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ABSTRACT 

 

One-dimensional and two-dimensional models for microchannel flow with non-

continuum (slip-flow) boundary conditions have been presented here. This study presents 

an efficient numerical procedure using pressure-correction-based iterative SIMPLE 

algorithm with QUICK scheme in convective terms to simulate a steady incompressible 

two-dimensional flow through a microchannel. In the present work, the slip flow of liquid 

through a microchannel has been modeled using a slip length assumption instead of using 

conventional Maxwell’s slip flow model, which essentially utilizes the molecular mean 

free path concept. The models developed; following this approach lend an insight into the 

physics of liquid flow through microchannels.  
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1. INTRODUCTION 

 

Micro fluidics is an area of science and engineering in which fluid behaviour differs from 

conventional flow theory primarily due to non-continuum effects, surface dominated 

effects, and low Reynolds number effects induced by the small length scale of the micro 

flow systems. With the recent achievements in the field of nanotechnology, 

microprocessor chip cooling, patterned drug delivery and biotechnology, the microfluidic 

devices are becoming more prevalent both in commercial application and in scientific 

inquiry. The classification proposed by Mehendale et al.[1] and Kandlikar and Grande [2]  

categorized the range from 1 to 100µm as microchannels. In microfluidics, theoretical 

knowledge for gas flows is currently more advanced than that for liquid flows [3]. 

Concerning the gas flow through microchannels, the issues are actually more clearly 

identified; the main micro-effect that results from shrinking down of device size is 

‘rarefaction’.  In the continuum fluid transport theory, governed by the Navier-Stokes 

equations, it is assumed that the state variables do not vary appreciably over the length 

and time scales compared to the molecular mean free path and molecular relaxation time. 

The local density oscillation near the solid-liquid interface of the microchnnels, 

significant deviation of liquid viscosity compared to the bulk value may not necessarily 

mean the breakdown of continuum theory; at the same time it is important to understand 

how the continuum theory works in a micro flow. There were no evidences that 

continuum assumptions were violated for the microchannels tested, most of which had 

hydraulic diameters of 50 μm or more. There is a clear need for additional systematic 

studies which carefully consider each parameter influencing transport in microchannels 

[4]. In general, there seems to be a paradigm shift in the focus of published articles from 
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descriptions of the manufacturing technology to the discussions of the physical 

mechanisms of flow and heat transfer through microchannels[5, 6]. Sobhan and Garimella 

[4] have made a comprehensive review on investigations regarding the flow and heat 

transfer characteristics for microchannel flow.  

Apart from wetting, adsorption and electrokinetic effects, the slip phenomena play 

an important role in modeling liquid flow through microchannel [7]. Helmloltz and Von 

Piotrowski found evidence of slip between a solid surface and liquid and later Brodman 

[8] verified their results [7]. Navier[9] was the first to model partial slip at the wall for 

liquids well before Maxwell’s slip model for gases [7]. Slip length is the distance behind 

the solid-liquid interface at which the velocity extrapolates to zero. An interpretation of 

the slip length ( SL ) is shown in Fig.1. The validation of slip boundary conditions 

continued in the beginning of the twentieth century, with a focus mostly on flow through 

capillaries. Traube and Whang [10] reported 4-5 fold increase in flow rate of water in a 

capillary treated with oleic acid. This increment could be attributed either to boundary 

slip or simply as surface tension induced capillary rise. The systematic study undertaken 

by Schnell [11], who used water in glass capillaries (240-800 µm) treated with silicone to 

make them hydrophobic found that for a small pressure drop in the capillary; the flow 

rate was lower in the treated cases compared to the untreated ones, but at the higher 

pressure drop the experience was opposite. Moreover, with the onset of turbulence there 

was no discernible difference in flow rates. Schnell’s experiments stood the test of time 

and are considered as the first convincing proof of boundary slip occurring for water flow 

on hydrophobic surfaces. At about the same time, Debye and Cleland [12] established that 

the boundary slip can also occur in liquid hydrocarbon flow through porous vycor glass. 
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In the last few decades there has been a renewed interest in determining the validity of 

the no-slip boundary condition for liquids due to the interest in polymers and other 

complex fluids but primarily due to microfluidic applications. The effective use of the 

surface force apparatus (SFA) in the 1990’s has led to many interesting experimental 

results and detailed studies of boundary slip with water and other substances [7]. Liquid 

flow in a microchannel becomes fully developed after a short entrance length, so that it 

can be modeled as a two-dimensional flow [13]. In view of this, present study aims for 

one-dimensional and two-dimensional microchannel flow simulation with non-continuum 

(slip-velocity) boundary conditions, in general. The present paper is focused on analyzing 

the effect of two-dimensional dependency of velocity, compressibility of liquid flow 

through a microchannel on a simple analytical and computational fluid dynamics 

perspective. 

