
IJCST Vol. 2, Issue 4, Oct. - Dec. 2011 ISSN : 0976-8491 (Online) | ISSN : 2229-4333 (Print)

w w w . i j c s t . c o m  516 International Journal of Computer Science And Technology

Abstract
Grid scheduler allocates resources to task. In this paper, we
proposed architecture of grid scheduler for task scheduling
in grid. The goal of the scheduler in this paper is minimize
makespan and maximize success execution rate of task. A
number of experiments were carried out to check performance
of grid scheduler and we evaluated performance of grid
scheduler using Max-Min, Min-Min and FCFS heuristics.

Keywords
Task Scheduling, Grid Scheduler, Task States.

I. Introduction
Grid computing is considered to be a wide area distributed
computing [1, 2] which provides sharing, selection and
aggregation of distributed resources that spans not only locations
but also various organizations, machine architectures and
software boundaries to provide unlimited power, collaboration
and information access to everyone connected to a grid and
makes them use for their computational purpose. One of the
important aspects of a grid is task scheduling. Scheduling is
the creation of a schedule: a (partially) ordered list specifying
how contending accesses to one or more sequentially reusable
resources will be granted. Such resources may be hardware
such as processors, communication paths, storage devices or
they may be software, such as locks and data objects. Task
scheduling is the assignment of a set of tasks to some certain
resources by means of starting and ending time of tasks,
subject to certain constraints [3]. Task scheduling is integrated
part of grid computing. The purpose of task scheduling is to
allocate resources for executing task. Task scheduling guides
resource allocation. As there are many nodes where a task can
be executed, the first question to be answered is how to assign
the tasks to them. This assignment is known as task allocation,
or global scheduling. Once tasks have been allocated, becomes
one of defining a feasible local schedule for each node. Scheduler
is responsible for task dispatching as well as assigning each
task to resources. A grid scheduler act as interface between
the user and resources. It hides the complexity of grid from
the grid users. A scheduling algorithm can be classified into
clairvoyant or non clairvoyant, with regard to knowledge about
characteristics of tasks. A clairvoyant scheduling algorithm
may use information of tasks characteristics such as service
demand, whereas a non clairvoyant algorithm assumes nothing
about the characteristics of the jobs [4]. In this paper, we
assume that tasks service demands are known to scheduler.
Depending upon task requirement, task can be executed on
single site or multiple sites.

A. Single Site Scheduling
In single site scheduling, tasks are not shared among sites. It
is executed only on single site.

B. Multi Site Scheduling
Sometimes task scheduling is not possible at single site so in
this case tasks are distributed to multiple sites. Grid scheduler
dispatches task to multiple sites. In this case, task is divided

into subtask and it is distributed over multiple administrative
domains. This allows the execution of large task requiring
more nodes than available on a single site. In this paper, we
presented grid scheduler architecture and performance of
grid scheduler is evaluated using Max-Min, Min-Min and FCFS
heuristics. We presented various possible task states in grid
and system model that explains system behavior.

Fig. 1: Grid System

The rest of the paper is organized as follows. We presented grid
system description in Section II. Grid scheduler architecture is
presented in Section III. System Model is presented in section IV.
Various possible states of task in grid are discussed in section
V. Performance evaluation of grid scheduler is discussed in
Section VI. Finally, some conclusions are drawn in Section
VII.

II. Grid System Description
Grid is a system having a number of independent sites as shown
in fig. 1 and task execution in grid system is shown in fig. 2. A
site may have either a single computing node or a number of
computing nodes connected in a distributed manner. Resources
in a site are not exclusively dedicated for grid usage. Sites can
freely participate in grid computing by offering resources. We
represent a grid as two tuple G = <S, TM> where S is the set
of sites and TM is the set of tasks. We further represent the

