ ηh ∂

∂h

in which ξx , ξt , ηu , ηh are infinitesimal functions of the group
variables.Then the corresponding one-parameter Lie group of
transformations is given by
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x̃ = x + εξx (x , t , h, u) + O(ε2),

t̃ = t + εξt(x , t , h, u) + O(ε2),

ũ = u + εηu(x , t , h, u) + O(ε2),

h̃ = h + εηh(x , t , h, u) + O(ε2).

Since the system of one-layer shallow-water equations has at
most first-order derivatives, the first prolongation of the
generator should be considered in the form:

T. Raja Sekhar, NIT, Rourkela Self similar solutions in shallow water equations



Introduction
Problem analysis

Power-series method
Compatible condition
Usage of similarity variables

Pr
′

V = V + τu
x

∂

∂ux
+ τu

t
∂

∂ut
+ τh

x
∂

∂hx
+ τh

t
∂

∂ht
(3)

where
τu

t = ηu
t +ηu

uut +ηu
hht −ux(ξ

x
t + ξx

uut + ξx
hht)−ut(ξ

t
t + ξt

uut + ξt
hht)

τu
x = ηu

x +ηu
u ux +ηu

h hx−ux(ξx
x +ξx

uux +ξx
hhx )−ut(ξ

t
x +ξt

uux +ξt
hhx)

τh
t = ηh

t +ηh
uut +ηh

hht −hx(ξx
t + ξx

uut + ξx
h ht)−ht(ξ

t
t + ξt

uut + ξt
hht)

τh
x = ηh

x +ηh
uux +ηh

hhx−hx(ξx
x +ξx

u ux +ξx
h hx)−ht(ξ

t
x +ξt

uux +ξt
hhx).
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if we apply the first prolongation of the infinitesimal generator
(3) to the system of partial differential equations (1)

Pr
′

V (ht + hux + uhx)ht=−uhx−hux = 0,

Pr
′

V (ut +
g(h + H)

h
hx + uux)

ut=−uux−
g(h+H)

h hx
= 0.

then we obtained the following system of equations

ηuhx + ηhux + τh
t + uτh

x + hτu
x = 0,

−
gH
h2 ηh + ηuux + gτh

x + τu
t + uτu

x = 0.

which gives us the following determining equations
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Power-series method

Firstly, we choose the first order of power-series of the
infinitesimals which are given by

ξx = a0 + a1x + a2t + a3h + a4u

ξt = b0 + b1x + b2t + b3h + b4u

ηu = c0 + c1x + c2t + c3h + c4u

ηh = d0 + d1x + d2t + d3h + d4u

where ai , bi , ci , ai , (i = 0, 1, 2, 3, 4) are constant coefficients.
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Then substituting these power-series forms into the determining
equations and straightforward calculations for the first order of
power-series forms, we find three-parameter Lie group of
transformations of one-layer shallow-water equations as follows

ξt = a1t + a4,

ξx = a1x + a2t + a3,

ηu = a2,

ηh = 0.
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These transformations provide the following three Lie point
generators:

X1 = t
∂

∂t
+ x

∂

∂x
,

X2 = t
∂

∂x
+

∂

∂u
,

X3 =
∂

∂x
.

For a1 6= 0,b2 6= 0 and b0 6= 0 respectively.
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Consider the infinitesimal generators VA, VB defined by

VA = α1X1 + α2X2 + α3X3

= α1t
∂

∂t
+ (α1x + α2t + α3)

∂

∂x
+ α2

∂

∂u
,

and

VB = β1X1 + β2X2 + β3X3

= β1t
∂

∂t
+ (β1x + β2t + β3)

∂

∂x
+ β2

∂

∂u
,

αi , βi ∈ R.
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Compatible Condition

For the compatible condition we consider the following relation

[VA, VB] = VAVB − VBVA = 0

which yields

α3β1 − α1β3 = 0.
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Uses of similarity variables

Since the system is invariant under the group generated by VA,
we introduce a set of canonical variables defined by,

VAτ̄ = 1, VAξ̄ = 0, VAŪ = 0, VAP̄ = 0,

allowing one to express VA as a translation with respect to τ̄ ,
the characteristic conditions are

dt
α1t

=
dx

(α1x + α2t + α3)
=

du
α2

=
d τ̄

1
, (4)
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where α1, α2, and α3 are non-zero constants. Hence equation
(4) yield the following transformation of variables

τ̄ =
1
α1

ln t ,

ξ̄ = t−1e

(α1x + α3

α2t
)
,

Ū = eut

−α2

α1 ,

P̄ = h.
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Now we can express VB using the new variables as

V̄B = VB τ̄
∂

∂τ̄
+ VB ξ̄

∂

∂ξ̄
+ VBŪ

∂

∂Ū
+ VBP̄

∂

∂P̄
,

=
β1

α1

∂

∂τ̄
+

α1β2 − α2β1

α1
ξ̄

∂

∂ξ̄
+

α1β2 − α2β1

α1
Ū

∂

∂Ū
.

In a similar manner, we choose a second set of canonical
variables allowing V̄B to be written as translation with respect to
ξ, i .e.,
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V̄Bτ = 0, V̄Bξ = 1, V̄BU = 0, V̄BP = 0. (5)

the characteristic conditions associated with (5) yield the
following transformation of variables

α1d τ̄

β1
=

α1d ξ̄

(α1β2 − α2β1)ξ̄
=

α1dŪ

(α1β2 − α2β1)Ū
=

dξ

1
.

the characteristic conditions yield the following transformation
of variables
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τ = ln t

α2β1K + 1
α1 −

β1K (x + α3
α1

)

t
, (6)

ξ = ln t−α2K +
α1K (x + α3

α1
)

t
, (7)

u = ln U +
(x + α3

α1
)

t
, (8)

h = P, (9)

where K = 1
(α1β2−α2β1)

.

T. Raja Sekhar, NIT, Rourkela Self similar solutions in shallow water equations



Introduction
Problem analysis

Power-series method
Compatible condition
Usage of similarity variables

Using the above transformation in the governing system (1), we
get the following system of PDEs

(
α2β1K + 1

α1
− β1K ln U)

∂P
∂τ

+ (α1K ln U − α2K )
∂P
∂ξ

(10)

−
β1KP

U
∂U
∂τ

+
α1KP

U
∂U
∂ξ

+ P = 0,

(
α2β1K + 1

α1
− β1K ln U)

∂U
∂τ

+ (α1K ln U − α2K )
∂U
∂ξ

−

β1Kg(P + H)

P
U

∂P
∂τ

+
α1Kg(P + H)

P
U

∂P
∂ξ

+ U ln U = 0.
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By considering U = 1, the above system of PDEs can be
reduced as follows

− β1
∂P
∂τ

+ α1
∂P
∂ξ

= 0,

∂P
∂ξ

−
β1

α1

∂P
∂τ

= 0. (11)

Equation (11) can be solved as

P(ξ, τ) = P1(η) (12)
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where η = τ + β1
α1

ξ. Using (12) in the equation (10), we obtained

dP1

dη
+ α1P1 = 0 (13)

equation (13) can be solved

P1 = Ce−α1η (14)
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where C is an arbitrary constant and thus, in view of the
equations (6), (12) and (14) the solution of the system (1) can
be expressed as follows

h =
C
t

, u =
x + α3

α1

t
. (15)
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Thank You.
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