 Majority of the experimental works indicate a strong dependence of the slip 

length on the approach rate (and thus shear rate) and wall roughness of the 

microchannels. Very large values of slip length, of the order of hundreds of nanometers 

were reported in the open literature [7]. Tretheway and Meinhart [14] used micro particle 

image velocimetry (PIV) to measure the velocity profiles of water in 30 х 300 µm 

channel. The channel surfaces were treated with a 2.3 nm OTS (octedecyltrichlorosilane) 

layer. The velocity profiles were measured in a 25 х 100 µm plane to within 450 nm of 

the channel wall. A slip velocity of about 10 % of the maximum velocity was measured, 

which corresponds to slip length of about 1µm. This large value of slip length is typically 

encountered in polymer flows [7]. Choi et al. [15] reported slip length of 30 nm at the shear 

rate of 105 s-1 in OTS coated 500 µm  wide х 9 mm long microchannels of heights 0.5 
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µm and 1.0 µm. In case of hydrophilic surfaces of the same channels and for the same 

shear rate they reported a slip length of 5 nm. Molecular dynamic (MD) simulation 

predicts the slip length to be roughly 1/10 th of the experimental results. These large 

discrepancies have been addressed with the help of a few conceptual slip models like 

‘Molecular slippage’ model considered by Blake [16]; ‘Gaseous film’ model proposed by 

Ruckenstein and Rajora [17]; ‘Viscosity model’ proposed by Vinogradova [18]; ‘ No-

shear/No-slip patterning’ presented by Phillip [19]. In the gaseous film model, it was 

assumed that there may be a film of gas at the interface between solid surface and liquid. 

The origin of this film may be the externally dissolved gases up to metastable 

concentrations. According to deGennes [20] this gas film nucleates bubbles preferentially 

near the wall at contact angles greater than 900, i.e., on hydrophobic surfaces. Evidences 

of nano bubbles on a hydrophobic glass surface in water using atomic force microscope 

were reported by Tyrrell and Attard [21]. Thickness of the gaseous film was assumed to be 

less than 0.5 nm. deGennes [20] proposed a simple mathematical model for calculating slip 

length involving gaseous film thickness and physical properties of the fluid concerned 

and postulated a slip length of few microns for liquid flow through microchannel. The 

‘Viscosity model’ proposed by Vinogradova was inspired by the slip mechanism in 

polymer melts. It provides a relation between the slip length and a decrease in viscosity 

within a very thin boundary layer δ close to a hydrophobic surface. He proposed a model 

for slip length ( ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= 1,

s

bblengthslip
μ
μδ , where bμ is bulk viscosity and sμ  is a near 

wall viscosity). According to him there may be two mechanisms; instrumental for a large 

slip length, either large increment of δ or very high viscosity ratio. On the basis of the 

discussion so far about ‘slip length’, the authors think that in the present problem 
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choosing a value of slip length  as clearance length (b)/100 for  micro flow simulation 

will not contradict any physical institution. 

 Modeling the micro flows, specially for the gases require the mean molecular 

diameter d, the mean molecular spacing δ  and the mean free path λ . For dilute gases 
λ
d

is less than 1 and different collision models based on this assumption determines the 

value of λ , which when divided by the channel characteristic length gives rise to a very 

important parameter Knudsen number  for  flows in microchannels. In the present work 

the conventional Maxwell's slip flow model was not used, which essentially utilizes the 

mean free path, and does not require a slip length assumption. An analogue to molecular 

mean free path the ‘molecular diffusive path’ has been proposed here using a slip length 

assumption to define a modified Knudsen number for liquid flow through micro channel.  

 
 
2. A MOTIVATING EXERCISE 

2.1  One-Dimensional Flow Through Microchannel 

 

In this problem, as envisaged in Fig.2, the microchannel is viewed as two parallel plates 

placed one over the other extending into the z-direction and the flow is in the x-direction.  

It has been assumed that the z-directional dimension is equal to unity. The channel 

clearance length (b) is 0.1 mm or 100 μm. So far as the bulk properties of the fluids are 

concerned, 100 μm is still a scale governed by the classical laws of simple liquids and 

ideal gases under normal pressure. Therefore for ordinary liquids (fluids), the current 

micro fluidic device is subjected to the rules of classical fluid mechanics [22, 23]. 
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Assumptions in the analysis 

1. All the liquid properties viz., density, viscosity etc., are constant. 

2. The fluid is newtonian in nature. 

3. The flow is laminar and the shear rates involved are small. 

4. The pressure gradients in all the directions, except in x direction are zero. 

5. To simplify the problem, we consider the flow only in the x-direction and all the 

other directional velocities to be zero. 

 
( ),yVV xx =      0== zy VV ,    ( )xpp =                    (1) 

Classical fluid mechanics for macrochannels is based on no-slip boundary condition. At 

the walls of the microchannel, the velocity of the fluid is given by  

 

wall

x
Swallx n

VLV ⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=                          (2) 

where, sL  is slip length and n is the normal coordinate pointing inward from the channel 

wall.  Slip-length can be referred to as extrapolation length; it is the distance from the 

wall at which the fluid is assumed to attain the normal parabolic velocity profile. The 

equations to be used to get the velocity profile are continuity and Navier-Stoke’s 

equations along with the boundary condition (Eqn (2)) to get the velocity profile as 

follows,  

( )( )[ ]Sx Lyby
dx
dpV +−+= 2

2
1
μ                       (3)            

 
Equation (3) is the starting equation for the analysis of one-dimensional velocity problem 

considered here, characterized by low-shear rates and negligible pressure gradients in 

directions other than the flow direction.  
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Experiments conducted by Choi et. al. [24] on hydrophobic surfaces, where the shear rates 

involved are high, has indicated that SL  depends upon velocity gradient, which in turn 

depends upon the flow-rate through the channel. 

