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Effect of temperature-dependent specific
heat of the working fluid on the
performance of cryogenic regenerators
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The governing differential equations of a regenerator operating with a fluid with temperature-
dependent specific heat have been formulated in terms of characteristic reduced parameters. A
numerical solution of these equations is presented for several combinations of fluid-flow
parameters using normal and parahydrogen as working fluid. It is observed that a constant
specific heat model with the harmonic mean reduced length is adequate except at large values of
reduced length or period and when the specific heat variation exceeds a factor of two over the
temperature range. The matrix and gas exit temperature profiles, however, show a significant
difference between the two models, which may be critical in some applications.
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Nomenclature
A Heat transfer area per unit volume (m?/m?)
Ay, Intermediate variables defined in appendix
B, Intermediate variables defined in appendix
Cyas Intermediate variables defined in appendix
C Specific heat (J kg™ k™)
(_'-p— Characteristic specitic heat (C) of the fluid
E Enthalpy (J kg™
Fluid mass velocity (kg m™2 s71)
h Heat transfer coefficient (W m—2? K1)
H E/Cy o (K)
L grid indices
K-K. [Intermediate variables defined in appendix
L Length of the regenerator (m)
N Number of grid divisions in distance or time
coordinate
P Total cycle period ()
R Intermediate variable
t Time coordinate (s)
T Temperature (K)

Distance coordinate (m)

a MrpAgn/2

B ArpIly2

8.5, Constants used in convergence criteria
£ Effectiveness

A Reduced length = leL/Gg('p
A Characteristic reduced length
I Reduced period = 24P/ 2p,,C,
P Density (kg m™3)

0 Integer part of temperature. T{K)
Subscripts

C Cold

D Dimensionless

cq Equivalent

E Enthalpy

g Working fluid

h Hot

hm Harmonic mean

i Inlet

m Matrix

0 Qutlet

T Temperature
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A regenerator essentially consists of a porous medium
called the matrix, through which the hot and cold
fluids flow alternately. The exchange of energy between
the two fluid streams takes place by transfer of heat
from the hot fluid to the matrix and its subsequent
transfer to the cold fluid. That is why regenerators are
often termed as ‘storage-type heat exchangers in
contrast with recuperators or ‘transfer-type heat
exchangers'.

Regenerative heat exchangers have been used in
hot-air engines. Cowper stoves in steel making gas
turbines and air separation systems. In recent years,
they have also found extensive use in small cryogenic
refrigerators based on Stirling. Gifford-McMahon. and
similar cycles. in which they constitute the single most
important component. The classical design procedure
for regenerators is given by Hausen!. The effectiveness
is expressed graphically in terms of two dimensionless
parameters: reduced length. A, and reduced period. TL
defined as

_hAL o kAP
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where

h = heat transfer coefficient

A = heat transfer area per unit volume
L = length of regenerator

P = total period of a cycle

G, = fluid mass velocity

pm = density of the matrix

Cp. €, = specific heats of matrix and fluid respectively
In many regenerator applications. the working fluid
undergoes a large temperature change from inlet to
exit. In such cases due consideration must be given to
the fact that fluid properties, such as viscosity. thermal
conductivity and specific heat, may vary considerably
along the bed. Among the working gases used at
cryogenic temperatures. hydrogen shows significant
variation of specific heat with temperature. As
hydrogen is receiving increasing attention as a future
automotive fuel and (in many countries where helium
is not easily available) as a working fluid in Stirling
and other regenerative cryorefrigerators, it is time to
develop a design procedure for regenerators with
temperature-dependent specific heat of the fluid. The
heat capacity of the matrix is also temperature
dependent’, often more strongly than that of the fluid.
In this Paper. however, it is assumed to be constant to
highlight the effects of variable fluid specific heat

Since the fluid specific heat C,. is a function of
temperature, it is not possible to define a unique
dimensionless length, A. It is possible, however. to
define a _characteristic  dimensionless _ length,
A = hAL/G,C, 1o characterize a regenerator. C, being
a characteristic specific heat

In this Paper. the governing difterential equations
have been formulated in terms of the characteristic
dimensionless parameters A and I The resulting
cquations are a pair of coupled hyperbolic partial
differential equations’. They have been reduced to
finite difference form and solved numerically.
Temperature profiles and effectiveness values for a
wide range of flow parameters have been presented

and compared with calculations based on constant
specific heat
Governing equations

