A Survey on Hardware Implementation of IDEA
Cryptosystem

Sourav Mukherjee
Dept. of Computer Science and Engg.
National Institute of Technology Rourkela
Rourkela India-769008

Abstract—The main goal of hardware implementation of a
cryptosystem is to make it compatible for high speed networks.
The cryptographic algorithms are very much computationally
intensive and to achieve a high speed execution, hardware is
necessary. In this paper, various hardware implementations of the
IDEA cipher is discussed. The hardware implementation involves
both ASIC and FPGA implementations and IDEA has been
implemented quite a several times in hardware. But a complete
survey of all the previous implementations has not been presented
before. In each of these implementations, the focus has been made
on the data throughput, area requirements and the architecture
of the algorithm proposed.

Index Terms—FPGA,ASIC,IDEA, Block Cipher, Throughput
,Multiplication modulo (2" + 1).

I. INTRODUCTION

Cryptography is the art of keeping data secure from unau-
thorized access so as to guarantee that only the intended users
can access it. As computer technologies are getting advanced,
more and more cryptographic applications are used. They are
mainly used to support other applications which are very much
sensitive to data security such as smart cards and commercial
data exchange over a network. Not only for personal use
but cryptographic algorithms are also very important in every
aspect of professional activities. A cryptographic algorithm
generally consists of some specialized arithmetic computations
which are complicated in terms of time complexity. It is be-
cause of the fact that these algorithms work with large amount
of data either in blocks or simply in streams. Although a single
traditional CPU is enough for performing these computations,
but for a machine which works as a server in a huge network
gets millions of client requests for performing cryptographic
operations for them individually. This makes the workload
huge. The computational resources may also be limited for
example in smart-cards, mobile phones, hand-held computers,
etc. Moreover if the associated network is of high speed,
the speed of the necessary cryptographic computations also
needs to be taken into account. For example in transmitting
audio and video data for cable TV, pay TV, video conferences
and sensitive financial and commercial data, the speed of
the cryptographic module to be embedded ,needs to be very
high. Moreover for security related issues in wireless and
sensor networks, there is a need for separate hardware device
with very high processing rate because of limited battery of
the nodes and for optimizing the bandwidth efficiency. So

Bibhudatta Sahoo
Dept. of Computer Science and Engg.
National Institute of Technology Rourkela
Rourkela India-769008

from the viewpoint of high speed and throughput, traditional
software implementations of these complicated cryptographic
algorithms are not efficient in real time applications like ATM,
VPN, etc. This forces the system designers to go for hardware
implementation of the cryptosystems. Traditionally hardware
implementations are based on ASIC technology, but they are
not quite affordable every time especially in monetary terms.
Moreover these ASICs are not adaptable to new changes
once the hardware is built. The more efficient and convenient
method is to use FPGA platforms which provides sufficient
logics and storage elements on which any complex algorithm
can be implemented. They are adaptable to new changes and
their granularity matches quite well with the cryptographic
algorithms.

Implementing a design in hardware is a type of resource
allocation problem where the goal is to optimize the bal-
ance between silicon area requirements in a FPGA operation
throughput and the power consumption by the design. To
provide this optimal balance, the regularity of the design must
be high. But in cryptographic applications,high irregularity
guarantees more security. So for the sake of complete func-
tionality of the design and for high throughput, a trade off
between area and time delay is often made.

Rest of the paper is organized as follows. Section 1 gives
the basic idea of the IDEA cipher in details. Section 2 dis-
cusses the various implementations of the IDEA cryptosystem.
Section 3 discusses the detailed approach of all the existing
designs for IDEA implementations in hardware along with
the brief description of the architectures and performances.
The analysis and comparison of these designs along with the
limitations are covered in Section 4. Finally the conclusion is
drawn in Section 5.

II. INTERNATIONAL DATA ENCRYPTION ALGORITHM

The proposed Encryption Standard (PES) is a block cipher
introduced by Lai and Massey [1], [2]. It was then improved
by the Lai, Massey and Murphy in 1991. This version, with
stronger security against differential analysis and truncated
differentials, was called the Improved PES (IPES). IPES was
renamed to be the International Data Encryption Algorithm
(IDEA) in 1992. Claims have been made that the algorithm
is the most secure block encryption algorithm in the public
domain.