46.0

192.0
wall

x
S dy

dVL ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

                 (4) 

By equating Eqn (3) to zero and solving the resulting quadratic equation, the value of 'y' 

can be determined. The channel clearance, b has already been taken as a constant, not 

varying either with the flow-rate or the working fluid. The slip-length can be assumed to 

be constant at any arbitrary point on the walls of the channel owing to its dependence on 

velocity gradient as given by the Eqn (4) and the velocity gradient is essentially constant 

at any arbitrary point on the x-axis or on the walls.  

Average velocity is defined here as the ratio of flow-rate along the x-axis direction of the 

channel to the cross-sectional area normal to the direction of flow i.e., the y-z plane. 

Mathematically, it can be expressed as   

   b
Q

A
QbL

dx
dpbu s ==⎥⎦

⎤
⎢⎣
⎡ +

−
=

62 μ
                                              (5)             

Where Q is the volumetric flow rate through the channel. This average velocity u  is 

used to obtain the pressure distribution along the x-direction, also referred to as Hagen-

Poiseuille’s equation (Eqn (5)), 

⎟
⎠
⎞

⎜
⎝
⎛ +

=−

s

fi

Lbb

LQpp

6

2
2

μ

                 (6) 

 
 It can be rearranged in the following form, 
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4

2
6s

G u LGp
b bL

μ⎛ ⎞
⎜ ⎟ ⎛ ⎞⎛ ⎞⎝ ⎠Δ = ⎜ ⎟⎜ ⎟⎜ ⎟⎛ ⎞ ⎝ ⎠⎝ ⎠+⎜ ⎟

⎝ ⎠

                     (7) 

Where, G and u  are the mass and average velocities, respectively, through the 

channel. The RHS of Eqn (7) has been expressed as a function of ‘ ⎟
⎠
⎞

⎜
⎝
⎛

b
L ’ and the kinetic 

head and it can be conveniently expressed as  

     
2

2m

u Lp f
b

ρ ⎛ ⎞Δ = ⎜ ⎟
⎝ ⎠

                         (8) 

 

where,  mf  can be thought of as the friction factor on the basis of average velocity of the 

channel. Kinetic theory predicts that mass and momentum diffusivity is given by the 

same expression at very low mass concentration of molecular flow, 

3
3 3 3

u D

uu G

λν

ν μλ

ν

= =

⇒ = = =                                                 (9) 

where, λ is the mean free path of the fluid molecules inside the channel. ν and D are the 

momentum and mass diffusivity, respectively. mf , the friction factor can be expressed as 

 

   
( )

⎟
⎠
⎞

⎜
⎝
⎛ +

=
⎟
⎠
⎞

⎜
⎝
⎛ +

⎟
⎠
⎞⎜

⎝
⎛

=

6

34

6

4

bLbL

G
f

ss

m

λμ

                      (10) 
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It is also evident from Eqns (7) and (10) that the pressure required to drive the fluid is 

lesser in microchannel than in comparison to macrochannel.  

 
2.2 One-Dimensional Flow Through Microchannel With A Two-Dimensional Velocity 

Field 

 

In this problem, the emphasis will be on a velocity, which is dependent upon both the 

radial as well as the axial dimensions of the same microchannel as considered in Fig. 2.  

Assumptions  

1. The fluid is Newtonian in nature with constant viscosity. 

2. The flow is laminar and the shear rates involved are small. 

3. For small flow rates, we have 

( ) 0, === wvandyxuu                               (11) 

On substitution of the boundary conditions, the pressure distribution becomes 

( ) 21

2

0 2
axaxxpp ++== λ                               (12)                               

The pressure gradient in the radial direction is neglected because of the small radial 

dimension.  

2.2.1 Equations to be used 

The equation of continuity becomes (adhering to the postulates taken) 

( ) ( )
x
G

x
u

∂
∂

==
∂

∂ 0ρ
                                  (13) 

where, G is the mass velocity and constant along the axial direction. The axial directional 

momentum equation is rearranged in such a way that it gets into the ‘normal form’ of a 

partial differential equation which is given below 

( ) ⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

−
∂
∂

−=
∂
∂

−+
∂
∂

x
uG

x
p

y
u

x
u

2

2

2

2

3
4 μμ           (14) 

The radial directional momentum equation gives, 

    
2

0u
y x
∂

=
∂ ∂

                                     (15) 
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There are numerous analytical methods for solving a partial differential equation out of 

which Monge’s method is a veteran one [25].  This method essentially involves disintegration 

of the given partial differential equation into a set of three equations called as the Monge’s 

equations which when solved give the first integral(s) of the equation. These first integrals are 

then used to calculate the variable in question. The partial differential equation (Eqn (14)), spitted 

into the set of Monge’s equations is as follows, 

0
3
4

=⎟
⎠
⎞

⎜
⎝
⎛ ++− dxdyGm

dx
dpdndxdmdy μμ            (16) 

                                          0
3
4 22 =− dxdy μμ            (17) 

    
                                          ndymdxdu +=          (18) 

Where, y
un

x
um

∂
∂

=
∂
∂

= , . Equation (16) can be rearranged in terms of first order partial 

differential equations in ‘m’ and ‘n’ and can be easily integrated. Once the integral 

equations are obtained for ‘m’ and ‘n’, they can be substituted into the Eqn (18) and 

solved for the velocity, which is as follows, 

   43

2

22
1

2
λλ

μ
λ

λ
++⎟

⎠
⎞

⎜
⎝
⎛ ++++

Δ
−= − yyGm

dx
dpxe

KG
pu kx

                        (19) 

where, μ4
3GK =

  . The four constants can be solved with the following boundary 

conditions. 

