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Abstract 

This paper develops a Bayesian structural equation model for miners work injury in an underground coal mine 

India. The technical and behavioural variables for work injury were identified and causal relationships were 

developed. The prior distributions of the causal parameters were obtained from the data obtained from the 

experts opinions and fitting the sample distribution with theoretical distribution by Chi-squared method. The 

posterior distributions of these parameters were obtained by applying Bayesian rule. The Markov Chain Monte 

Carlo simulation in the form of Gibbs sampling was performed for sampling the data from the posterior 

distribution. The results revealed that 19 parameters out of 33 causal parameters are statistically significant. The 

results of expert opinion based on priors and maximum likelihood priors revealed that the parameters bound 

were converged towards the expected value in spite of wrong or bad initialization of priors distributions. The 

error statistics reveals that Bayesian structural model provides reasonably good fit of work injury with high 

coefficient of determination (0.91) and less mean squared error (0.025).  
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1.0 Introduction 

Mining is one of the hazardous professions and associated with a high level of accidents and injuries.  As per 

NIOSH (2011) report 2011, mine accident statistics of USA shows a decreasing trends for last 10 years (1992-

2002) periods; however mining industry is still occupying the top spot as per accident statistics out of all 

industries with an average fatality rate of 25 per 100,000 full-time equivalent employees (NIOSH, 2011). The 

injuries and accident statistics in India is significantly high.  

The major cause of high accident and injury rates are due to unsafe conditions, unsafe practices, or combination 

of these two (Harrell 1990; Sherry 1991). Unsafe conditions are due to engineering and geological aspects of the 

mines and arise through wrong engineering design, unanticipated geological consequence etc (Bhattacherjee 

1990). Unsafe practices mainly take place due to human errors (Shaw et al. 1989). The study shows that the 

human error is the major causative factor in mine accidents (Shaw et al. 1989). The past studies also revealed 

that a large proportion of accidents are experienced by a relatively small percentage of the work force 

(McKenna 1993). Therefore, a systematic method or model is required to see the effects of these individual 

characteristics (physiological and psychological) along with the characteristics of the work environment to 

understand how all these factors contribute to mining accident. 



 

A few studies already conducted to quantitatively analyse the miners work injuries. Bhattacherjee et al. (1997) 

and Ghosh et al. (1998) investigated the system dynamics model to capture the complex dynamic behaviour of 

the mine safety system involving the feedback process such as safety programs and direct management actions. 

Maiti (1999), Maiti and Bhattacherjee (1999) and Maiti et al. (1999) evaluated the risk of occupational injuries 

among underground coal miners through investigation of multivariate statistical models. Maiti et al. (2004) and 

Paul et al. (2005) investigated multivariate models using structural equation modeling (SEM) techniques to 

investigate the relationship of engineering and behavioural factors on mining accident. 

The generalized least square (GLS) and maximum likelihood (ML) are used in the standard SEM model within 

the covariance structure analysis framework. The GLS and ML approaches are based on the sample covariance 

matrix. Hence, these approaches work well under certain assumptions. The observations are assumed to be 

identically and independently distributed according to a multivariate normal distribution. If some of the 

assumptions are violated, the covariance matrix and its asymptotic properties may be difficult to derive. The real 

mining accident/injury model is a complicated problem and the required assumptions may not be satisfied. 

Moreover, when the output variable is categorical standard SEM is no more applicable for causal mode. Hence, 

there is a strong demand for new developments of new statistical methods for handling more general models and 

complex data structures.  

The statistical properties of the ML approach are asymptotic. Hence, they are valid for situations with large 

sample sizes. Researchers (Hu et al. 1992; Hu and Bentler 1995) show that the properties of the statistics are not 

robust for small sample sizes. The Bayesian methods depend less on asymptotic theory, and hence have the 

potential to produce reliable results even with small samples. Moreover, the posterior distributions of parameters 

can be estimated by using a sufficiently large number of observations that are simulated from the posterior 

distribution of the unknown parameters through Markov chain Monte Carlo (MCMC) methods. The Bayesian 

approach gives a more flexible and natural statistic for model comparison than the classical likelihood ratio test 

(Kass and Raftery, 1995).  