A. Basic Structure

4

ROUND 1

Fa aY

Faiis
Fa st
k=)

SEVEN MORE
SIMILAR ROUNDS

-—
24

il
RN SFCHMATIOR
e
(=1

& BITWISE XOR
O
@

=]

16 BIT INTEGER ADDITION MODULD

2%

16 BIT INTEGER MULT!F'Ll('ATICI‘\.
MODULD (2™ + 1)

Fig. 1. Data flow of IDEA Cipher

IDEA is a symmetric, secret-key block cipher. The keys
for both encryption and decryption must be kept secret from
unauthorized persons. Since the two keys are symmetric, one
can divide the decryption key from the encryption one or
vice versa. The size of the key is fixed to be 128 bits and
the size of the data block which can be handled in one
encryption/decryption process is fixed to 64 bits. All data
operations in the IDEA cipher are in 16-bit unsigned integers.
When processing data which is not an integer multiple of 64-
bit block, padding is required. The security of IDEA algorithm
is based on the mixing of three different kinds of algebraic
operations: XOR, addition and modular multiplication. IDEA
is based upon a basic function, which is iterated eight times.
The first iteration operates on the input 64-bit plain text block
and the successive iterations operate on the 64-bit block from
the previous iteration. After the last iteration, a final transform
step produces the 64-bit cipher block.The data flow graph is
shown in Figure 1. The algorithm structure has been chosen
such that, with the exception that different key sub-blocks
are used, the encryption process is identical to the decryption
process. IDEA uses both confusion and diffusion to encrypt
the data. Three algebraic groups, XOR, addition modulo 216,
and multiplication modulo (216+1), are mixed, and they are all
easily implemented in both hardware and software. All these
operations operate on 16-bit sub-blocks.

B. Key Generation

The key generation phase of IDEA generates 52 sub-keys
from the 128 bit input key. The block diagram for key
generation is shown in Figure 2. The basic steps of generating
the encryption keys are:

o All the sub-keys are named as
1 1) (2 2 8 8 9 9
AR/ LA S Y/ S /A DO/ SN A S Y/ O

o From the input 128 bit key, eight sub-blocks of 16 bits
are partitioned and are assigned to Zl(l),...,Z§2) directly.

« Now the original 128 bit key block is rotated by 25 bits
and a new 128 bit block is formed. Now another eight
sub-blocks are generated from this new block.

o The rotation procedure is repeated until and unless sub-
blocks used in previous rounds are found.

ORIGINAL KEY {128 BITS)

LI | Li
‘ z,0 | |Zam “___|26|15|>__

NEW 128 BIT BLOCK BY ROTATING ORIGINAL BLOCK LEFT BY 25

EIGHT SUB-
KEYS

EIGHT SLIB-
KEY3 {7 =
‘ i l ‘ | &

: ! !
; ! !
| | |

MEW 128 BIT BLOCK BY ROTATING THE PREVIOUS BLOCK LEFT BY

EIGHT sUD- * ;
KEYS
Eafeal

Fig. 2.

'
.

IDEA Encryption key Generation

Once the encryption keys are generated, the decryption
keys can be generated directly by taking their additive inverse
modulo 2'¢ and multiplicative inverse modulo (26 + 1) as
required.

III. VARIOUS IMPLEMENTATIONS OF IDEA

In high speed applications, where there is a need of pro-
tection of data, cryptographic algorithms are necessary. Data
rates in such applications are very high and such computa-
tion cryptographic algorithms need to be run on real time
so as to provide the quality of service. In this scenario, a
software implementations of such algorithm using general
purpose processors due to delay in instruction processing.
But such speed can be easily achieved when implemented in
hardware.Although the software implementation is less costly
than hardware implementation, the speed up in hardware is
very high. So for flexibility,availability and high functionality,
there is a need of incorporating a separate cryptographic
module in such applications.