set S as S = {
1

1
NS ,

2
2

NS ,………
iN

iS ,……,
nN

nS } where
iN

iS is
the ith site have Ni number of resources, TM = { Tj | j ε 1,2 ….
,M}, the set of tasks to be executed in the grid. The resources
at site Si can be of data, computational or I/O type. Each site
Si is associated with few attribute. They are status Sti of the
site (whether working or not working) and maximum capacity
Capi of the site. A site Si can be represented in three tuple Si
= <Ri, Sti, Capi>. The resource Ri at site Si can be represented
in three tuple Ri = <I/Oi, Ci, Di> where,
I/Oi = Set of resources of I/O type,
Ci = Set of resources of computational type and
Di = Set of resources of data type.
The QoS for I/O resources is characterized by speed and
latency. The QoS for computational resources is characterized
by computational speed and load. The QoS for data resources
is characterized by space and disk bandwidth. So, the total
no of resources available at all sites at a point of time tj for a
task is :
R={C1, C2, C3......., Cn, I/O1, I/O2, I/O3......., I/On, D1, D2, D3.......,
Dn}

An Observation on Performance Analysis of Grid Scheduler
1Ashish Chandak, 2Bibhudatta Sahoo, 3Ashok Kumar Turuk

1,2,3Dept. of CSE, National Institute of Technology, Rourkela, India

ISSN : 0976-8491 (Online) | ISSN : 2229-4333 (Print) IJCST Vol. 2, Issue 4, Oct. - Dec. 2011

w w w . i j c s t . c o m   International Journal of Computer Science And Technology  517

III. Grid Scheduler Architecture
In this section, we presented an architecture and flow of task
in grid scheduler as shown in fig. 3 and fig. 4 respectively.
Functions of different components are explained below:-

A. Site Information System (SIS)
It gathers the following information about each site Si.
1. Identity of site Si.
2. Status of the site Si.
3. The total load at the site Si.
4. A Site Sj to which the transaction can be copied in case of
any failure, at site Si.

B. Site Information Database (SID)
The information gathered by SIS is stored in SID.

C. Global Task Database (GTD)
This stores information about each task. The following attribute
about a task is maintained at GTD:-

Fig. 2: Task Execution in Grid System

1. User Request Identity (Owner of the task).
2. Grid task Identity (Assigned by grid task scheduler).
3. Arrival time of the task at the grid scheduler.
4. Expected execution time required by the task.

D. Task Determination
This determines the type of resource viz. I/O, data and/or
computational required by the task.

E. Task Distribution Manager (TDM)
It dispatches task to remote sites. It is also responsible for
management of tasks over multiple administrative domains.

F. Task Matchmaker (TMM)
Matching of resources to a particular task request is done by
TMM.

G. Result Management System (RMS)
For collection and returning results.

IV. System Model
We represent the grid system as a M/M/s: N/FCFS queuing
model as shown in fig. 5 where: M –

Fig. 3: Centralized Scheduler Architecture

Fig. 4: Flow of Task in Proposed Grid Scheduler

represents exponential inter arrival times between tasks, M-
represents exponential execution time of tasks, s - represents
number of computing sites, N - represents capacity of system i.e
maximum task allowed in the system (this includes executing
task plus waiting task), FCFS–represents First Come First Serve
queue discipline.
Let be the rate of arrival of task from each grid user i at the
grid scheduler. Assuming that there are j numbers of grid user,
the total rate at which task arrive at the grid scheduler
Let be the rate at which a task is served at each site i. We
assume that the service rate is independent and identically
distributed. The combined service rate of all sites in a grid
is. Our queuing model is characterized by following
parameters:-
n - Number of tasks in the system.

- Arrival rate of tasks.
- Service rate of tasks.