In deriving the governing differential equations for the
regenerator, the following assumptions are made:

I the fluid flow through the regenerator is parallel and
uniform throughout any cross-section;

[R9)

the thermal conductivity of the matrix is zero in the
direction of fluid flow and infinite perpendicuiar to
it. Therefore, the regenerator may be characterized
by the temperature profile along the flow axis, the
temperature being uniform over any cross-section;

3 the convective heat transfer coefficient is constant
throughout the regenerator:;

4 the thermal properties of the fluid and matrix
materials, except fluid specific heat, are constant;

S fluid hold-up and pressure cycling have no effect on
the performance of the regenerator;

6 no phase change of the working fluid takes place
within the regenerator;

7 the boundaries are adiabatic and there is no heat
exchange with the surroundings;

8 the regenerator is in balanced operation, ie.

(’gh = Gg_ cand Py = P.= P/2;

9 regular periodic conditions have been established
for all matrix elements.

On the basis of these idealizations. the energy
conservation relations over a differential element of the
regenerator may be expressed as

oF,
G, Bl = hA(Tm — Ty (1a)
and
T
PmCm 5= = hA(Tg~ Trm) (1b)
where

E, = enthalpy of the fluid
T, T, = temperatures of matrix and fluid. respectively
y = distance coordinate

t = time coordinate

The associated boundary and reversal conditions are:

Te(y=0,0)=Ty; for 0 <t <P[2
T, =L )=T, for P2 <t <P 2
T, t+P) =T (v, 1) for0<y<L

where Ty, and T, are the inlet temperatures of the hot
and cold fluids, respectively.

Defining non-dimensional
coordinates

length and time

Yp =y/L and tp = 2t/P



the governing equations reduce to

oH  ~

55;13— = ATy - g) (3a)

T,

aTnl = (Ty — Ta) (3b)
D

The dimensionless parameters, A and IL are defined
carlier and the variable H. which has the dimension of
temperature. is defined as E/C,. Equations (3a) and
(3b) are identical to those in constant specific heat
problems except that the variable H substitutes for 7T,
in Equation (3a). The boundary and reversal condi-
tions now reduce to

Tg(yp =0,1p)=Ty;
Typ=1,1p) =Ty

Tm(yD, tp t 2) = Tm(yDv tD) for O<.yD <1

for0<tp <1

for 1 <tp <2 (4)

Harmonic mean reduced length

In the previous scction, the governing cquations have
been developed in terms of a characteristic reduced
length. A. defined on the basis of a characteristic
specific heat, C_'p For maximum convenience. A should
be chosen in such a way that the effectiveness
computed on the basis of a constant specitic heat, C.
is close to that by exact calculation.

The reduced length for an arbitrary differential
clement of the regenerator is given as

_hAddy

dA = ———
GeCh

This expression may be integrated over the length of
the regenerator to give the total equivalent reduced
length.

L
Aeq=f
(4]

In the integrand in Equation (5) the variable €, is a
function of temperature 7, and. hence. ol position y
and time 1. Since the exact temperature protfile cannot
be known, a linear temperature profite with tempera-
tures cqual to Ty, and T at the ends may be taken as

hAdy

e )

[y

the first approximation. Then.

Substituting in Equation (5)
Te: | -1

A o i [ ' (AT, ) d7,
e C—’:;;_ . V Cp(Tg)
Thj ’

hA L ChdT,
Ge Tni Ta C,(Tp
1
hAL
= AL = A 6
(’ng’hm hm ( )

Chnm 1s the harmonic mean specific heat of the fluid
over the temperature range T, - T, and is defined as

Ty -1
1 - dT, ]

Cohm = | 5 . N 7
pohm [Thi =Ty Co(T) @)

Thus, with the assumption of a linear temperature
profile the equivalent reduced length of the regencrator
is cqual to its harmonic mean reduced length. This
assumption is never strictly  valid because (a) a
temperature-dependent specitic heat precludes a lincar
temperature profile: and (b) at finite cffectiveness the
average end temperatures will not be equal to Ty; and
T,

Although A, will not give the true effectiveness
of a regenerator. it is still the best initial estimate and
will be used throughout this Paper to characterize a
regenerator.