Although IDEA involves only simple 16-bit operations,
software implementations of this algorithm still cannot offer
the encryption rate required for on-line encryption in high-
speed networks.IDEA has been previously implemented in
hardware using various FPGA devices and even ASIC. Like
other renowned symmetric key block ciphers, IDEA contains

no S-Boxes or P- Boxes. So there is a less memory over-
head.Instead it has some basic building blocks like XOR,
addition modulo 2™ and multiplication modulo 2" 4 1. Among
these basic operations, the XOR and the addition modulo 2"
implementations are very straightforward.The multiplication
module is the most computational intensive module and it
needs a lot of effort to design it efficiently. In each round
of IDEA, four such modulo multipliers are needed.So the
performance of IDEA in hardware i.e. the throughput rate and
the area and cost efficiency depends a lot on efficient design
of the multiplier.

IDEA was first implemented and verified in VLSI by
Bonnenberg [3] where the data encryption and decryption was
performed on a single hardware unit which was a 1.5 um
double metal n-well CMOS with a maximum clock frequency
of 33 MHz and data throughput rate of 44 Mb/s. In this im-
plementation, the key management module and the inversion
module was not performed on chip. The main goal was to
achieve the highest possible throughput along with a hardware
support to verify whether the design was cryptographically
correct in terms of functionality and availability. So the task
was to go for efficient design of the cipher data path along with
managing off chip data traffic which was done by incorporat-
ing pipelining. By that time , some effective architectures for
modulo (2" + 1) multipliers were proposed by Bonnenberg
and Curiger [4]. Among those architectures, Bonnenberg’s
scheme[3] used the (n + 1) x (n + 1) multiplication scheme
with a pipeline of two stage. With a computation speed of 60
ns per multiplication, a two multiplier round architecture using
pipelining for IDEA was used. The speciality of this approach
is that, the architecture is made of one encryption/decryption
unit and an input/output interface unit with each unit contain-
ing a RAM. Proper clock was used to match their speeds. The
drawback of this design is that extra overhead is associated due
to huge data transfer from on chip RAMs as well as regulating
off chip traffic. Moreover, the design was not supportive for
all standardized modes of the cipher. Although it is the first
VLSI implementation of IDEA, the data throughput rate was
found to be twice than that of a DES chip at that time.

Bonnenberg’s design [3] was found to be a prototype for
a VLSI circuit , which was made essentially to speed up the
cryptographical tests. But there was still a demand for a real
time application hardware that can handle data traffic in high
speed networks. The goal was to design an efficient basic
building block with a high throughput data path architecture
with an efficient interface that can handle off-chip data traffic.

Curiger’s implementation [5][6] of IDEA was done on
double-metal CMOS 1.2 ym which was suitable for all stan-
dardized modes. One of the speciality of this implementation
is that, the data encryption and decryption was implemented
on a single hardware unit.With a system clock frequency of
25 MHz the data throughput rate was found to be 177 Mb/s.
This was the first silicon block which was found compatible
for online encryption in high speed networks. The design was
made using eight pipelining stages, containing a single round
to achieve temporal parallelism.

As usual, the design of modulo (2™ + 1) multiplier was
crucial for the performance of the cipher. Various multiplica-
tion schemes were defined in [4]. Curiger’s design used the
multiplication scheme with modulo (2™ + 1) adders in which
one of the operands (say X) was in diminished-1 representation
proposed in [7] and another operand was in normal weighted
form which can be given as:

n—1 n

Z =xY mod(2" +1) = (Z 2\ - Z 2%y;) mod(2™ + 1)
=0 i=0

(1

n

= (> _yi(2'x mod 2" + 2'Y div 2" + 1) mod(2"+1)) mod(2"+1)

n—1
X=2 2%
=0

and y is a diminished-1 representation of X = >_"" 2'z; ,
ie.x=X—1.

Later, in [6] a new approach was taken to avoid high compu-
tation time and area. A modified Booth recoding multiplication
and a fast carry select additions for the final modulo correction
were used as two stages of the multiplier in a pipeline
structure. Four such modulo multipliers were used in each
round for optimizing the performance of computational units.
Each of the multiplication units used two stages of the eight
stage pipeline. The design was made on a single hardware
chip where the sub-keys were generated internally along with
necessary computation of additive and multiplicative inverses.
The multiplicative inverses were calculated using square and
multiply method. Only the master key was loaded onto the chip
at the beginning. So the speciality of this design was that, no
off chip data traffic was needed to manage through buffers.
The overall architecture of Curiger’s design [6] contains two
on chip buffer memory for implementing the different modes
of operation of the cipher. In each buffer, a 8 x 64 bit shift
register is used for implementing eight stage pipeline.