• Axial :- 

( )

0

,0

0

0

0

=⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=

=xx
u

uyu

             (20) 

• Radial :- 
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( )
0

0 0,
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=
y

S y
uLxu

                              (21) 
  

    
( )

by
S y

uLbxu
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−=,0                            (22) 
 

The above boundary conditions when applied on the Eqn (19) lead us to different 

equations linking the four constants involved in the expression. These four constants 

when duly substituted in Eqn (15) yield the equation for the velocity through a micro -

channel with two-dimensional dependency (Eqn (23)).  

 

       

( )

( ) ( )
( )[ ]S

Kx
S

Kx

Lyby
eLyGKbKx

euG
pGK

u +−

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−⎥
⎦

⎤
⎢
⎣

⎡
−++

−⎟
⎠
⎞⎜

⎝
⎛ −Δ
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=
−

−

2

0

0

11
2

1
2

μ

μ

           (23) 

 

2.2.2 Analysis 

It has been observed that in a microchannel, with the velocity depending on both the 

dimensions, it doesn’t lose its parabolic radial dependency. One of the important aspects 

of the microchannel flow is the decrease in the axial dimension dependent velocity along 

the axial direction, which eventually ensures the maintenance of laminar flow in the 

channel.  There is also a flattening of parabolic velocity profile along the channel length. 

‘ K ’ is defined as (ignoring the constant), the ratio of average velocity to momentum 

diffusivity (the ratio of force due to acceleration to the kinetic energy accumulated during 

diffusion). The molecular mean free path λ  can be related to K  as
9

4K
λ = . A 

dimension-less number can now be thought of as the ratio of inverse of ‘ K ’ to the 

characteristic dimension of the channel, say ‘b’. 
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b
KKn ified

1
mod =                                       (24) 

This ‘ ifiedKnmod ’ has similarities with Knudsen number ( Kn ) for gas flow in micro 

channels, which is the ratio of mean-free path of the molecules to the characteristic 

dimension of the channel. ‘ K
1 ’ can be viewed as “mean diffusive path” of the fluid 

(liquid) particles in the microchannel. ‘ ifiedKnmod ’ may also be viewed as the ratio of 

viscous force to inertial force i.e. inverse of Reynolds number. For small value of

ifiedKnmod , the classical flow regime is ensured. For large values of ifiedKnmod  or small 

values of ‘ K ’ the flow is shifting towards the microfluidics regime, hence, the axial 

dimensional dependency (‘ xK ∗ ’) is equally important as its radial dimensional 

dependency.  From equations (9), (10), (24), the relation between ‘K’ and λ  and the 

definition of ‘K’, the friction factor fm in the microchannel can be viewed as 

  

  
( )

( )6

33

6

34

6

4
mod bLK

Kn
bLbL

G
f

S
ified

ss

m
+

==
⎟
⎠
⎞

⎜
⎝
⎛ +

=
⎟
⎠
⎞

⎜
⎝
⎛ +

⎟
⎠
⎞⎜

⎝
⎛

=
λμ

                             (25) 

 

Due to the existence of slip length, there is a smoothening of flow in microchannels as is 

evidenced by the reduced value of friction factor in comparison to the value of friction 

factor in macrochannel with no-slip 64
Re

f⎛ ⎞=⎜ ⎟
⎝ ⎠

. 

 
3. TWO-DIMENSIONAL INCOMPRESSIBLE FLOW THROUGH 

MICROCHANNEL WITH A TWO-DIMENSIONAL VELOCITY FIELD 
 
Assumptions 

1. The fluid is newtonian in nature with constant viscosity and is ‘incompressible’. 

2. The flow is laminar and the shear rates involved are small. 

3. Gravity effects are neglected. 
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4. We also assume that, 0),,(),,(
_____
=== wyxvvyxuu  

We expect the radial direction flow to be purely pressure driven and so pressure gradients 

in both axial as well as radial directions exist. 

3.1 Governing Equations: 

Steady two-dimensional Navier-Stokes equations for a constant property fluid in non-

dimensional conservative form are given by 

0u v
x y
∂ ∂

+ =
∂ ∂

              (26) 

                                         
∂u2

∂x   + 
∂uv
∂y   = - 

∂p
∂x  + 

1
Re  ( 

∂2u
∂x2  + 

∂2u
∂y2  )                                         (27) 

                                 
∂uv
∂x   + 

∂v2

∂y   = - 
∂p
∂y  + 

1
Re  ( 

∂2v
∂x2  + 

∂2v
∂y2  )                                (28) 

Where the non-dimensional variables are defined as  

                         2

______

,,,,,
∝

∝

∝∝

======
U
pp

b
Ut

t
U
vv

U
uu

b
yy

b
xx

ρ
              (29) 

The variables with bar denotes a dimensional variable. b is the channel clearence, U∞ is 

the free-stream velocity, ν   is the kinematic viscosity, ρ  is the fluid density, and  Re  is   

                                                            
ν

bU∝=Re                                  (30) 

 

3.2 Friction factor 

The local friction factor localf  and average friction factor 
_
f  are defined as 

  wall
w

local y
u

U
f )(

Re
2

2/2 ∂
∂

==
∝ρ
τ

  and ∫=
L

local dxf
L

f
0

_ 1                                          (31) 
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Where wτ  is the shear stress acting on the walls of the channel and L is the channel 

length. 