Numerical solution

Numerical scheme

By replacing the characteristic reduced length, A, by
the harmonic mean reduced length, Ay, the governing
cquations can be written as

oH
%’ = Ahrn(Tm - g) (83)
and
0T
i C Ty — Tr) (8b)

The pair of Equations (8a) and (8b) need to be
expressed in a suitable numerical scheme for computer
solution. We follow the trapezoidal method* to express
the partial difterential equations in finite difference
form.

Referring to the grid array shown in Figure I, the
following relations may be written

H(i+1,j+1) = H(i,j+1) +

A}’ D
2

oH ,. . . OH . .
" (i+ Huininii
Wp (H1.7+1) + ) (I’JH)} (%)

Tm(+1,j41) = T (i41,]) +

Arp

2

0Ty,
otp

o 0T .
(+1,7+1)+ —— (i+1,))} (9b)
arp
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Figure 1 Grid array for numerical solution
On eliminating the partial derivatives between

Equations (8) and (9)

H(i+1,j+1) — H(, j+1) = @| T (41,7 +1) + Ty (i, j+1)
— Tg(i+1,j+1) — To(i, j+1)}  (10a)

and

T (1,7 +1) — Ty 41,7) = B{Tg (41, j+1) + T(i+1, /)

— T (i1, j41) — Ty (i41,7))

(10b)
where
AyD AtD
a-—~2—AhmandB—2—H
Equations (10a) and (10b) are the basic finite

difference equations to be solved. This involves the
determination of H(i j) from the corresponding T (i j)
and vice versa at every point. These interpolations
within the innermost loop of the computer program
require excessive computer time. To achieve quick
interpolation, the following technique is adopted.

The values of specific heat, C,, are tabulated in
computer memory at every integer value of tempera-
ture. Then, one can read the specific heat. C},. at any
integral temperature, @ as the @ element of this array.
The value of C,, at any fractional temperature may be
calculated by linear interpolation between the two
neighbouring integral temperatures. From the basic
relations between enthalpy. E. temperature, 7, and
specific heat, C,, one can write

T

g
E(Ty)=E(©y) + f Cp(Ty) dTy
g
where @, is the integer part of the temperature 7,
Since the interval T, — ©, < | K. one can

approximate C(T,) by a mean value over the interval
0, and ©, + 1, and write

Cp(©®y) +2Cp(®g +1) T, -8y an

E(Ty) = E(By) +

Similarly, H(T,). which is equal to E(Tp)/C, pm. can be

expressed in terms of the integer part of temperature T,

as

Cp(B®g) +Cp(0g +1)
2 Cphm

H(T,) = H(O,) + (T, -6y  (12)

By defining a quantity R(®,) as
R(©,(i, 1)) = [Cp(©g(i, 1)) + Cp(Og (i, )] [2Cp hm  (13)
Equation (12) can be written as
H(,7)=H(®4(, 1)) +R(Og(, 1)) [Te(i, /) — €50, )] (14)
where (H(ij) is the same as H(Tg(lﬁj)). By using
Equation (14) and the parameters B, C and K defined

in the Appendix. Equation (10) may be expressed in
the form

To(i41,j4+1) = Ky Tg(i, j+1) + Ky Ty (1, j+1) + K3 Ty (i41, )

+ Ky T (i+1,7) +Ks (152)
and
T (i+1,j+1) = By Ty i+1,7) + By { To(i+1,j+1)
+ Ty(i+1,7)) (15b)

Equations (15a) and (15b) are valid for all grid points
except the first column and the first row (Figure 1) in
each half cycle, e i= 1 orj= 1.

The initial boundary conditions are obtained
partly from Equations (4) and partly by application of
Equations (10 and (14).

Boundary relations (i=1).

Ty(1,7)= Tny 1 <j <N+l during hot blow period  (16a)
Ty(1,7/) = T¢;; 1 <j <N+l during the cold blow
period (16b)

T (1,7 41) = By Tin(1,7) + B { To(1,j+1) + Ty(1,1)1 (17)
where N is the number of grid divisions in both
distance and time coordinates.
Initial and reversal relations (j = 1).
T (i, 1) = T (N+2—i, N+1) of previous half cycle.