In VLSI circuits, arrival of temporary or permanent faults
are very common which creates error in encryption. To get
rid of these faults, necessary fault detection tests are re-
quired. These tests can be off-line or online. But if these
tests are periodic, it consumes unnecessary clock cycles and
degrades the speed. For testing the overall functionality during
encryption,an online built in self test scheme was added
which was done by incorporating a fifth multiplier in the
pipeline circuitry. The drawback in this approach was that,
this hardware redundancy resulted in a large extra hardware.
Moreover if the time between two tests was long, there was a
probability of some short-lived error to creep in. Although, the
proposed design was not the fastest single chip implementation
but it was the first design which was found compatible for use
in high speed networks.

Although the design proposed in [6] was compatible for

real time encryption in high speed networks, there was still a
demand for hardware with faster encryption ability. Moreover
Curiger’s design [6] was not capable of detecting all possible
errors during its normal operation. Wolter’s design [8] of a
new hardware for IDEA was motivated by the requirement
of higher data rate and online testing of circuit. The design
was done by implementing one round of IDEA in a 0.8 pum
CMOS and a data throughput of 355 Mb/s was obtained. The
characteristics of the architecture was that, all the standardized
modes of the cipher were capable to processing data with equal
speed. The design of modulo (2!¢ + 1) multiplier was based
on low high theorem of Lai and Massey [1] where modified
Booth encoded multiplication algorithm and wallace tree were
used. Here a 10 stage pipelining was used where two stages
were reserved for performing online test.

For detecting faults, both off-line and online built in self test
schemes were used in this scheme.The off-line test was per-
formed using pseudo-random data encryption. Two online tests
were performed, one based on information redundancy i.e mod
3 residue code and the second test was based on redundant
test words. Although this scheme has a data throughput rate
of 355 Mb/s by implementing a single round, due to overhead
of online tests on chip, some additional area requirements was
required in this design.

The next implementation of IDEA was made by Salomao
[9] on an Application Specific IC named HiPCrypto using
a 0.7 pm two metal, which was oriented towards computer
network applications (like VPN) demanding high throughput.
A single chip was used and the operation frequency was 53
MHz clock. This design was made to meet the requirement of
applications in current and future high speed data networks.
For this, temporal and spatial parallelism was exploited on the
main design. No built in self test schemes were incorporated
in this design for detecting faults. The modulo (2™ + 1) mul-
tiplication was designed using a two stage pipelined multiply
unit. Four small RAMs were used for storing the sub-keys.
By using a single HiPCrypto device, a data throughput rate
of 424 MB/s was achieved by the design. The disadvantage
of this scheme was that, the HiPCrypto chip was not able to
handle sub-keys derived from multiple keys.

A paper design of IDEA processor using four xilinx
XC4020XL devices was proposed by Mencer [10] and that
proposed design achieved a data throughput rate of 528 Mb/s.
The design was done for comparing the parameters like
performance, programmability and power for ASICs, FPGAs
and normal processors. During the FPGA implementation, 56
stage pipelining was exploited for performance improvement
and a custom designed Konstant coefficient multiplier was
used which was based on look-up tables. The limitation of
this design was the prior loading of keys before encryption.

Leong [11] implemented the IDEA cipher using a bit
serial architecture[12]. Due to the bit serial architecture, the
algorithm of the cipher was deeply pipelined. The operation
frequency of this design was 125 MHz and a Xilinx Virtex
XCV300-6 device was used. The data throughput rate was
found to be 500 Mb/s which was as usual compatible for

online encryption for high speed networks. The advantages
of this implementation were :

o High degree of fine grain parallelism.

o Scalable and thus the trade-offs between data conversion
rate and the area can be addressed.

o High clock rate.

o Compact implementation.

