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ABSTRACT: This paper attempts to study the nonlinear soil-pile interaction under vertical vibration by both 
experimental and theoretical study. The field test results of single and group piles subjected to different exci-
tation intensities are presented. The measured response is compared by the continuum approach of Novak 
with nonlinear solution. The soil properties of boundary zone and separation length at pile-soil interface used 
in this numerical methodology are fine-tunned by trial and error in order to match the experimental results. 
Artificial neural network (ANN) models are developed based on field test results and the pile separation 
length considered in the analysis. Different ANN models are developed using evolutionary learning algorithm 
and Bayesian regularization algorithm. Various statistical performance criteria are used to compare the devel-
oped ANN models. A sensitivity analysis is also made showing the effects of input.  

1 INTRODUCTON  

Pile foundations are widely used in weak soil de-
posits for supporting various structures. In addition 
to static loads, pile-supported foundations and 
structures are exposed to dynamic loads such as 
machine-induced vibrations, moving traffic, ocean 
waves and earthquakes. In recent years, with the 
development in the offshore structures technology 
and the nuclear power industry and other applica-
tions, the dynamic behavior of pile foundation has 
received a renewed attention.  

Many methods, such as (i) using the concept of 
elastic subgrade reaction for obtaining equivalent 
soil springs, (ii) treating the pile problem as a case 
of one dimensional wave propagation in a rod, (iii) 
using the approximate continuum approach deter-
mining the stiffness and damping of the soil-pile 
system, were developed to achieve a direct and 
complete analysis of piles under dynamic condi-
tions. The pile-soil interaction analysis based on 
the approximate continuum approach was original-
ly proposed by Novak (1974), using plane strain 
soil reactions. This approach was extended by No-
vak and Aboul-Ella (1978) for piles in layered me-
dia such that the soil and pile properties can be dif-
ferent in individual layers. A complete set of 
dynamic interaction factors was proposed by Kay-
nia and Kausel (1982).  

The artificial neural networks (ANN) are be-
coming more reliable than statistical method due 
to its special attributes of identifying complex sys-
tem when the input and output are known from ei-
ther laboratory or field experimentation. The net-

work needs to be equally efficient for new data 
during testing or validation, which is called as ge-
neralization. There are different methods for gene-
ralization like early stopping or cross validation 
(Shahin et al. 2002; Das and Basudhar 2006). The 
‘learning’ or ‘training’ process in ANN in general, 
is a nonlinear optimization of an error function. 
The aim of the training is to minimize the error 
function to get the optimized weight vectors. This 
is equivalent to the parameter estimation phase in 
conventional statistical models. The error function, 
most commonly used is the mean squared error 
(MSE) function. The error associated with weights 
and sigmoid function is a highly non-linear opti-
mization with many local minima. Local and glob-
al optimization methods are carried out for finding 
out the weight vectors.  The steepest descent al-
gorithm and Levenberg-Marquardt (LM) algorithm 
which are gradient search algorithms are mostly 
used in ANNs applied to geotechnical engineering 
problems. As the characteristic of traditional non-
linear programming based optimization method are 
initial point dependent, the results obtained using 
back propagation algorithm are sensitive to initial 
conditions (weight vector) (Shahin et al. 2002).  
The use of global optimization algorithms like ge-
netic algorithm and simulated annealing though 
being widely used in other field of engineering 
(Morshed and Kaluarachchi 1998), in geotechnical 
engineering use of GA for training ANN is limited 
(Goh 2002). Goh (2002) used GA to find out the 
optimum spread of probabilistic network for lique-
faction analysis. In recent past another heuristic 
global optimization called differential evolution 



(DE), introduced by Storn and Price (1995) is be-
ing used successfully in different engineering 
problems.  
 The available literature on test results with piles 
and pile groups subjected to dynamic loading is 
very limited due to the difficulties in conducting 
such dynamic tests on pile foundation. Dynamic 
tests have been performed previously on small-
scale piles by some researchers (Novak and Grigg 
1976, El Sharnouby and Novak 1984, Manna and 
Baidya 2009). Full scale dynamic tests on pile 
were conducted in the field by some researchers 
(Vaziri and Han 1991). 