1 <i<N+H (18)
To(i+1,1)= A, Ty(i,1) + A, { Ty (141, 1)

+T(i, 1)} +A4; (19)
The equations derived above for the case of
temperature-dependent  specific  heat are equally
applicable to the constant specific hcat problem. In the
latter case the parameter. R is set equal to unity. The

resulting equations are identical to those derived by
Willmott*.
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Solution procedure

To start the solution process, an initial matrix
temperature profile has to be assumed. In our case. this
profile is provided by the solution of the constant
specific heat problem for the same value of Ay, and
II. The initial matrix temperature profile for the
constant specific heat problem. on the other hand. is
chosen by the following method.

An initial estimate of the overall efficiency of the
regenerator is made from Tipler's formula®

= Ahm tanh ’ IT
€T T an Ahm+2

The matrix temperature profile at the start of the hot
blow period (which is the same as that at the end of
the cold blow period) is assumed® to be a straight line
between the end temperatures. Ty; — 1231 — ey)
(Th,— T and Ty + 25 (1 — e (T, — T

i

Tea(is1)= Ty — {1.25 (1 —ep) + _;,_1 (1 ~15(1 - eT))}

(Thi - Tci) (20)

The matrix temperature profile for j = | being known,
the gas temperature profile is computed using Equation
(19). Now Equation (15) and boundary conditions (16)
and (17) are used to compute the entire grid array for
the hot blow period. On completion of the hot blow
period, the flow reverses. The initial matrix temperature
profile is determined by using Equation (18) and the
entire grid array is computed in the same way as for
the hot blow period. The whole process is repeated till
a steady cyclic condition is established.

In the case of temperature dependent specific
heat. equal division of the geometrical length does not
result in  equal division of the reduced length.
Assuming the temperature profile of the constant
specific heat problem. the reduced length at the /" grid
location is computed as

Cp,hm

N : Ahm
A = Z N G0, 1)) (21)

k=2

The temperature at A(j) is again determined from the
constant specific heat results and this is taken as the
starting temperature. Ty, (i. 1), at the grid point (i, 1).
The above procedure considerably reduces the
iterations nccessary for convergence and results in
saving of computer time.

The initial matrix temperature profile being
known, the other grid points are computed by using
Equations (15)~(17). The process is repeated until
certain convergence criteria are satisfied.

Convergence criteria and effectiveness
Following Willmott*, thec mean exit temperature/
enthalpy of the gas stream over a half cycle is
calculated using the Gregory formula as

- 1 1 N 1
o= {—‘1’1\/+1 t D Oyejt 3 NeLNH

L .
D—(V‘PNH,NH - A‘I’N+1,1)

1

- ﬁ( Vihyi Nt t Az‘1’N+1,1)

19

- W(V3‘I’N+1,N+1 —A3¢’N+1,1)} (22)

where @ refers to the variables £ or T, A and V refer
to forward and backward differences. respectively. The
effectiveness is computed separately for hot and cold

blow periods

En; — En, E

€gh= ——F—and €g .~
’ Ehi'ECi

Co —E
Ehi - Eci

¢i

Two types of convergence criteria have been used:
(a) Energy balance criterion’ - the net energy gain of the
regenerator over one complete cycle has to be zero. ie
gn = € Hence |l - gry/ep |< &) is used as a
criterion of convergence: (b) steady state criterion - 10
insure that steady cyclic conditions are established. the
condition

€gh tEgc /eE,h tegc
2 2
/ f 7

is used as a convergence criterion. The subscript f refers
to the f" cycle.

Criterion (b) can be alternatively expressed in
terms of the average exit temperatures as

|(Tgho)f - (Tgho)f_ 1 | < 83

< 8,

r-1

and
|(Tgco)f — (Tgco )f— 1 ‘ < 53

In this Paper. 8, and &, have been taken as 0.0001 and
0.001 K. respectively.

The number of grid divisions along the length
coordinate and that in time coordinate over a half
cycle 1s taken to be the same in this Paper
Consequently. the truncation error associated with each
grid  point is* O](Ayp)]l. The additional error
introduced by discretization of specific heat data is not
significant. Initially. a coarse grid is adopted and the
equations are solved until the convergence criteria are
satisfied.  The resulting matrix  temperature  profile
serves as the initial condition for the next grid risc,
which is taken as half the previous one. The new grid
points arc filled by linear interpolation between
neighbouring points. The equations are solved and the
efficiency determined for at least three grid sizes. the
difference of the efficiencies computed with the two
finest grids being < 0.001. The results with the three
tinest grid sizes are extrapolated to zero grid size by
the relation?