The design for the modulo (2'® + 1) was done using the
approach proposed by Meier and Zimmerman and described
by Curiger[5] in which, modulo 2" adders were used along
with bit-pair recoding algorithm. To increase the throughput, a
16 stage pipelined version of Lyon’s serial parallel multiplier
was used. The overall design of the cipher was done using four
parallel to serial converters and four four serial ro parallel
converters. The key storage and subkey generations in each
round was done using shift registers. The proposed design
was found to be scalable using more resources.

For incorporating efficiency in reconfigurable computing,
Goldstein[13] implemented the IDEA cipher on Piperench
architecture and achieved a data throughput of 1013 Mb/s.
Although, the design was more suitable for stream based
applications,the speciality of the Piperench architecture was
the improvement of compilation and reconfiguration time from
normal FPGAs by means of an advanced computing technique
called pipeline reconfiguration. This feature is one type of a
hardware virtualization in which, the compiler is free from
hardware constraints. The simulation of [13] was done by
dataflow intermediate language.

Ascom, the patent holder of IDEA, implemented a commer-
cial design of IDEA cipher called IDEACrypt kernel on 0.25
pum CMOS technology and achieved a throughput rate of 720
Mb/s.

Mosanya[14] implemented IDEACore, an encryption core
for International Data Encryption Algorithm as a modular
and reconfigurable cryptographic coprocessor. The goal of
that design was to accelerate cryptographic operations on a
host system.The system was implemented using VHDL and it
exploited the property of partial reconfiguration for a normal
FPGA. In the multiplication module, bit parallel multiplier was
used and for modulo (2'¢ +1) correction, low-high algorithm
[1] was used. For the overall design, a scalable pipeline
was used where the number of pipeline stages were decided
during compilation time. The design achieved a throughput
rate of 1500 Mb/s. The drawback of the scheme is that, the
area requirements is not fixed every time due to variation of
pipelined stages. Moreover, due to session initialization and
key calculation, the overall performance is slightly low in this
scheme.

Cheung and Leong [15] further implemented IDEA on a bit
parallel architecture[12] on Xilinx Virtex XCV300-6 FPGA
and achieved a data throughput of 1166 Mb/s at a system
clock rate of 82 MHz.The implementation was runtime recon-
figurable and by direct modification of bitstream downloaded
to the FPGA, the key scheduling was done. Moreover, the
implementation was scalable with increased resource require-

TABLE I
COMPARISON OF THE EXISTING DESIGNS IN TERMS OF OPERATING FREQUENCY AND THROUGHPUT.

Design Device Multiplier Used Operating Frequency ~ Throughput
Bonnenberg(3] 1.5 pm double metal CMOS using (n + 1) x (n + 1) bit multiplier 33 MHz 44 Mb/s.
Curiger[5], [6] 1.2 pm double metal CMOS using (2™ + 1) adders 25 MHz 177 Mb/s.
Zimmerman [6] 1.2 pm double metal CMOS using modified Booth’s recoding 25 MHz 177 Mb/s.
Wolter(8] 0.8 pum CMOS using Low-High Theorem and wallace tree 21 MHz 355 Mb/s.
Salomao[9] 0.7 pm two metal ASIC (HiPCrypto) 2 stage pipelined multiplier 53 MHz 424 Mb/s.
Mencer[10] Xilinx XC4020XL FPGA Konstant Coefficient Multiplier (KCM) 132 MHz 528 Mb/s.
Leong[11] Xilinx Virtex XCV300-6 FPGA modulo 2™ adders with bit pair recoding 125 MHz 500 Mb/s.
Cheung and Leong[15] Xilinx Virtex XCV300-6 FPGA Bit parallel multiplier 82 MHz 1166 Mb/s.
Thaduri[16] EPF10K70RC240 ASIC modulo 2™ adders with bit pair recoding 10 MHz 700 Mb/s per chip.
Hamalainen[17] Xilinx XCV1000E-6BG560 FPGA Diminished one multiplier using CSA 105.9 MHz 6.78 Gb/s.
Granado[18] Xilinx Virtex 2 XC2V6000-6 FPGA KCM multipliers using pipeline 164.3 MHz 14.7 Gb/s.

ments. With a full hardware support, a throughput of 5.25
Gb/s was estimated using this design. With a fully pipelined
approach, IDEA was implemented by Hamalainen[17] using
Xilinx XCV1000E-6BG560 FPGA and the throughput of 6.78
Gb/s throughput was achieved by the design. The modulo
multiplier used diminished-1 number representation[7] and
the multiplication schemes used in [19] [20], [4], [21] were
implemented and compared. Finally, the multiplication scheme
of [20] was chosen. For cyclic left shifts, extra combinational
logic was used and Carry save adders were used for multi-
operand addition. The entire design was made using loop
unrolling architecture but it was slightly less efficient in terms
of area requirements.