The aim of this paper is to introduce a Bayesian approach for analyzing the standard SEMs for work injury 

model of mines. The Bayesian SEM uses the raw observations rather than the sample covariance matrix for the 

injury modeling.  

 

2. 0 Variables of causal Accident Model 

Many factors are associated with accident/injury occurrences in mines. The following represents the various 

variables addressed in safety studies in mines. 

2.1 Personality 

The personality is represented by variables negative affectivity, rebelliousness, impulsivity, risk-taking and 

depression. Negative affectivity refers to the chronic experience of negative emotional states and lack of 

emotional stability. Researchers suggest that individuals with high negative affectivity suffer from attention 

lapses on the job, which make them more susceptible to accidents/injuries. Rebelliousness represents the degree 

of frustration of an individual when they are exposed to regulation. It increases the possibility of experiencing 

injuries at work. Impulsivity represents the extent to which individuals behave at the spontaneous with little 

anticipation for the consequence of their behaviours. Therefore, impulsive employees may rush to complete a 



task without adequate consideration of following safe operating procedures, resulting in an increased risk of 

injuries. Risk-taking is an undesired behaviour which may leads to work injuries but the workers seldom repeat 

this behavior to complete the work fast. Depression represents the frequencies with which individuals have 

symptoms such as a depression mood, feeling of worthlessness, poor concentration, and loss of appetite and 

sleep disturbance. 

2.2 Social supports 

Social supports in mining include the variables like Management-worker interaction, coworker supports, and 

supervisory supports. Management–worker interaction includes the variables such as overall labour relations 

climate, management concern for labour, and labour supports for safety disciplinary actions. A considerable 

amount of evidence suggests that there is a significant positive relationship between poor management–worker 

interaction and work injuries (Gaertner et al. 1987; DeMichiei et al. 1982; Pfeifer et al. 1976). National 

Academy of Science studies showed that at all the low accident rate mines the union generally supported the 

company’s enforcement of safety rules (1982). Co-worker support is defined as the degree of consideration 

expressed by coworkers and it plays an import role in work injury. 

2.3 Safety environment 

Safety environment is an important area for minimizing work injuries. Safety environment represents an 

organisation’s safety practices and safety training.  

Researchers suggested that although training has a major role to play in accident/injuries reduction, it is very 

difficult to evaluate its effect in a short span of time (Phiri 1989). Bhattacherjee et al. (1997) found that the 

training given to miners is mostly classroom oriented and on-the-job training; they recommended that specific 

task training is to be implemented to improve the safety of workers. Proper safety practices lead to fewer 

accidents/injuries in mines. Safety equipment availability and maintenance have immediate effects on safety 

performance. 

2.4 Job hazards 

The job hazards include physical hazards, production pressure, job boredom, job dissatisfaction, and job stress. 

Physical hazards represent the extent to which individuals are exposed to dangerous equipment, unsafe working 

conditions and poor environmental conditions (Dawson et al. 1983).  Job boredom represents the degree to 

which individuals find their job boring and uninteresting (Frone and McFarlin 1989). Job dissatisfaction 

represents individuals’ overall thoughts towards their job. The job overload, job ambiguity, and job conflict are 

the major job stressors in mining industry.  

2. 5 Job involvement 

Job involvement indicates the degree to which the workers are concerned about their work for improving safety 

and productivity. Researchers show that job involvement has direct impact on the accident and injury in mines. 