IJCST Vol. 2, Issue 4, Oct. - Dec. 2011 ISSN : 0976-8491 (Online) | ISSN : 2229-4333 (Print)

w w w . i j c s t . c o m  518 International Journal of Computer Science And Technology

- The expected fraction of time the sites are busy i.e.
Utilization factor is given by .
Then, steady state probability of having n tasks in the system
as given by [5]
Pn= (sρ)n P0 /n!			 for 0 ≤ n ≤ s
 = (sρ)n P0 /s!			 for s ≤ n ≤ N
 = 0				 for n > N
Where P0 is written as

P0 = [∑
=

s

n 0
(sρ)n/n! + ∑

=

N

sn
 (sρ)n/s! (sn-s)]-1

Fig. 5: System Model

Fig. 6: Task States in Grid Computing

Expected task queue length i.e. expected number of tasks in
the task queue given by [5]
Lq = ∑

=

N

sn

(n-s) Pn

= (sρ) s P0 ρ / (s! (1- ρ)2) [(1- ρN-s+1) - (1- ρ) (N-s+1) ρN-s]

V. Task States in Grid Computing
Task in grid application can be any one of the states as shown
in fig. 6. Basic fundamental states are:-

A. User
Tasks are generated by the user.

B. Grid user interface
User submit task through grid user interface.

C. Grid scheduler
Task arriving at a grid scheduler is placed in a global task queue
and is served on the order of their arrival i.e. in first come first
served (FCFS) manner. Grid scheduler checks workload and
resource availability of each site and forward task to site that

satisfy task requirement. Thus, it will decompose and distribute
tasks to remote sites. If scheduler is busy or no sites satisfy task
requirement then task is terminated and appropriate message
is sent to user.

D. Local scheduler
It contains task which are assigned by grid. scheduler and are
waiting to get share of resources. It is responsibility of local
scheduler to schedule the task for execution which is assigned
by grid scheduler.

E. Executing
Task which is actually using CPU cycles belongs to this state.

F. Blocked
Task for which required resource is currently not available is
put in the blocked state.

G. Finished
Task after complete execution goes into this state. Result of
the completed task returned to user through grid scheduler.

VI. Performance Evaluation

A. Performance Metrics in Grid Computing
Grid scheduler performance has been measured by various
performance metrics. The most commonly used performance
metrics are
1. Makespan
2. Resource Utilization
3. Workload Balancing
4. Service Reliability
5. Flowtime
6. Fairness Deviation
7. Throughput
8. Success Task Execution. Table I shows description of various
performance metrics. Uses of Performance Metrics.
(i). Performance metrics helps in measuring significant work.
(ii). Unmeasured work can be minimized or eliminated.
(iii). Desired outcomes are necessary for work evaluation.
(iv). It helps in timely corrective action.
(v). Work that is not measured or assessed cannot be managed
because there is no objective information to determine its
value.

B. Simulation Model
We developed a simulation application in matlab to carry out
the experiments. Each simulation experiment ends when 500
tasks executions are completed. Fig. 7, shows the simulation
model which consist of nine nodes each having different
computing capability. The arrival of tasks is modeled as Poisson
random process. To evaluate performance we have considered
following three types of tasks: a) I/O intensive tasks b) Data
intensive tasks c) Computational intensive tasks. We evaluate
performance of grid scheduler and tasks are schedule using
simple heuristic viz. Max- Min, Min-Min and FCFS heuristics.

C. Makespan Result
Table 2, shows the comparison of makespan with Max Min,
Min Min and FCFS heuristics. From comparison, scheduling
task using Max-Min heuristic gives better results as compared
Min-Min and FCFS heuristics.

ISSN : 0976-8491 (Online) | ISSN : 2229-4333 (Print) IJCST Vol. 2, Issue 4, Oct. - Dec. 2011

w w w . i j c s t . c o m   International Journal of Computer Science And Technology  519

Fig. 7: Makespan Comparison

D. Success Execution Result
Success execution rate is shown in fig. 8. We can see from
the results that Max-Min task scheduling gives better success
execution rate as compared to Min-Min and FCFS heuristics.

Fig. 8: Success Execution Task Rate Comparison

Table 1 Performance Metrics of Grid Computing
SI. Parameter Reference Description

1. Makespan [6]

Makespan is maximum of
completion time.
makespan=max(CTi)

2. Resource Utilization [7]

The resource utilization is defined
as amount of resource is busy in
executing tasks.