Gonzalez[22] achieved a throughput of 8.3 Gb/s while im-
plementing the IDEA cipher using Xilinx Virtex XCV600-
6 device. The speciality of this design was that, all the
operational units were replaced by constants and a partial
reconfiguration was used along with super-pipelining. The
only drawback for this scheme is that, not many devices
support partial reconfiguration.

Using embedded multipliers, IDEA was implemented by
Pan and a throughput of 6 Gb/s was achieved but the design
was costly in terms of area efficiency. An efficient VLSI
implementation of IDEA was done by Thaduri[16] using
Altera FPGA, where the modulo multiplier was optimized
by using Wallace trees and carry look ahead adders and a
deep temporal parallelism was exploited. The speciality of
the design is that, the sub-keys are generated internally once
the original key is fetched. Moreover, the design did not use
any additional RAM for storing the subkeys.Using a clock
frequency of 10 MHz, a throughput greater than 700 Mb/s was
achieved by the design. In terms of scalability, a throughput

of 7.8 Gb/s was achieved using scaling.

Finally Granado’s design in [18] was based on dynamic and
partial reconfiguration which achieved a very high encryption
speed of 14.7 Gb/s. Till now this is the highest throughput
achieved so far for IDEA implementation in hardware. The
design is made partially reconfigurable by using Constant Co-
efficient Multipliers (KCM) and Constant Coefficient Adders
(KCA). The multipliers were made up of small look up tables
and the modulo correction is done by using Low High lemma.
Moreover a dual port RAM memory and a series of pipelined
registers were used for reducing the storage complexity and
increasing the throughput. A 3 stage pipeline was used for each
multiplier inside a single round. To decrease the development
time, Handel C was used along with VHDL. The target device
was chosen as Xilinx Virtex 2 XC2V6000-6 for this design.

IV. COMPARISON AND ANALYSIS

In the previous section, we have discussed all the existing
implementations of the IDEA cipher. In each of these imple-
mentations, the main goal was to reduce the round complexity
by reducing the sub modules of the overall design so as to
optimize the performance parameters. The parameters which
were considered mainly in these existing designs are:

¢ Maximum Frequency: The
achieved by the design.

e Throughput: The amount of data (in bits/ bytes) pro-
cessed per unit interval of time by the design.

e Area Consumption: The area consumed by the design

(slices or CLBs).

In this section, we have made a detailed comparison of all the
existing designs of IDEA in terms of operating frequency and
throughput in Table 1. As the efficient design of the modulo
multiplier is an important issue for the IDEA cipher, the

maximum frequency

TABLE II
EXISTING IMPLEMENTATION ISSUES AND LIMITATIONS

Design Overview

Limitations

Bonnenberg|[3] Used as a prototype

Curiger[5], [6] Achieved better throughput

Zimmerman [6] 8 stage pipeline used

Wolter[8] 10 stage pipeline used

Salomao[9] RAMs were used for storing subkeys
Mencer[10] 56 stage pipeline used

Leong[11] Bit Serial and deeply pipelined

Cheung and Leong[15] Bit parallel design

Thaduri[16] Optimized temporal parallelism
Hamalainen[17] Super-pipelined design

Granado[18] Dynamic and partial reconfiguration

Extra overhead for on chip RAM and off chip traffic.

Unable to detect all possible errors during normal operation.
Efficient but incompatible for high speed network applications.
Additional area requirements due to on chip data management.
Unable to work with multiple keys.

Prior loading of keys before encryption.

Overall efficient, scope for further improvement

Highly efficient because of super pipelining.

Area consumption is high compared to throughput.

Multiplier complexity is high compared to the overall design.