Ny -N, Ny —N3 N3 -N,
€4 + — €, + €
e= N i M N (23)
N; =N, . N,—N3 . N3 - N,

N3 N N,

where g, €, €, are the efficiencies corresponding to the
number of grid divisions N, N,. and N,.

Results

The numerical scheme was programmed into a
Burroughs B6700 computer and the efficiencies
computed for selected values of temperature range,
pressure, characteristic reduced length, A, and reduced
period. II. The detailed computer program has been
given elsewhere®. The specific heat data on normal
hydrogen and parahydrogen have been taken from
Reference 9 and are shown in Figures 2 and 3. Five
combinations of working fluid, temperature range and
pressure were selected. They have been given in Table 1.

Table 1 Combinations of fluid parameters used in computation

Working ftuid Temperature Pressure Computed

range (MPa)  C, .,
(K) (KI kg™ K)

1 Parahydrogen 21-77 0.1 10.85

Il Parahydrogen 28-77 0.5 11.78

1 Parahydrogen 21-77 2.0 14.93

v Normal hydrogen 77-300 0.1 12.92

\ Normal hydrogen 77-300 2.0 13.20

100 T T T TTT11 ] 1
80

T

T

60 P2 MPo

T
1 £ 111

Specific heat, €, (kJ kg™ K™

8 Two phase ~
— boundary

6 A1 | Y S | { | I
20 30 40 60 80 100 200 400

Temperature (K)

Figure 2 Specific heat, C, of normal hydrogen at constant
pressure®

Effectiveness at Ay, = 10, 20, 50 100 and 200, and
/A, = 0.1, 0.2, 04, 0.6, 0.8 and 1.0 at each of the five
combinations of Table I are presented in Table 2.

It may be observed from Table 2 that in four out
of the five fluid flow parameter combinations the
variable specific heat results are close to those with
constant specific heat. The results, however, are quite
different in the case of combination III: parahydrogen
at 2 MPa and between 21 and 77 K This case has been

Table 2 Computed effectiveness (%) shown against A, ,, IT and fluid flow parameters

Fluid flow parameter combination (7able 1)

Apm VAL, Constant C, I 1" n 1\ \
10 0.1 83.22 83.34 83.37 75.52 82.91 83.03
0.2 82.89 83.02 83.04 74.83 82.56 82.69
0.4 81.70 81.85 81.88 72.40 81.31 81.46
0.6 79.84 80.05 80.10 69.06 79.35 79.54
0.8 77.24 77.52 77.62 65.23 76.57 76.82
1.0 73.76 7413 74.28 61.13 72.91 73.22
20 0.1 90.78 90.82 90.79 85.70 90.62 90.68
0.2 90.44 90.48 90.44 84.68 90.27 90.34
0.4 89.35 89.39 89.33 81.30 89.13 89.22
0.6 87.67 87.75 87.69 76.82 87.33 87.47
0.8 85.10 85.29 85.27 71.93 84.53 84.75
1.0 81.14 81.49 81.55 66.81 80.22 80.56
50 0.1 96.04 96.04 96.00 93.64 96.97 96.00
0.2 95.79 95.79 95.73 92.58 96.73 95.76
0.4 95.07 95.05 94.94 88.60 94.99 95.02
0.6 93.91 93.89 93.73 83.08 93.76 93.83
0.8 91.93 91.98 91.80 77.37 91.51 91.68
1.0 87.93 88.25 88.15 71.48 86.85 87.24
100 0.1 97.95 97.95 97.92 96.68 97.92 97.93
0.2 97.79 97.78 97.74 95.87 97.76 97.78
0.4 97.33 97.30 97.20 91.62 97.30 97.32
0.6 96.56 96.51 96.32 85.45 96.49 96.52
0.8 95.13 95.10 94.83 79.64 94.83 94.96
1.0 91.41 91.80 91.41 73.54 90.16 90.61
200 0.1 98.95 98.94 98.92 98.29 98.94 98.94
0.2 98.86 98.96 98.83 97.73 98.84 98.85
0.4 98.61 98.58 98.50 93.23 98.60 98.60
0.6 98.13 98.07 97.90 86.79 98.10 98.12
0.8 97.21 97.14 96.79 80.91 96.94 97.11
1.0 93.9 94.16 93.66 75.12 92.41 92.94
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Figure 3 Specific heat, C, of parahydrogen at constant
pressure®
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Figure 4 Efficiency of regenerator with variable specific heat of
the working fluid compared with constant specific heat
calculation. Parahydrogen, 77-21 K, 2.0 MPa, , Constant
specific heat; — — —, variable specific heat