 

3.0 Structural Equation model 

Structural equation models provide a broad framework for modeling of means and covariance relationships in 

multivariate data. In social science and behavioural study, it is not clear whether each of variables in the model 

causally influence the other variables; hence, the model allows them to co vary. In SEMs, such a relationship is 

typically depicted by a double headed curved arrow (Maruyama et al. 1980). Variables of these types, whose 

causes are unknown in the model, are termed exogenous. The exogenous variables are considered to be affected 



by other variables in the model; and, they are termed endogenous. In the path diagram, a straight line with a 

single arrowhead indicates that the variable closest to the arrowhead is proposed to be caused by the variable 

from which the line emanates. The relationship between exogenous and endogenous variables are denoted by 

gamma () and between the endogenous variables are denoted by beta () parameters. Zeta (  ) parameter 

represents the residual variance. 

In factor models, a vector of observed variables Yi is considered to obtain by random sampling from a 

multivariate normal distribution denoted by N (ν + Λfi;Σ), where fi is the vector of latent variables; Λ is the 

factor loadings matrix describing the effects of the latent variables on the observed variables; ν is the vector of 

intercepts and Σ is the covariance matrix. In SEMs the focus is also on studying relationships among the factors. 

For this purpose, the distinction between the measurement model and structural (latent) model is common. The 

measurement model specifies the relationships of the latent to the observed variables, whereas the structural 

model specifies the relationships among the latent variables. Following the standard structural equation 

modeling notation, as in Bollen (1989) and JÄoreskog and SÄorbom (1996), the measurement model is, for i = 

1,…, N observations, 

   (1) 

   (2) 

where model (1) relates the vector of indicators yi = (yi1,…, yip) to an underlying m-vector of latent variables ηi = 

(ηi1,…,ηim), m≤p, through the p x m factor loadings matrix Λy. Similarly, (2) relates xi = (xi1,…, xiq) to an n-

vector of latent variables ξi = (ξi1,…,ξin), n≤q, through the q x n matrix Λx. The vectors y
i  and x

i  are the 

measurement error terms, with dimensions p x 1 and q x 1, respectively. The vectors νy, px1 and νx, qx1 are the 

intercept terms of the measurement models. 

On the other hand, the structural (latent variable) model is focused on studying the relationships among latent 

variables,  and . This is performed by regressing the dependent vector, , on the explanatory vector  as 

follows, i = 1,…,N 

                                                                  

                          (m   mm m mn n m    (3) 

where,  is an m1 random vector of endogenous variable,  is a n1 random vector exogenous variable,  is an 

mn matrix of coefficient of the  - variables in the structural relationship, B is an mm matrix of coefficient of 

the  - variables in the structural relationship,  is an m1 vector of equation errors (random disturbances) in the 

structural relationship between  and , m is the number of endogenous variables, n is the number of exogenous 

variables 

The main limitation of the standard SEM is the assumption of multi-variate normality of the latent variables. 

Therefore, to model the causal relationship with categorical or binary data, direct use of standard SEM gives an 

erroneous result. 

Researchers have proposed different preprocessing steps for handling categorical variables in SEM. Browne 

(1984) proposed an asymptotic distribution free (ADF) estimator by taking into account kurtosis in joint 

multivariate distribution. The ADF estimation generally requires large samples and difficult to handle binary 



variable with sufficient precision. Bollen and Stinein (1993) suggested using resampling techniques like jacknife 

or bootstrap with robust maximum likelihood estimator (MLE) to obtain the standard errors of SEM parameters. 

Since, the parameters are estimated using MLE, the samples generated by resmapling algorithm will be close to 

normally distributed. Joreskog and Soerbom (1994) proposed a preprocessing step for standard SEM where 

polyserial correlations for pairs of variables used instead of covariance by assuming that these variables have an 

underlying (latent) continuous scale whose large sample joint distribution is bivariate normal. Muthén (1994) 

proposed a method where in first step a probit or logit model is estimated for observed categorical variables and 

then probit and logit score values are used as input for standard SEM. The last two strategies critically depend 

on how well the first-level model fits the data. 