Highly efficient in terms of throughput.

corresponding multiplication approaches are also mentioned
in the table for easy understanding. The design issues and
limitations (if any) of each of these designs are given in Table
1L

In all these implementations, the power consumption issue
is not taken into account for simplicity. But in real time
high speed networks, apart from the fact that the line speed
is in the order of Gb/sec, such complex hardware modules
consumes a substantial amount of power, and for situations
where the power supply or battery life is limited (in case
of Ad hoc or wireless sensor networks), the design criteria
and performance will be totally different [23]. Moreover, for
FPGA implementations, there is still a large scope to exploit
the reconfigurability and concurrency behavior of FPGA. For
designing the multiplier module, Booth’s algorithm using
higher radices can be a good option for reducing the number
of partial products and increasing the speed of multiplication
process. Moreover, there is always as option to increase the
throughput by introducing more number of pipelined registers
inside the main design either in the form of Basic Looping
or Full Loop Unrolling Architecture as mentioned in [24].
This can be further extended by using both Inner Round as
well as Outer Round pipelining architecture or an intermix of
both based on situation and design requirements.

V. CONCLUSION

Thus we have seen that there are various ASIC and FPGA
implementations of IDEA cryptosystem and each implementa-
tion has certain limitations in terms of area requirements and
time delay. The main goal of a hardware implementation is
to optimize these parameters but at certain point, a trade-off
between them needs to be maintained. While implementing in
ASIC, the objective is to reduce silicon area to make it less

costly but in FPGA, there is less restriction of area require-
ments because, the main goal is to optimize the term A x T2
where A is the area and T is the time required. Bonnenberg’s
design verified that IDEA can be implemented in hardware
and from then the subsequent implementations are made for
decreasing the constraints in one way or the other. The im-
plementations Thaduri[16], Cheung[15], Hamalainen[17] and
Granado[18] was found to be scalable in terms of throughput
and hardware resources. The design of the modulo (2" + 1)
multiplier in each case, was the most crucial for optimizing
the performance of the entire cipher.

REFERENCES

[1] Xuejia Lai and James L. Massey. A proposal for a new block encryption
standard. In Proceedings of the workshop on the theory and application
of cryptographic techniques on Advances in cryptology, pages 389—404,
New York, NY, USA, 1991. Springer-Verlag New York, Inc.

[2] Xuejia Lai, James L. Massey, and Sean Murphy. Markov ciphers and
differential cryptanalysis. In Advances in Cryptology — CRYPTO 91,
pages 17-38. Springer-Verlag, 1991.

[3] H. Bonnenberg, Andreas Curiger, Norbert Felber, Hubert Kaeslin, and
Xuejia Lai. VIsi implementation of a new block cipher. In Proceedings
of the 1991 IEEE International Conference on Computer Design on VLSI
in Computer & Processors, ICCD 91, pages 510-513, Washington, DC,
USA, 1991. IEEE Computer Society.

[4] A.V. Curiger, H. Bonnenberg, and H. Kaeslin. Regular vlsi architectures
for multiplication modulo (2n+1). Solid-State Circuits, IEEE Journal of,
26(7):990 —994, July 1991.

[5] A. Curiger, H. Bonnenberg, R. Zimmermann, N. Felber, H. Kaeslin,
and W. Fichtner. Vinci: Vlsi implementation of the new secret-key
block cipher idea. In Custom Integrated Circuits Conference, 1993.,
Proceedings of the IEEE 1993, pages 15.5.1 —15.5.4, May 1993.

[6] R.Zimmermann, A. Curiger, H. Bonnenberg, H. Kaeslin, N. Felber, and
W. Fichtner. A 177 mb/s visi implementation of the international data
encryption algorithm. Solid-State Circuits, IEEE Journal of, 29(3):303
—307, March 1994.

[7] L. Leibowitz. A simplified binary arithmetic for the fermat number
transform. Acoustics, Speech and Signal Processing, IEEE Transactions
on, 24(5):356 — 359, October 1976.

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

Stefan Wolter, Holger Matz, Andreas Schubert, and Rainer Laur. On the
vlsi implementation of the international data encryption algorithm idea.
In ISCAS, pages 397-400, 1995.