                                                                   .   
3.3       Boundary Conditions 

The boundary conditions (Eqns (33), (36), and (37)) are described in the following way. 

The slip velocity, wu  defined by Eqn (33), on the channel walls is based on the following 

assumptions,  

a) At a distance of ‘ sL ’ from the present channel wall, on both the sides, there exists 

an imaginary boundary wall’ (IBW) – rigid and solid. 

b) At the position where presently there exists a wall, it is assumed that no solid wall 

is present and there exists a velocity for the fluid moving over the ‘imaginary 

boundary wall’ (IBW). The velocity is equal to the slip-velocity in the present 

case. 

Considering the above steps, it becomes clear that the flow over the ‘imaginary boundary 

wall’ (IBW) is shear flow. Extending this ‘imaginary’ case to a boundary layer problem 

‘completely’ i.e., the case in which we intend to find the velocity profile of the moving 

fluid over the ‘IBW’. The boundary layer theory of the classical mechanics can be safely 

used since the imaginary boundary, which is being considered here does not have any 

‘slip’. 

Thus we obtain an expression for the velocity of the moving fluid over the ‘IBW’ as: 

               
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛= ∞

3

2
1

2
3

δδ
yyUU                              (32)   
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We understand that the velocity at a distance of ‘ sL ’ from the IBW should be the slip 

velocity (Fig. 1). So replacing ‘ y ’ with ‘ sL ’ (
100

_ bLs = ) would yield us the slip-velocity 

as:   

 

3
L L3 1s su = U -w

2 2

uw
U δ δ

∞=
∞

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 (33) 

The problem now is to find the ‘free-stream velocity, U∞ ’ and the ‘boundary layer 

thickness, δ . As we are dealing with microchannels it can be expected that the velocity 

of the fluid on the ‘IBW’ shall be small enough to consider the flow as ‘laminar’. This 

consideration will yield the expression for the boundary layer thickness, δ  as: 

  

                                                            5.0
Rex

x
δ
=                                                            (34) 

Where, 

                                                   Re Rexx

Gx Gb x x
bμ μ

= = =  (35) 

The free-stream velocity ( U∞ ) is nothing but the incident velocity. Thus combining the 

above expressions, we get an expression for the slip-velocity as a function of δ  i.e., a 

function of ‘ x ’. Mathematically it can be derived that the slip-velocity is actually an 

inverse function of axial dimension. The radial velocity component is assumed to zero on 

the channel walls. 
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At the entrance of the channel, the radial velocity component is set to zero, and a uniform 

velocity ∝U  for the axial velocity component is assumed. 

                               0v1,u →→      at the entrance.                                                     (36) 

Because of the elliptic nature of the flow fields investigated, the outlet boundary 

condition will have some influence on the development of the upstream flow. The normal 

gradient of all dependent variables at the outlet are constants. This is equivalent to the 

requirement of the second derivative of any dependent variable becoming zero (Eqn 

(37)). Using this condition the numerical procedure is stable and convergent for those 

flows, which eventually reaches a steady-state condition at the outlet [26].                               

   =
∂
∂

=
∂
∂

2

2

2

2

x
v

x
u 0                                                  (37)    

  

3.4 Numerical Method 

In this problem, a fictitious time derivative is introduced in the momentum equations. 

The pressure correction based iterative SIMPLE algorithm [27] has been used for solving 

the governing equations with the boundary conditions specified previously. The 

computational domain is divided into Cartesian cells. Staggered grid arrangements 

(Fig.3(a)) are used, in which velocity components are stored at the midpoints of the cell 

sides to which they are normal. The pressure is stored at the center of the cell.  A first 

order implicit scheme is used for time derivative discretization. The u -momentum 

equation after integration over the u -control volume (Fig.3(b)) becomes 

 

bFFFF ssnnwwee =−+− φφφφ          (38) 
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Where u=φ or v  and eF  is the non-linear coefficient of eφ . b  contains the source 

terms, diffusive terms and time-derivative terms. The convective terms at any interface is 

estimated by a linear extrapolation of the eφ  values at two upwind neighbors, thus 

3 1 3 1,0 [ ,0
2 2 2 2e e p w e E EE eF F Fφ φ φ φ φ⎛ ⎞ ⎛ ⎞⎡ ⎤ ⎡ ⎤= − − − −⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎝ ⎠

             (39) 

 

Where, the symbol [ ]ba,    represents the maximum of the two operands a andb .  The 

diffusive terms at any interface is estimated by a linear interpolation between two grid 

point neighbors on either side of the interface. Thakur and Shy [28] discussed the ‘upwind 

scheme’ in detail. The pressure link between continuity and momentum is accomplished 

by transforming the continuity equation into a ‘Poisson equation’ for pressure. The 

Poisson equation implements a pressure correction for a divergent velocity field. 

A single iteration consists of the following sequential steps: 

1. An implicit calculation of the u , v  momentum equations is performed through 

a block elimination method. 

2. The Poisson equation for pressure correction is solved using a Gauss-Seidel 

iteration method with the successive under relaxation technique. In this case, 

the under-relaxation factor is chosen as 9.0 . 