3. Service Reliability [8]

It is defined as
a) Accessibility: - Service is
available when desired i.e. when
consumer want service.
b) Continuity - Consumer has
uninterrupted service over
desired duration.
c) Performance - Meets the
consumer expectation

4. Fairness Deviation [7]

The fairness of the market means
that each resource owner has
an equal opportunity to offer its
resource and it can obtain a fair
profit according to its capability.

5.
Success Task
Execution [7]

Success Task Execution means
task is executed within its deadline.

Table 2: Makespan Comparison

Tasks
Makespan in Seconds
Max-Min Min-Min FCFS

100 96 97 98
200 210 219 228
300 290 326 358
400 409 443 476
500 516 547 580

VII. Conclusions
In this paper, we evaluated the performance of grid scheduler
using Max-Min, Min-Min and FCFS heuristics. The experimental
results clearly revealed that Max-Min gives better results for
minimizing makepan and maximizing success execution rate
of task. These results indicate that using max-min heuristic
for task scheduling is a suitable selection.

References
[1]	 Ian Foster, Carl Kesselman, Steven Tuecke,"The anatomy

of the grid, Enabling scalable virtual organizations",
International Journal High Performane Computing
Application 15, pp. 200-222, 2001.

[2]	 Carl Kesselman Ian Foster, "The Grid 2, Blueprint for a New
Computing Infrastructure", ELSEVIER, Second edition.

[3]	 C. Stein D. Karger, J. Wein, "Scheduling algorithm", in
Algorithms and Theory of Computation Handbook. CRC
Press, 1999.

[4]	 C.E. Leiserson Y. He, W.J. Hsu, "Provably efficient online
nonclairvoyant adaptive scheduling", IEEE Trans. Parallel
Distrib. Syst., 19, pp. 1263-1279, 2008.

[5]	 S. D. Sharma, "Operation Research", Kedar Nath Ram
Nath and Co, Fourteenth edition, 2001.

[6]	 M. Naghibzadeh Kobra Etminani, "A min-min max-min
selective algorihtm for grid task scheduling", In ICI 2007.
3rd IEEE/IFIP International Conference in Central Asia,
2007.

[7]	 S Hesam Izakian, Ajith Abraham, Behrouz Tork Ladani, "An
auction method for resource allocation in computational
grids", Future Generation Computer Systems, 26(2), pp.
228 -235, 2010.

[8]	 Yuan-Shun Dai, Xiao-Long Wang, "Optimal resource
allocation on grid systems for maximizing service reliability
using a genetic algorithm", Reliability Engineering and
System Safety, 91(9), pp. 1071-1082, 2006.

IJCST Vol. 2, Issue 4, Oct. - Dec. 2011 ISSN : 0976-8491 (Online) | ISSN : 2229-4333 (Print)

w w w . i j c s t . c o m  520 International Journal of Computer Science And Technology

Ashish Chandak received B.E. from
Amravati University. Currently, he is
research scholar at National Institute of
Technology Rourkela India. His research
interest includes distributed systems and
web technologies.

Bibhudatta Sahoo received the M.Sc.
Engineering in Computer Science
from National Institute of Technology
Rourkela, INDIA, in 1999. He is
currently an assistant professor in
the Department of Computer Sc. &
Engineering, NIT Rourkela, India. His
interest include Parallel & Distributed
Systems, Networking, Computational

Machines, System Software, High
performance Computing, VLSI algorithms He is a member of
the IEEE Computer Society & ACM.

Ashok Kumar Turuk is a associate professor
of computer science and engineering at
National Institute of Technology (NIT),
Rourkela. He received his B.E. degree in
computer science and engineering from
NIT, Rourkela, India in 1992, and M.E.
degree in computer science from NIT,
Rourkela, India in 2000, and Ph.D degree
from Indian Institute of Technology (IIT),

Kharagpur, India in 2005. His research
interests include grid computing, photonic networks, ad hoc
networks.