 

3.1 Bayesian approach for parameters estimation 

Instead of ML or GLS estimator of standard structural equation model and the preprocessed SEM models, the 

Bayesian approach is based on exact posterior distributions for the parameters and latent variables estimated by 

Markov chain Monte Carlo. As sample sizes increase, Bayesian and standard estimators of the parameters 

should converge. However, an appealing feature of the Bayesian approach is that posterior distributions are 

obtained not only for the parameters, but also for the latent variables.  

The Bayesian approach yields estimates of the exact joint posterior distribution of the latent variables. This 

posterior distribution can be used for: (a) to obtain point and interval estimates for the factor scores of each 

individual; (b) formally compare the factor scores for different subjects (e.g., through a posterior probability that 

the score is higher for a particular subject); (c) assess whether a particular subject's factor score has changed 

over time; (d) Identify outlying subjects in the tails of the latent variable distribution; and (e) assess relationships 

that may not be fully captured by the basic modeling structure. 

The Bayesian model requires the specification of a full likelihood and prior distributions for the parameters. The 

complete data likelihood, including the latent variables, has the following form: 

   (4) 

where 2 2 2 2( , , , , , , , , , , , )x y x y y xb               is the vector of model parameters. 

To complete a Bayesian specification of the model, the priors for each of the parameters in has to specify. For 

convenience, normal or truncated normal priors are selected for the free elements of the intercept vectors, 

,x y  and , the factor loadings  and x y  , and the structural parameters b and . For the variance 

component parameters, including the diagonal elements of , , ,  and y x      , the inverse-gamma priors are 

selected. The reason of selecting the inverse-gamma prior is for avoiding high variance priors for the latent 

variable variances. The bounds on the truncated normal are chosen to restrict parameters that are known from 

the collected sample. 

The joint posterior distribution for the parameters and latent variables is computed, applying Bayes' rule 



  (5) 

The Bayesian formulation of SEM implies that the posterior distribution of parameters is computed by the 

complete data likelihood multiplied by the prior and divided by the marginal likelihood. The data likelihood and 

priors can be easily calculated; however, the calculation of the marginal likelihood is very challenging, because 

it typically involves a high dimensional integration of the likelihood over the prior distribution. In this paper, 

instead of calculating the marginal likelihood mathematically,  MCMC technique has been applied to 

numerically obtain the marginal likelihood values by generating random draws from the joint posterior 

distribution. Due to the conditionally normality structure of the SEM and to the choice of conditionally 

conjugate truncated normal and inverse-gamma priors for the parameters, MCMC computation can be 

performed by Gibbs sampling algorithm (Geman and Geman,1984;  Gelfand and Smith,1990). 

The conditional posterior distributions for the latent variables, ηi, ξi and the structural parameters , b and  

are derived to obtain the joint posterior of Eq. (5) which is used for random sampling by MCMC methods.  

Using Eq. (5) and factoring the joint posterior, the conditional posterior for the endogenous latent variable can 

be calculated as: 

  

where,  

 

The conditional posteriors of exogenous latent variables, structural parameters and intercepts are also be 

calculated and discussed in Dunson et al. (2003). Once all the full conditional posteriors are computed, the 

Gibbs sampling algorithm can be implemented. The Gibbs sampling is an iterative algorithm by initializing the 

parameters and updating all conditional posterior and thus the join posterior to converge the true parameters 

value. 

  

4. 0 Methods and Materials 

4.1 Data collection 

The study was conducted in an underground coal mine in India. The mine employs 592 underground workers. 

The sample comprised of 160 employees who were randomly selected from all the employees. The higher 

management of the mine was excluded from the study since they were not directly exposed to the mine 

environment on daily basis. The multiple-item worker response devices were prepared to assess the socio-

physical behaviour of mine workers. The null hypothesis was framed assuming there is no significant difference 

in the technical and behavioural parameters between accident and no-accident group. Sixteen (16) variables 

were identified which might have causal relationship with work injuries and questionnaires were framed to 

obtain responses from the participants workers for each of the variables. A five-Point Likert-type scale format 

was used to measure employees’ participation of each item. Injury data was then matched with each employee’s 

questionnaire responses. Injuries refer to accidents at work, which result in physical incapacitation, absence 

from work, and compensation paid to the injured worker.  The basic statistics of the 16 measured variables 

based on the questionnaires survey are presented in Table 1. 

