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Abstract: This work proposes a finite element for modeling a generalized multi-layered symmetric 
sandwich beam with alternate elastic and viscoelastic layers. The detailed derivation of the element 
mass and stiffness matrices have been presented. Numerical results have been presented for three, five 
and seven layered. The proposed element can be used for vibration analysis of sandwich beams having 
any number of layers. 

Key Words: Finite element, Multilayer, Sandwich beam and viscoelastic core. 

1. Introduction 
Vibration control of machines and structures incorporating viscoelastic materials in suitable arrangement is 

an important aspect of investigation [1]. The use of viscoelastic layers constrained between elastic layers is 
known to be effective for damping of flexural vibrations of structures, over a wide frequency range. Multilayered 
cantilever sandwich beam like structures can be used in aircraft structures and other applications, such as robot 
arms for effective vibration control.  

DiTaranto and Balsingame [2] obtained composite loss factor for selected laminated beams. Mead and 
Markus [3] studied the forced vibration of a three layer damped sandwich beam with arbitrary boundary 
conditions. Rao [4] calculated the frequency parameters and loss factors of sandwich beams under various 
boundary conditions and presented them in the form of equations and graphs. Banerjee [5] carried out free 
vibration analysis of three layered symmetric sandwich beams using dynamic stiffness method. 

The theory of flexural vibration of symmetric multilayered beams was analysed by Agbasiere and 
Grootenhuis [6]. Asnani and Nakra [7] investigated the flexural vibration of multilayered unsymmetrical beams. 
Asnani and Nakra in their later work [8] explored the damping effectiveness during flexural vibration of 
multilayered beams with number of layers up to 15, with simply supported end conditions. Vaswani, et al. [9] 
obtained resonant frequency and system loss factor for general multilayered curved beams.  

The purpose of the present work is to study the parametric instability of a multilayered cantilever sandwich 
beam subjected to end periodic axial load. Equation of motion for a general 2n+1 layered beam is derived using 
finite element method in conjunction with Hamilton’s principle.  

2. Formulation of the Problem 
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A 2n+1 layer sandwich beam, incorporating viscoelastic damping material is shown in figure(1). There are n 
number of viscoelastic layers and n+1 numbers of elastic layers. A layer of viscoelastic material separates two 
adjacent stiff elastic material layers.  
2.1 Element Matrices 

As shown in figure(2) the beam element model presented here consists of two nodes and each node has n+3 
degrees of freedom. Nodal displacements are given by  

{ })(eΔ  = {wp   ϕp   u1p  u3p …. u(2n+1)p  wq   ϕq  u1q  u3q…u(2n+1)q }T                                                                   (1) 
where p and q are elemental nodal numbers. The axial displacement, (u(2k-1)) of the constraining layers, the 

transverse displacement,(w) and the rotational angle,(ϕ ) can be expressed in terms of nodal displacements and 
finite element shape functions. 

u(2k-1) = [ N(2k-1) ] { })(eΔ ,     k=1,2 …n+1, 

w = [Nw] { })(eΔ , ϕ =  ][ ′wN { })(eΔ                                                                                                                (2) 
where the prime denotes differentiation with respect to axial coordinate x. The shape functions are given as 

below.  
The shape function matrices, [N(2k-1)] are of 1×(2n+6) size with the elements                    
[N(2k-1) ](1,(k+2)) = 1-ζ and [N(2k-1)](1,(n+k+5)) = ζ  respectively and all other elements are zero. 
The size of the shape function matrix [Nw] is 1×(2n+6) with the elements 
 [Nw](1,1) = (1-3ζ  2 +2ζ 3); [Nw](1,2) = (ζ -2ζ  2 +ζ 3) l ; [Nw](1,(n+4)) = (3ζ  2 -2ζ 3); 
[Nw](1,(n+5)) = (-ζ  2 +ζ 3) l and all other elements are zero. 
where ζ  = x / l,  l is the length of the element. 
2.1.1 Element Stiffness Matrix 

Elemental potential energy ( (e)U ) is equal to the sum of the potential energy of the constraining layers and 
viscoelastic layers.  