illustrated in Figure 4. In cryogenic practice, most
regencerators operate with high efficiency. Hence, it is
more appropriate 10 compare the inefficiency. The
marginal change in inefficiency (1 - &) between
variable and constant specific heat calculations have
been shown for tluid flow parameters 111 and V in
Figures 5 and 6. respectively. It may be observed that
the difference between the two calculations is very high
in the case of combination III but is significant for
combination V only at high Ay, and Il Figures 2 and
3 show that in the case of combination II1, the specific
heat varies by a factor of nine over the temperature
range of interest, but in all other cases it is limited to a
factor of two. Hence. we may conclude that if the

specific heat variation within the temperature range of

interest is limited to a factor of two, a constant specitic

heat calculation with A Ay, will give accurate
results. But at higher variation or at high values of Ay,
or I an ¢xact computation 1s necessary.

Although the overall effectiveness is  correctly
predicted by the constant specific heat model (with A
= Apw)- In most cases the actual temperature profile in
the regenerator shows significant variation. This has
been illustrated in Figures 7 and 8 for two specific
examples. The deviation of the temperature profile
from that with constant specific heat is high for the
case where the specific heat itself” varies over a wide
range.

[( I_‘E)exact— { I_"E)consmnt ] /(- ‘c )consmnt

N/Ay,

Figure 5 The difference in efficiency between exact and
constant specific heat calculations shown against A, and
VA Parahydrogen, 77-21 K, 2.0 MPa
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Figure 6 The difference in inefficienccy between exact and
constant specific heat calculations shown against A, and [/ A,,.
Normal hydrogen 300-77 K, 2.0 MPa
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Figure 7 Matrix and gas exit temperature profiles under steady
cyclic conditions. A, = 20, II = 4. A: Constant specific heat;
B: Normal hydrogen, 300-77 K, 2.0 MPa; C: Parahydrogen,
77-28 K, 0.5 MPa; D: Parahydrogen, 77-21 K, 2.0 MPa; ——:
Matrix temperature versus dimensionless length at the end of
hot and cold periods; ------ : Gas exit temperature versus dimen-
sionless time
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Figure 8 Matrix and gas exit temperature profiles under steady
cyclic conditions. A, = 100, I1 = 40. A Constant specific heat;
B, normal hydrogen, 300-77 K, 2.0 MPa; C, parahydrogen, 77-28 K,
0.5 MPA; D, parahydrogen, 77-21 K, 2.0 MPA. , Matrix
temperature versus dimensionless length at the end of hot and cold

blow periods; - - - ---- , gas exit temperature versus dimensionless
time
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Appendix
Definition of coefficients used in the finite difference
equations

' R(G,(+1, ) +a

[

42 = RO G, ) *a

_ {H((;)g(i, ) - ®g(i:j) ° R(@g(i’ 1)) _H(Gg(i+1 1))

> R(©4(+1,))) +
®g(l+l ’]) * R(®g(1+1 a]))}
ROL(1,)) +«

_1-8
By = +B
_ B
B2 = g +B

R(O40,741) — a
" R(O,G+1,jH)) +a

_ o
R(Og(i+1,j+1)) +a

= [H(Bg(ij+1)) — ©4(i, j+1) * R(By(i, j+1))

Cs
R(©,(i+1,j+1)) +a
H(®g(i+1,7+1)) + ©,(i+1,j+1) « R(Og(i+1,j+1)}
B R(G,(i+1,/+1)) +a
K =G
' 1208,
G
K= 1o C,B,
C,B
K3 = 2872
CZBI
Ka = 1-GC,B,
Cs
Ks = 1-C,B,