 



Table 1 Basic statistics of measured variables 

 INV SPR JB JD JS PHZ PDPR REB IMP RISK NA DEP COS SOS MWI 

Mean 42.92 68.56 8.1 23.1 26.26 28.81 8.54 7.8 19.39 28.55 25.8 8.78 18.79 10.22 35.5 

SD 7.55 8.68 2.97 7.03 5.45 6.71 2.82 1.77 3.45 7.56 6.84 3.10 2.03 2.24 7.14 

 

*REB-Rebelliousness, IMP-Impulsivity, RISK-Risk-taking, NA-Negative affectivity, DEP-Depression, JB-Job boredom, JD-Job 

dissatisfaction, JS-Job stress, PHZ-Physical hazards, PDPR-Production Pressure, COS-Coworker support, SOS-Supervisory support, MWI-

Management worker interaction, SPR-Safety practice, INJ-Injury, INV-Involvement. 

 

4.2 Bayesian structural model 

The proposed work injury model is presented as a path diagram in Figure 1. The diagram shows there are 

thirteen x-variables such as job boredom, job dissatisfaction, job stress, physical hazards, production pressure, 

rebelliousness, impulsivity, risk-taking, negative affectivity, depression, co-worker support, supervisory support, 

and management–worker interaction and three exogenous latent such as job hazards, personality, and social 

support. There are three endogenous latent variables such as work injuries, safety practices, and job involvement 

each with one y-indicator. The three latent variables personality, job hazards and social support are considered 

as important factors causing injury.  

In the Bayesian structural equation modeling, the prior specification involves quantifying expert's uncertainty in 

the model parameters Θ. In the cases where not much information is available other than the observed data, 

objective priors are generally selected (Berger, 1985; Bernardo and Smith, 1994). Here, the priors based on 

expert opinion were considered. All the opinions collected on the priors distribution of the parameters for this 

study were expert based. A total number of 30 officials including overman and mining sirdar were selected 

randomly as experts from the case study mine. The experts are requested to evaluate individual workers against 

the response to the sixteen variables based on their daily performances. The experts’ opinions are rescaled 

within 0 to 10. The frequency distribution of the opinion results were fitted with proper theoretical distribution 

function using χ2 method. Based on the prior distribution, the posterior distribution of work injury was 

computed using the Bayesian rule as discussed earlier. A Gibbs sampling algorithm was applied to obtain 

samples from the posterior distributions of work injuries. The R2WINBUGS software is used for posterior 

calculation and Gibbs sampling. The algorithm is run for 20,000 iterations. 

 



 

Figure1. Hypothesized path diagram of the casual accident model (Maiti et al. 2004) 

 

Table 2 presents the mean and standard deviation of estimated parameters using the Bayesian SEM. To calculate 

the priors, two methods were adopted: (a) by using the estimates of SEM where polyserial correlations are as 

inputs for SEM model (Joreskog and Soerbom, 1994); and (b) from expert opinions. The frequency distribution 

of the experts’ opinion fitted with an appropriate theoretical distribution by Chi-squared method and the mean 

and standard deviation were calculated from the fitted distribution. The prior standard deviation value of method 

(a) was selected arbitrarily. The reason for arbitrarily selecting the standard deviation values is that the 

distribution of the prior doesn’t have much influence on Bayesian SEM model. It can clearly be observed from 

Table 2 results. For an example, the priors 95% probability interval for the influence job involvement on the 

work injuries is [-5.15, 4.85] under the MLE priors and [-3.63, 3.49] under expert’s opinion priors. The posterior 

interval of these probability intervals are narrow to [-0.246, 0.546] and [-0.262, 0.582]. This results show the 

convergence of the posterior after observing the data, regardless of the starting prior knowledge. 