3. The velocity field at each cell is updated using the pressure correction. 

4. Convergence criteria is employed of the form 

εφφ <−+

max,
1

,
n

ji
n

ji              (40) 

 Here  i  and j  denotes the cell index, n is the time level,  φ  is u  or v . The value of ε   is 

assumed to be 410− .  Flow is assumed to start impulsively from rest. To facilitate the 
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convergence of the solution for a given higher Reynolds number ( Re ), the converged 

solution of a case with smaller Re  is used as the initial guess. 

3.5 Grid consideration and algorithm testing 

A non-uniform grid distribution is incorporated in the computational domain. Fig. 4 

shows the grid distribution inside the channel and at the entrance of the channel (up to

10=x ). In order to resolve the gradients in a better way, the grid is finer near the channel 

walls and at the inlet. To check the grid sensitivity, we performed computations for four 

set of grids namely, 1500x150, 1000x150, 1500x100 and 1000x100; with the first and 

second number being the number of mesh points in the x -direction and in the y -

direction, respectively. The maximum distance of the first grid point from each wall and 

from the entrance of the channel are b01.0  and b005.0 , for the coarse and fine grids, 

respectively. The effect of grid size on the velocity profile at the centerline of the channel 

at various values of Reynolds number is presented in Fig. 7(b). We find that the change in 

solution for different grid size occurs on the third decimal place. We find that 1000x100 

grids are optimum. 

In order to assess the accuracy of our numerical method, we have computed ‘Strouhal 

number’ ( St ) for confined flow past a square cylinder in a channel for blockage ratio 

25.0=
H
B  where B  is width of the square cylinder and H  is width of the channel. In 

comparison to Mukhopadhyay et al. [29], the present study shows a maximum percentage 

deviation of 2.78 % in ‘ St ’value at 312Re =  (Fig. 5). Table 1 presents an excellent 

agreement among St  and the time-average drag coefficient ( DC ) (experienced by the 

cylinder of height A  and placed in a boundary layer of thickness δ  at a gap height ratio 
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L  from a wall) values calculated in the present work and those obtained by Hwang and 

Yao [30]. The boundary layer flow is generated from a uniform stream over a flat plate.  

3.5 Flow simulation and discussion 

Fig. 6 shows the radial velocity profile, along the radial direction at different x  and

10Re = . At the entrance of the channel, velocity in the radial direction is very small in 

comparison with that in the axial direction. It is evident from Fig.6 that after a certain 

value of x , at which flow has been fully developed, the change in radial velocity 

component is very negligible; it behaves as a one-dimensional flow.  

Flattening in the velocity profile is a phenomenon has been found on the basis of one-

dimensional flow problem as well as on the basis of numerical simulation of the two-

dimensional flow considered here.  Fig. 7(a) shows that along the length of a proper 

microchannel (b=1 mm, L=10 cm, with the slip boundary condition), at the centerline of 

it and for 10Re =  the non-dimensional axial velocity develops to a value of 1.503 at x

=1.21, the flattening in the velocity profile begins onwards. At about x =80 there is a 

constancy in u  (longitudinal velocity) value (1.15) is reached. The effect of Reynolds 

number on flattening in longitudinal velocity profile is shown in Fig.7(b). From Fig. 7(a), 

it is evident that at a Reynolds number )1(Re = , the axial velocity is almost negligible at 

x =100, maintaining a slow rate of flattening with respect to space; hence, the 

compressibility can come into picture in order to satisfy continuity equation, though it is 

a liquid. A ‘bottleneck’ kind of effect may lead to a situation, where enormous amount of 

time will be required for the fluid to pass through the microchannel. At a Reynolds 

number (Re 10)= , the flattening in axial velocity has been accelerated with respect to 

space and the axial velocity never ever reaches to such a negligible value.  This flattening 
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in axial velocity is further accelerated for (Re 15)=  due to the high flow rate at the 

entrance, almost there is no flattening in u profile until x=100 for 15Re = . In order to 

avoid the ‘bottleneck effect’, which is also very much function of channel clearance, 

viscosity and elasticity of the fluid, an optimum value of Reynolds number has to be 

maintained for a microchannel flow. 

The effect of Reynolds number on flattening of longitudinal velocity profile for a 

mini-channel (b=1 mm, L=10 cm, with no-slip boundary condition) and a proper 

macrochannel (b=10 cm, L=1 m, with no-slip boundary condition) has been compared in 

Fig.8.  In a proper microchannel for 10Re =  the non-dimensional axial velocity develops 

to a value of 1.503 at x =1.21, then the flattening begins in the velocity profile.  Whereas 

for mini channel, non-dimensional axial velocity develops to a value of 1.4935 at x

=1.179 for 10Re = , then the flattening begins in the velocity profile. After the length of 

x =1.179, the mini-channel behaves like a proper microchannel. There is an earlier 

development of fully developed flow and a lower value of maximum longitudinal 

velocity component in mini-channel. Actually, it is the slip effect that delays the 

formation of fully developed velocity profile in proper microchannel with slip boundary 

condition. For the proper macrochannel the velocity profile could not be developed for 

same inflow rate within this channel span because micro
micro

macro
macro b

b
ReRe =  for the same 

inflow rate. It can be concluded that the flattening in the velocity profile in microchannel 

owes to the small scale of the dimensions of the channels involved.  