In the first part of the paper, the methodology 
and the dynamic test results on small prototype 
reinforced concrete pile groups (2 × 2) under ver-
tical vibration are presented. Frequency versus 
amplitude curves of piles was experimentally es-
tablished in the field. The test results are then 
compared with Novak’s continuum approach (No-
vak and Aboul-Ella 1978) using nonlinear pile-soil 
model. In order to match the observed resonant 
frequency and amplitude, the soil properties of 
boundary zone and separation length at pile-soil 
interface used in this numerical methodology are 
fine-tunned by trial and error. In the second part, 
the artificial neural networks are used to develop a 
mathematical model based on the set of dynamic 
test results. In this study, ANN models using dif-
ferent training processes using DE algorithm and 
Bayesian regularization algorithm for training 
process are used for prediction of the separation 
length of pile.  

2 SITE CONDITIONS AND PILE DATA 

The field tests were conducted at the site which 
was located adjacent to Hangar, at Indian Institute 
of Technology, Kharagpur Campus, India. First 
soil samples were collected from three bore holes 
(BH) located at different places of the site. The 
subsurface investigation indicated that the test site 
was underlain by three different soil layers up to a 
depth of 2.80 m. Both laboratory and in situ tests 
were performed (Manna and Baidya 2009) to cha-
racterize the static and dynamic properties of the 
soil. In the in situ test consisted of standard pene-
tration tests (SPT) to determine N value and cros-
shole seismic tests for determining the shear wave 
velocity (Vs) of soil layer. The different soil profile 
and the variation of shear wave velocity of differ-
ent soil strata are presented in Fig. 1. 

The piles were constructed in the field by bored 
cast-in-situ method. The diameter of all the piles 
was 0.1 m and dimension of pile caps was 0.57 m 
× 0.57 m × 0.25 m. In total, twelve sets of pile 
were constructed. Three sets of single pile of three 

different lengths (L = 1.0 m, 1.5 m and 2.0 m) and 
nine sets of 2 × 2 group piles (Spacing s = 2d, 3d 
and 4d for each pile length L, where L = 1.0 m, 1.5 
m and 2.0 m) were used for the investigation. 

 

 
Fig. 1 Soil profile and the shear wave velocity profile 
with depth 

3 VERTICAL VIBRATION TEST 

Forced vibration tests were conducted on model 
piles subjected to vertical vibration. Lazan type 
mechanical oscillator was used to produce vibra-
tion. To ensure that the resonance peaks were well 
pronounced and within the frequency range of the 
exciting mechanism, mild steel ingots or test bo-
dies were rigidly bolted on the top of the oscilla-
tor. The test body was comprised of steel ingots 
each weighing 650 N (8 nos) and 450 N (10 nos). 
Whole set up was then connected so that it acts as 
a single unit. Proper care was taken to keep the 
center of gravity of loading system and that of the 
pile cap in the same vertical line. A flexible shaft 
was used to connect the mechanical oscillator to a 
DC motor. The motor was connected to a speed 
control unit to control the speed of the DC motor. 
The vibration measuring equipment consisted of a 
two piezoelectric acceleration pickup and vibration 
meter. The schematic diagram of the experimental 
setup is shown in Fig 2. The methodology of verti-
cal vibration tests of piles was described in Manna 
and Baidya (2009).  

Two different static loads (Ws = 10 kN and 12 
kN including the weight of the pile cap and oscilla-
tor) were used in both the cases. For each static 
load, tests were conducted at four different eccen-
tric moments (Me = W⋅ e = 0.187, 0.278, 0.366, and 
0.450 N m, where W is the weight of eccentric ro-



tating part in oscillator and e is the eccentricity of 
the masses). 
 

 
Fig. 2 Schematic diagram of test setup for vertical vibra-
tion  
 

Steady state dynamic response to harmonic ex-
citation was measured under different frequencies 
for all eccentric moments at each static load. All 
the tests were carried out for the following two dif-
ferent embedded depths (h) of pile cap: Case 1 - 
Pile cap embedded into soil (h = 0.175 m) and 
Case 2 - No contact of pile cap with soil (h = 0).  
 The observed response curves display nonli-
nearity as the resonant frequencies (fr) decreases 
with increasing excitation intensity and also the 
amplitudes are not proportional to the excitation 
intensity. The complete vertical vibration test re-
sults of piles were presented in Manna and Baidya 
(2009). 