 

Table 2 Estimated mean and standard deviation of parameters of SEM using different techniques 

 

 Bayesian SEM with MLE priors Bayesian SEM with expert’s opinion prior 

Prior Posterior Prior Posterior 

Mean SD Mean SD Mean SD Mean SD 

11  0.02 1.5 0.019 0.96 1.0 1.1 0.02 0.98 

12  0.55 2.5 0.56 0.122 1.5 2.05 0.55 0.13 

13  -0.11 2.5 -0.13 0.19 0 1.22 -0.12 0.18 

21  -0.25 2.5 -0.26 0.269 0.5 1.53 -0.23 0.28 

22  -0.62 2.5 -0.63 0.298 -0.5 1.07 -0.60 0.31 

23  0.32 2.5 0.30 0.285 1.0 0.98 0.33 0.295 

31  -0.50 2.5 -0.51 0.322 0.08 1.5 -0.52 0.35 

32  -0.02 1.5 -0.02 0.082 0.1 1.25 -0.01 0.079 

33  0.19 2.5 0.2 0.19 0.16 1.11 0.21 0.2 

12  -0.15 2.5 -0.15 0.198 0.07 1.78 -0.16 0.211 

13  -0.03 1.5 -0.02 0.1 0.5 1.9 -0.02 0.12 

32  0.02 1.5 0.02 0.12 0.2 2.1 0.03 0.121 

 

The goodness-of-fit indices for the causal accident model for Bayesian SEM are presented in Table 3 for 

parameter work injury. Root mean squared error, mean absolute error, and R2 are considered for performance 

measures of the developed model. The root means squared error for the model by Bayesian SEM is.025, 

indicating an acceptable fit of the model. The root mean squared error is a measures of the average variance 

unaccounted for by the model (Hansen, 1989). The high R2 value revealed that the model developed by using 

Bayesian approach can provide reasonably good fit model of work injury. 

 

 

 



Table 3 Goodness-of-fit indices for work injury 

 

Statistics Bayesian SEM 

R2 0.91 

Mean absolute error 0.26 

Root mean squared error  0.025 

 

The Bayesian estimate of SEM also reveals that out of 33 considered causal parameters 19 variables are 

significant.  

Job stress is a significant parameter in Bayesian SEM having influenced negatively by work environment. Job 

stress doesn’t have any significant impact on safety practices; however anxiety is significantly related to job 

stress.  

The relation of job satisfaction with safety environment and social support with work injury are significant in 

Bayesian analysis. The results support the general concept that good social support can reduce the work injury 

by significant amount.  

 

5. Conclusion 

This paper presents the work injury modeling using structural equation model within the Bayesian framework. 

The causal relationship of the different technical and behavioral factors was developed and the relationship was 

analysed via structural equation modeling. The model was applied in an underground coal mine in India. The 

SEM was iteratively solved in Bayesian context and the sample was randomly drawn from the posterior 

distribution using Gibbs sampling. The prior distribution of these parameters were obtained by two ways: (a) 

obtaining mean values from the MLE based SEM with poly-serial correlation as input parameter and assuming 

arbitrary standard deviation with Gaussian distribution; (b) mean and variance were obtained from experts’ 

opinions and fitted the sample distribution with an appropriate theoretical distribution by Chi-squared method. 

The comparative results of MLE-based estimation and experts’ opinions based estimation revealed that the 

second approach provides better results in terms of minimizing the errors. The error statistics results revealed 

that the Bayesian framework in the structural equation model provide reasonably good fit model with high 

coefficient of determination (0.91). The Bayesian model is a robust approach for SEM since it doesn’t need any 

assumption of the distribution function like normality.  
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