The slip-velocity is independent of the radial component of the velocity. The slip velocity 

is a decreasing function of the axial dimension and has been found on simulation as 

shown in Fig.9. At x =10 and onwards the slip velocity is negligible, hence the channel 
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onwards behaving as a mini-channel, i.e., channel with micro dimension but with no-slip 

condition. This is also evident from Fig. 9 that the axial dimensional dependency of 

velocity (u), beside its radial dimensional dependency is to be considered within this 

short span of channel length for microchannels in practice.  

 The possibility of compression in liquid flowing through a microchannel is further 

strengthened from Fig. 10, which reveals that the non-linearity in pressure distribution 

with decreasing Reynolds number for a microchannel flow may cause compressibility 

effect. This non-linearity in pressure distribution, hence the corresponding 

compressibility effect, as discussed by Chen [13] in the numerical simulation for flow of 

gases through microchannels is much more pronounced than in comparison to the liquid 

micro flows. The curvature in pressure distribution curve for the slip flow is less than in 

no-slip flow because of reduced friction in case of slip flow. 

Fig. 11 shows the simulated values of f. Re (f being the local friction factor & Re being 

the local Reynolds number) both for slip and no-slip conditions. The f. Re value for a slip 

value is much lower than a no-slip flow. This is due to the fact that slip effect reduces the 

wall friction significantly, hence, there is a reduction in driving pressure, again, which 

has been already predicted, based on the analytical solution of problems II and I. 

 

 
4. CONCLUSIONS 
 

Keeping in view of its immense significance, this paper is focused on the simulation and 

analysis of the microchannel flow. The narration of the microchannel flow behaviour 

should contribute to the theoretical understanding of such flows.  
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In microchannel, the velocity in the radial direction is small in comparison to that in the 

axial direction as is evident from the simulated results for a two-dimensional flow 

through it. After the flow has been fully developed, the change in radial velocity 

component is very negligible; it behaves as a one-dimensional flow. Flattening in the 

velocity profile is a phenomenon has been found on the basis of one-dimensional flow 

problem (II) as well as on the basis of numerical simulation of the two-dimensional flow 

considered here and it owes to the small scale of the dimensions of the microchannels 

involved.  

At very low Reynolds number the axial velocity maintains a slow rate of flattening with 

respect to space; approaches to a negligible value; hence, the compressibility creeps in, to 

satisfy continuity equation, though it is a liquid. Slip velocity is a decreasing function of 

the axial dimension; hence, the channel after a certain length behaves as a mini-channel, 

i.e., channel with micro dimension but with no-slip condition. The axial dimensional 

dependency of velocity (u), beside its radial dimensional dependency is to be considered 

within this short span of channel length for microchnnels in practice.  

The non-linearity in pressure distribution with decreasing Reynolds number for a 

microchannel flow may cause compressibility effect. The slip effect reduces the friction 

in microchannel flow hence fluid can be driven through it with a lesser power 

consumption than in comparison to the flow through macro or mini-channel.  

ACKNOWLEDGEMENT 

The authors are grateful to Prof. P. Tabeling & Prof. S. Garimella for some of their 

stimulating articles on microfluidics, which created the primary motivation behind the 

project undertaken. The authors are also indebted to Dr. B. Munshi, Department of 



 24

Chemical Engineering, NIT, Rourkela for his contribution in physical understanding of 

the problems undertaken. 

 
REFERENCES 

[1] S. S. Mehendale, A. M. Jacobi, and R. K. Shah, Appl. Mech. Rev., 2003, 53, 175–

 193. 

[2] S. G. Kandlikar, and W. J. Grande, Heat Transfer Eng., 2003, 24(1), 3–17. 

[3] S. Colin, Microfluidique. Paris: Lavoisier – Hermès Science Publications, 2004. 

[4] C. B. Sobhan   and S. V. Garimella,   Microscale Thermophys Eng., 2001, 5, 293-

 311. 

[5] B. Palm,  Microscale Thermophys. Eng.,  2001, 5, 155-175 

[6] M. Gad-el-Hak,  J. Fluids Eng., 1999, 12, 5-33.  

[7] G. Karniadakis, A. beskok, N. Aluru, Microflows and Nanoflows  Fundamentals 

 and simulation, Springer, Los Angeles, California, USA, 2004. 

[8] C. Brodman, Untersuchungen ueber Reibungkoeffizienten zu 

 Fluessigkeiten. Dissertation, Goettingen, 1891. 

[9] C.L.M.H. Navier, Bull.Soc. Philomath., 1823. 

[10] J. Traube and S. H. Whang, Z.Physikal. Chem. A, 1928, 138, 102-122 

[11] E. Schnell, J. Appl. Phys., 1956, 27(1), 1149-1152. 

[12] P. Debye and R. L. Cleland, J. Appl. Phys., 1959, 30, 843-849. 

[13] C. Chen,   J. Micromech. Microeng. 2004,14, 1091-1100. 

[14] D. C.  Tretheway and  and C. D. Meinhart, Phys. Fluids, 2002. 14(3), L9-L12. 

[15] C. –H. Choi, J. Westin,  K. Breuer. Phys. Fluids, 2003; 15 (10), 2897-2902. 
 



 25

[16] T. D. Blake, colloids Surf., 1990, 47, 135-145. 

[17] E. Ruckenstein and P. Rajora, Colloid Interface Sci., 1983, 96, 488-491. 

[18] O. I.  Vinogradova, Int. J. Miner. Process., 1999, 56, 31-60. 

