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Abstract. In the present study, the Neural network (NN) 
based controller design has been implemented for a 
non-linear continuous bioreactor process. Multilayer 
feed forward networks (FFNN) were used as direct 
inverse neural network (DINN) controllers as well as 
IMC based NN controllers.  The training as well as 
testing database was created by perturbing the open 
loop process with pseudo random signals (PRS). For 
set point tracking; at an operating condition where the 
cell growth is substrate limited, the DINN controllers 
were designed for conventional turbidostat and 
nutristat configurations. DINN controllers performed 
effectively for set-point tracking. To address the 
disturbance rejection problems, which are very likely 
to be faced by the bioreactors, the IMC based neural 
control architecture was proposed with suitable choice 
of filter and disturbance transfer function. To assess 
the controllability of the various bioreactor 
configurations, like conventional turbidostat and 
nutristat & concentration turbidostat and nutristat, the 
offset or degree of disturbance rejection by the 
proposed IMC based NN controllers were utilized. The 
‘concentration turbidostat’ using the feed substrate 
concentration as the manipulated variable was found 
to be the best control configuration among the 
continuous bioreactor configurations. 
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I. INTRODUCTION 
Neural networks have got various applications including 
pattern recognition, clustering, function approximation & 
prediction, optimization, process identification & control. 
The network stores knowledge in two forms a) the 
connection between the nodes b) the weight factors of these 
connections, Neural networks are better suited for processing 
noisy, incomplete, or inconsistent data and Neural networks 
mimic human learning processes. In the recent years, there 
have been significant advances in control system design for 
non-linear processes. One such method is the non-linear 
inverse model based control strategy. This method is 
dependent on the availability of the inverse of the system 
model. Neural networks (NN) have the potential to 
approximate any non-linear system including their forward 
& inverse dynamics. Inverse neural network have been 
utilized as the controller. For training the neural network, the 
process input-output data is generated by applying a pseudo 
random signal to the open loop process and the learning is 
carried out by considering the future process outputs as the 
reference set point. IMC (Internal model control) strategy 
integrates the plant model and its inverse in a feedback 
control loop. NN based IMC scheme is used; especially for 
disturbance rejection problem. Application of NN based 
controllers in chemical processes have gained huge 
momentum as a result of focused R&D activities taken up by 
several researchers including Donat et al. (1990); Ydstie 
(1990); Hernandez and Arkun (1990); Psichogios and Ungar 
(1991); Dirion et al. (1995); Hussain et al. (2001); Varshney 
et al. (2009)  in recent years.  

Bioreactor control has been an active area of research over 
a decade or so. For optimization of cell mass growth and 
product formation continuous mode of operation of 
bioreactors are desirable not the traditional fed batch 
bioreactors. Several researchers like Edwards et al. (1972), 
Agrawal and Lim (1984), Menawat & Balachander (1991) 
have studied the continuous bioreactor problem.  A (2×2) 
bioreactor process having two states namely biomass (ݔଵ , X 
g/L) and substrate concentrations (S or  
 ଶ g/L) are controlled by dilution rate (D=F/V (h-1)) and feedݔ
substrate concentration ( ܵ or  
 .ଶ g/L) at the various operating points of the bio-processݔ
The parameters like specific growth rate (ߤ), yield constant 
(ܻ) , & saturation rate constant (݇ଵ,݇ ) of the kinetic 
models are either inadequately determined or vary from time 
to time regarding the process operation. The aforesaid 
parameters have been considered as disturbance to the 
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process. The disturbance rejection has given a consideration 
in selecting suitable control configuration for the continuous 
bioreactors. The primary aim of a continuous bioreactor is to 
avoid wash out condition which ceases reaction. This may be 
done either by controlling cell mass or substrate 
concentrations. In order to maintain the reaction rate and 
product quality, both of them may be controlled with dilution 
rate and feed substrate concentration as manipulated 
variables, thus two degrees of freedom is available for 
control. However this is expensive and redundant probably, 
because microorganisms have intracellular regulatory 
mechanisms, and there exist strong interaction between the 
two outputs [11]. One may achieve acceptable control 
performances of both outputs by controlling only one of 
them. This give rise to four numbers of (1×1) control 
configurations possible which are as follows: 

 Conventional turbidostat (ܦ → ܺ): Dilution rate is 
used to control cell concentration 

 Conventional nutristat (ܦ → ܵ): Dilution rate is 
used to control substrate concentration 

 Concentration turbidostat ൫ ܵ → ܺ൯: Feed substrate 
concentration is used to control biomass or cell 
concentration 

 Concentration nutristat ൫ ܵ → ܵ൯: Feed substrate 
concentration is used to control substrate 
concentration 

In that case with one of the loops being closed (by choosing 
any one of the four control configurations) and keeping the 
second manipulated input constant, the uncontrolled output 
should be relatively insensitive to disturbances. Some of the 
aforesaid configurations have better ‘built-in’ disturbance 
rejection ability than others; i.e., the sensitivity of the 
uncontrolled output with respect to disturbances is less.  