4 COMPARISON WITH NOVAK’S 
CONTINUUM APPROACH 

In this study the continuum approach proposed by 
Novak and Aboul-Ella (1978) are used to obtain 
the impedance of single pile embedded in layered 
medium. The pile group interaction analysis incor-
porated in this analysis is based on the practical 
concept of “interaction factors” proposed by Kay-
nia and Kausel (1982) for dynamic loading. The 
pile group impedances are calculated from the sin-
gle pile impedances and the dynamic interaction 
factors in a rigorous manner, using closed-form 
formulae derived by Novak and Mitwally (1990). 
To account approximately for the effects of nonli-
nearity and slippage (Novak and Sheta 1980), it is 
assumed that an embedded cylindrical body is sur-
rounded by a linear viscoelastic medium composed 

of two parts - an outer infinite region and an inner 
weak layer surrounding the cylindrical body. Soil 
nonlinearity, as well as the weakened bond and 
slippage are presumed to be accounted for by a re-
duced soil shear modulus and increased soil damp-
ing of the inner soil layer. The continuum model 
provides for the gradual expansion of the yielded 
zone around the pile and also the separation of pile 
and top layer of soil as the excitation level in-
crease. For different excitation intensities, the soil 
parameter in the weakened zone and soil-pile sepa-
rations are adjusted or fine-tuned so that the 
nonlinear theoretical response curves approach the 
observed results (Manna and Baidya 2010). The 
depth of anticipated separation (ls) ranges from 
1.8d (= 0.18 m) for W·e = 0.187 N m to 2.4d (= 
0.24 m) for W·e = 0.450 N m. Comparison between 
the observed results and theoretical solutions for 
pile group (L/d = 15, s/d = 2, Ws = 12 kN, Case 2) 
are shown in Fig. 3.  

 
 
 

Fig. 3 Comparison of experimental results with Novak‘s 
continuum approach  
 
It is observed that the predicted resonant frequency 
and amplitude are close to the experimental re-
sults. It can be said that Novak’s model with vary-
ing boundary-zone parameters with depth and us-
ing the appropriate pile separation with soil, is 
capable to predict the resonant frequency and am-
plitude values accurately at all excitation levels. 

5 BASIC PRINCIPLE OF ARTIFICIAL 
NEURAL NETWORK APPROACH 

A typical structure of ANN consists of a number 
of processing elements or neurons that are usually 
arranged in layers; an input layer, an output layer 
and one or more hidden layers. The input from 
each processing element in the previous layer is 
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multiplied by an adjustable connection weight 
(wji). At each neuron, the weighted input signals 
are summed and a threshold value (bj) is added. 
The combined input (Ij) is then passed through a 
nonlinear transfer function {f()} to produce the 
output of processing element. Hence the output 
(yk) from the output node can be written as  
 

 
 (1)     

                                  
 

The steepest descent algorithm and Levenberg-
Marquardt (LM) algorithm which are gradient 
search algorithms are mostly used to minimize the 
error function to get the optimized weight vectors 
in geotechnical engineering problems (Das and 
Basudhar, 2006). 

The test results presented in Manna and Baidya 
(2009) is used to develop models using artificial 
neural network (ANN). In the present study, the 
ANN models are trained with differential evolu-
tion and Bayesian regularization method and are 
defined as DENN and BRNN respectively. The re-
sults are compared with that obtained from com-
monly used Levenberg-Marquardt trained neural 
networks (LMNN) to discuss the prediction effi-
ciency of the networks. The above neural network 
models have been developed using MATLAB tool 
boxes (Math Works 2001). A brief description 
about the BRNN and DENN is presented here for 
completeness.  

5.1 Bayesian regularization neural network 

The Bayesian regularization method the perfor-
mance function is changed by adding a term that 
consist of mean square error of weights and biases 
as given below  
 
MSEREG γMSE (1 γ) MSW= + −          (2)  

 
Where MSE is the mean square error of the net-
work, γ is the performance ratio and  

n1 2
MSW w jj 1n

∑=
=

                        (3) 

 
This performance function will cause the net-

work to have smaller weights and biases there by 
forcing networks less likely to be overfit. The op-
timal regularization parameter λ is determined 
through Bayesian framework (Demuth and Beale 
2000).  The above combination works best when 
the inputs and targets area scaled in the range [-1, 
1] (Demuth and Beale 2000). 