[19] J. R. Phillip, J. Appl. Math. Phys., 1972, 23, 353-372. 

[20] P. deGennes, Langmuir, 2002, 18, 3413-3414. 

[21] J. Tyrrell and P. Attard,  Langmuir, 2002, 18, 160-167. 

[22] G. Batchelor, An introduction to fluid dynamics, England, Cambridge University 

 Press,  1967. 

[23] P. Tabeling, Proc. 14th Australian Fluid Mechanics Conference, 2001, Adelaide, 

 Australia. 

[24] C. Choi,  K. Johan,  A. Westin,  and  K. S. Breuer,  Proc. IMECE200, 2002, New 

 Orleans, Louisiana, USA. 

[25] W. F. Ames,  Non-linear partial differential equations in engineering, vol 1 New 

 York: Academic Press,  1967. 

[26] M. P. Arnal,   D. J. Georing,  and  J. A. C. Humphrey,   J. Fluids Eng., 1991,  113, 

 384-398. 

[27] C. A. J. Fletcher, Springer Series in Computational Physics, vol 1 2000; pp. 362-

 368. 

[28] S. Thakur, and W. Shy, Numer. Heat Transf. Part B. 1993, 24, 31-55. 

[29] A. Mukhopadhyay,   G. Biswas,  and  T. Sundarajan, Int. J. Numer. Methods in 

 Fluids 1992, 14, 1473-1484. 

[30] R. R. Hwang, and C. Yao,    J. Fluid Eng. 1997, 119, 512-518.  

 



 26

Figure Caption: 
  

 
1. Slip length for slip flow of liquid on solid surface 

 
2.  Microchannel for one-dimensional flow 
 
 
3.  Schematic of (a) p-control volume and (b) u-control volume 

 

      4.      The arrangement of the computational grid in the computational domain, 
near the entrance of channel. 

 
 

           5. Comparison among Strouhal number ( St  ) for the case of confined flow 

behind a square cylinder in a channel for blockage ratio 25.0=
H
B . 

 
 

          6. The radial velocity ( v  ) profile along radial direction through the channel. 
 
 

          7. Axial velocity ( u  )   (a) at different values of x  for 10Re = , (b) along the 
centerline of the channel for different  15&10,1Re =  and grid sensitivity 
shown at 10Re = .  

 
          8. Axial velocity ( u  ) along the centerline of micro, mini and macro 

channel. 
. 

 
9. The slip velocity wU(  ) along the microchannel length. 
 
 
10. The longitudinal pressure distribution at the channel centerline for 

different ( )15,10,1Re = . 
 
11. The effect of slip on the value of f. Re 
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Table 1 

Comparison of Strouhal number ( St  ) and time-average drag coefficient ( DC  ) at  

1000Re =  and for boundary layer thickness 5.0,8.0=
A
δ   at various gap heights L . 

Configuration Strouhal number ( St ) Drag coefficient ( DC  ) 

A
δ

 
L  Present Hwang et 

al.[97] 

% Error Present Hwang et  

al.[97] 

% Error 

 

 

 

0.8 

5.5 

 

3.5 

 

1.5 

 

1.0 

0.121 

 

0.121 

 

0.132 

 

0.144 

0.122 

 

0.124 

 

0.135 

 

0.140 

1.64 

 

2.41 

 

2.22 

 

2.86 

1.99 

 

1.97 

 

2.13 

 

2.10 

1.98 

 

1.97 

 

2.14 

 

2.15 

0.50 

 

0.00 

 

0.46 

 

2.36 

 

 

 

 

5.0 

5.5 

 

3.5 

 

1.5 

 

1.0 

0.122 

 

0.106 

 

0.086 

 

0.083 

0.121 

 

0.111 

 

0.088 

 

0.080 

0.82 

 

4.50 

 

2.27 

 

3.75 

1.97 

 

1.64 

 

0.80 

 

0.52 

1.94 

 

1.66 

 

0.79 

 

0.50 

1.54 

 

1.21 

 

1.26 

 

4.00 
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Fig. 1 Slip length for slip flow of liquid on solid surface 

 
 
 
 
 
 
 

 
Fig. 2  Microchannel for one-dimensional flow 
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                                                                     (a) 

 

                                                              (b) 

Fig. 3   Schematic of (a) p-control volume and (b) u-control volume. 
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  Fig. 4  The arrangement of the computational grid in the 

computational domain, near the entrance of channel. 
 

                                 

 
 
 
 
Fig. 5  Comparison among  Strouhal number ( St  ) for the case of confined 

flow behind a square cylinder in a channel for blockage ratio 

25.0=
H
B . 
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Fig. 6  The radial velocity ( v  ) profile along radial direction through the 
channel. 
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(a) 

 
 

 
                  (b) 

 
      
 
Fig. 7  Axial velocity ( u  )   (a) at different values of x  for 10Re = , (b) along 

the centerline of the channel for different  15&10,1Re =  and grid 
sensitivity shown at 10Re = .  
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Fig. 8  Axial velocity ( u  ) along the centerline of micro, mini and macro 

channel. 
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Fig. 9   The slip velocity wU(  ) along the microchannel length. 
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Fig. 10  The longitudinal pressure distribution at the channel centerline for 

different Re = (1,10, 25) . 
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Fig. 11   The effect of slip on the value of f. Re 
 