S.L.C. Salomao, V.C. Alves, and E.M.C. Filho. Hipcrypto: a high-
performance vlisi cryptographic chip. In ASIC Conference 1998. Pro-
ceedings. Eleventh Annual IEEE International, pages 7 —11, September
1998.

O. Mencer, M. Morf, and M.J. Flynn. Hardware software tri-design of
encryption for mobile communication units. In Acoustics, Speech and
Signal Processing, 1998. Proceedings of the 1998 IEEE International
Conference on, volume 5, pages 3045 —3048 vol.5, May 1998.

M. P. Leong, Ocean Y. H. Cheung, Kuen Hung Tsoi, and Philip
Heng Wai Leong. A bit-serial implementation of the international data
encryption algorithm idea. In FCCM, pages 122-131, 2000.

Tsoi Kuen Hung. Cryptographic primitives on reconfigurable platforms,
2002.

Seth Copen Goldstein, Herman Schmit, Mihai Budiu, Srihari Cadambi,
Matt Moe, R. Reed Taylor, and R. Reed. Piperench: A reconfigurable
architecture and compiler. Computer, 33:70-77, 2000.

Emeka Mosanya, Christof Teuscher, Héctor Fabio Restrepo, Patrick
Galley, and Eduardo Sanchez. Cryptobooster: A reconfigurable and
modular cryptographic coprocessor. In CHES, pages 246-256, 1999.
Ocean Y. H. Cheung, Kuen Hung Tsoi, Philip Heng Wai Leong, and
M. P. Leong. Tradeoffs in parallel and serial implementations of
the international data encryption algorithm idea. In CHES, number
Generators, pages 333-347, 2001.

M. Thaduri, S.-M. Yoo, and R. Gaede. An efficient vlsi implemen-
tation of idea encryption algorithm using vhdl. Microprocessors and
Microsystems, 29(1):1-7, 2005.

Antti Hamildinen, Matti Tommiska, and Jorma Skyttd. 6.78 gigabits
per second implementation of the idea cryptographic algorithm. In FPL,
pages 760-769, 2002.

José M. Granado, Miguel A. Vega-Rodriguez, Juan M. Sinchez-Pérez,
and Juan A. Gémez-Pulido. Idea and aes, two cryptographic algorithms
implemented using partial and dynamic reconfiguration. volume 40,
pages 1032-1040, Amsterdam, The Netherlands, The Netherlands, June
2009. Elsevier Science Publishers B. V.

Reto Zimmermann. Efficient vlsi implementation of modulo (2™ 4 1)
addition and multiplication. In IEEE Symposium on Computer Arith-
metic, pages 158—167, 1999.

Yutai Ma. A simplified architecture for modulo (2" + 1) multiplication.
IEEE Trans. Computers, 47(3):333-337, 1998.

Zhongde Wang, Graham A. Jullien, and William C. Miller. An efficient
tree architecture for modulo 2+1 multiplication. VLSI Signal Processing,
14(3):241-248, 1996.

Ivan Gonzalez, Sergio Lépez-Buedo, Francisco J. Gémez, and Javier
Martinez. Using partial reconfiguration in cryptographic applications:
An implementation of the idea algorithm. In FPL, pages 194-203, 2003.
Nicolas Sklavos and Odysseas G. Koufopavlou. Asynchronous low
power vlsi implementation of the international data encryption algo-
rithm. proceedings of 8th IEEE International Conference on Electronics,
Circuits and Systems, 3:1425-1428, September 2001.

Paris Kitsos, Nicolas Sklavos, Michalis D. Galanis, and Odysseas G.
Koufopavlou. 64-bit block ciphers: hardware implementations and
comparison analysis. Computers & Electrical Engineering, 30(8):593—
604, 2004.

Sourav Mukherjee: Sourav Mukherjee received the
B.Tech. degree in Computer Science and Engineering from
WBUT, Kolkata, India in 2008. He completed his M.Tech. in
CSE from NIT Rourkela, India in 2011.

Bibhudatta Sahoo: Bibudatta Sahoo received the ME in
CSE from NIT Rourkela, INDIA, in 1999. He is currently an
assistant professor in the Dept of CSE, NIT Rourkela,India.