Based on field test results and the pile separa-
tion length considered in the continuum approach 

of Novak, artificial neural network (ANN) models 
are developed. 

6 RESULTS AND DISCUSSION 

The data base consists of dynamic parameters Me, 
L/d, h and Gs2/Gs1 (where, Gs1 and Gs2 are the shear 
modulus of soil at top layer and at pile tip respec-
tively) as input parameters with separation length 
(ls) as the output. The total number of data points 
considered was 144 out of which 100 were taken 
for training and 44 were taken for testing. Differ-
ent ANN models were developed and results were 
compared in terms of correlation coefficient (R) 
and coefficient of determination (E). The correla-
tion coefficient (R) and root means square error 
(RMSE) were mostly for performance criteria 
evaluation of ANN models. However, R was a bi-
ased parameter and sometimes, higher values of R 
might not necessarily indicate better performance 
of the model because of the tendency of the model 
to be biased towards higher or lower values (Das 
and Basudhar 2006), the coefficient of determina-
tion (E) was also considered. The E value com-
pares the modeled and measured values of the va-
riable and evaluates how far the network is able to 
explain total variance in the data set. 
 Fig. 4 shows the relationship between predicted 
and observed values for two trials using LMNN. It 
can be seen that it needs some trials before getting 
the best results and it is therefore needs number of 
iteration selection of proper epoch value. But, fi-
nally it was observed that the LMNN could predict 
the separation length ls accurately with R and E 
values as 1.0 and 1.0 respectively as shown in Ta-
ble 1.  

However, while using BRNN model it was ob-
served that different trials yielded the R and E val-
ues as 1.0 and 1.0 respectively as shown in Fig. 5. 
The variation and convergence of SSE, squared 
weights and number of effective parameters are al-
so presented in Fig. 5. The number of effective pa-
rameters helps in avoiding the overfitting and 
hence BRNN has better generalization. The statis-
tical performance criteria for BRNN are also 
shown in Table 1.  

The variation of results of DENN with number 
of epoch (trials) found to vary similar to LMNN 
before getting the best results.  It can be seen that 
all the ANN models developed for the prediction 
of ls could exactly match with the observed values.  
 The weights and biases (parameters) for the 
BRNN models are shown in Table 2. Using the pa-
rameters presented here, a prediction model can be 
presented as per Eq. 1 and Das and Basudhar 
(2006). The parameters also can be used for the 
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sensitivity analysis to find out the important input 
parameters (Das and Basudhar 2006). 
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Fig. 4 The predicted and observed values ls for the 
LMNN model for (a) 1st trial and (b) 2nd trial 
 
Table 1. General performances of different neural 
network models for prediction of separation length 

Model 
Training Data Testing Data 

R E R E 

LMNN 1.000 1.000 1.000 1.000 

BRNN 1.000 1.000 1.000 1.000 

DENN 1.000 1.000 1.000 1.000 

 
 

 

 

 

 

Fig. 5 The predicted and observed values ls for the 
BRNN model 

Table 2. Weights and biases for prediction of ls as per 
BRNN 

 
Thus, the statistical performance of the differ-

ent models were comparable, however, the per-
formance of BRNN was found to better than 
DENN and LMNN in terms of generalization. The 
better performances of the BRNN were due to pe-
nalty for higher weight values to achieve good ge-
neralization.  

7 CONCLUSION 

This paper describes development of different 
ANN models to predict the separation length of 
pile subjected to vertical harmonic loading. A 
large number of dynamic tests with different excit-
ing intensities are considered to study the frequen-
cy amplitude behavior of piles for vertical vibra-
tion. The observed data is used to develop ANN 
models using different training algorithms. All the 
developed ANN models are found to predict the 
separation length exactly using the given input pa-
rameters. However, BRNN model is found have 
better generalization in terms of its variation with 
different trials. The models parameters are pre-
sented which can be used to develop prediction 
model. 

Neuron 
Weights Biases 

Me L/d h Gs2/Gs1 ls bhk b0 
Hidden 

neuron 1 
(k=1) 

3.658 -0.613 2.716 0.362 3.568 -0.016 -0.054 

Hidden 
neuron 2 

(k=2) 
3.642 0.151 -2.705 -0.210 3.570 -0.016  
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