(e)U  = (e)
cU  + (e)

vU                                                                                                                                                (3) 
Potential energy of the constraining layers 
The potential energy of the constraining layers due to axial extension and bending is given as 
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where E )12( −k , A )12( −k = }{ )12( −ktb  and I )12( −k = 12}{ 3
)12( −ktb  are the Young's modulus, cross-sectional area 

and area moment of inertia of the (2k-1)th constraining layer respectively.  
Potential energy of the viscoelastic layers 

The potential energy of the viscoelastic layers due to shear deformation is given as 
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where Av(2j) is the cross-sectional area and Gv(2j)  is the complex shear modulus of 2jth layer. 
( )[ ])2(cv(2j)v(2j) 1 G   G ji η+= ∗ , where ∗

v(2j)G  is the in-phase shear modulus of the 2jth viscoelastic material layer, 
( ) )2(c jη is the associated core loss factor and 1−=i . 

The shear strain γv(2j)  of the 2jth viscoelastic layer from kinematic relationships between the constraining 
layers[4] is expressed as follows: 
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Substituting equation (2) in to equation (6) )2( jvγ  can be expressed in terms of nodal displacements and 
element shape functions: 
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Substituting equation (7) in to equation (5), the potential energy of the viscoelastic material layers is given 
by 
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From equation (3) elemental potential energy 
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[ ])(eK  is the element stiffness matrix 
2.1.2 Element Mass Matrix 

Elemental kinetic energy ( (e)T ) is equal to the sum of the kinetic energy of the constraining layers and 
viscoelastic layers. 

(e)(e)
c

(e)
vTTT +=                                                                                                                                            (14)     

(i) Kinetic energy of the constraining layers is written as  
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where ρ(2k-1) is the mass density of the (2k-1)th constraining layer. 
     

(ii) Kinetic energy of the viscoelastic layers is written as  
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where Av(2j)  is the cross-sectional area and ρv(2j) is the mass density of the 2jth viscoelastic layer 
The axial displacement uv(2j) of the 2jth viscoelastic layer derived from kinematic relationships between the 
constraining layers[3] is expressed as follows: 
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Substituting equation (2) in to equation (17) vu can be expressed in terms of nodal displacements and 
element shape functions: 
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Substituting equation (2) in to equations (18) and (16), the kinetic energy of viscoelastic material layers is 
given by 
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From equation(14) 
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and [ ])(eM is the elemental mass matrix and the dot denotes differentiation with respect to time t. 
 
2.2 Governing Equations of Motions 

The element equation of motion for a sandwich beam is obtained by using Hamilton's principle. 

( ) 0
2

1

)()( =−∫ dtUT
t

t

eeδ                                                                                                                                 (26) 

Substituting equations (13), (26) and (29) in to equation (30) the equation of motion for the sandwich beam 
element is obtained as follows: 

[ ]{ } [ ]{ } 0)()()()( =+ eeee KM ΔΔ                                                                                                   (27)             
Assembling mass, elastic stiffness and geometric stiffness matrices of individual element, the equation of 

motion for the beam is written as  

[ ]{ } [ ]{ } 0=+ ΔΔ KM                                                                                                                               (28) 
where { }Δ  is the global displacement matrix. 

4. Results and Discussion 
With a ten element discretisation of the beam, the resonant frequencies and modal system loss factors 

obtained for a three-layer beam are compared with those of Rao [4] and results are found to be in good 
agreement.  
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 Figures (3-4) show the effect of core thickness parameter (t21) on first and second modal frequency 
parameters η1 and η2 of the sandwich beam with three, five and seven layers. For all the three types of beam shear 
parameter (g)N has been taken as 5.0. It is observed from the graphs that for a beam of particular number of 
layers, both the frequency parameters increase linearly with increase in core thickness parameter. Also with 
increase in number of layers when core thickness parameter is same for all types of beam, both the frequency 
parameters increase. The increase in resonant frequencies with number of layers is more for higher values of 
core thickness parameter.   

5. Conclusion 
  The developed finite element model for multilayered sandwich beam with viscoelastic core gives 

accurate results for frequency calculation. The first and second resonant frequencies increase with increase in 
core thickness parameter and number of layers. The proposed element can be used for vibration analysis of 
sandwich beams having any number of layers. 
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