Considering the immense commercial significance of the 
continuous bioreactor process the ANN based non-linear 
controller design have been implemented for various 
configurations of it. In the present study, the direct inverse 
neural network controllers (DINN) were designed for 
conventional turbidostat and nutristat for set point tracking at 
an operating condition where the cell growth is substrate 
limited. IMC based NN controllers were designed for 
conventional turbidostat and nutristat & concentration 
turbidostat and nutristat with which their disturbance 
rejection performance were tested; as well as controllability 
of those configurations were assessed.  
2. Modeling 
2.1. Model of bioreactor 
The study is based on single biomass-single substrate 
process. The following are the model equation based on 
first principle. 

  Material Balance: 
  Rate of accumulation= inflow-outflow + generation -   
consumption 
For biomass 
ௗ(௫భ)
ௗ௧

= ଵݔܨ − ଵݔܨ +  ଵ                                    (1)ݎܸ
For substrate 
ௗ(௫మ)
ௗ௧

= ଶݔܨ − ଶݔܨ + ଶݎܸ                   (2) 

The reaction rate is given by 
ଵݎ =  ଵ                         (3)ݔߤ
Where ݔଵ & ݔଶ  are the biomass concentration and the 
substrate concentration in feed, respectively. ݔଵ & ݔଶ are the 
biomass and substrate composition, respectively. ߤ , the 
specific growth is a function of substrate concentration and 
given by the substrate inhibition growth rate expression: 
ߤ = ఓೌೣ௫మ

ା௫మାభ௫మమ
                            (4) 

The relation between the rate of generation of cells and 
consumption of nutrients is defined by the yield Y 
ܻ = భ

మ
.                                                                   (5) 

Introducing the dilution rate ( ܦ = ி

 ) and assuming there is 

no biomass in the feed, i.e., ݔଵ=0. 
We get the following model equations 
ௗ௫భ
ௗ௧

= ߤ) − ଵ                      (6)ݔ(ܦ
  
ௗ௫మ
ௗ௧

= ଶݔ൫ܦ − ଶ൯ݔ −
ఓ௫భ


                 (7) 
The inputs are dilution rate and feed substrate concentration 
and the outputs are the concentrations of substrate and 
biomass (All values in deviation form). The values of steady 
state dilution rate (ܦ௦), feed substrate concentration (ݔଶ௦), 
and the various parameters are presented in Table 1. The 
state-space matrices are as follows: 

ܣ = อ
ߤ − ௦ܦ ′௦ߤଵ௦ݔ

− ఓ


௦ܦ− −
௫భೞఓೞ′



อ                (8) 

ܤ = ฬ
ଵ௦ݔ 0

ଶ௦ݔ − ଶ௦ݔ ௦ܦ
ฬ                    (9) 

ܥ = ቚ1 0
0 1ቚ                                    (10) 

 
′௦ߤ    represents the derivative of growth rate with 

respect to substrate concentration at steady state and given 
by 

ௗఓೞ
ௗ௫మೞ

′௦ߤ         ; = ఓೌೣ൫ିభ௫మೞమ ൯

൫ା௫మೞାభ௫మೞమ ൯మ
                  (11) 

 
Table 1 Parameters for rate inhibition kinetics and steady 

state values of manipulated inputs 
 

Disturbances Value 
 ௫ 0.53 h-1ߤ

 ݇ 0.12 g/L 
 ଵ 0.4545 L/gܭ
ܻ 0.4 
 ଶ௦ 4.0 g/Lݔ
 ௦ 0.3 h-1ܦ

 
The above state space matrices were used to find turbidostat 
and nutristat transfer functions for set point tracking 
problems. Solving the steady state equations (6) & (7), we 
get three different equilibrium points depending on the initial 
conditions.  

 When biomass concentration is zero, it is a washout 
condition with zero gain, trivial solution. 

 When both the concentrations (biomass & 
substrate) are high it leads to unstable equilibrium 
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 When there is substrate limiting condition it is a 
stable equilibrium. 

The system model around the second equilibrium point 
renders unbounded outputs when excited with pseudo 
random binary signals (PRBS). So the steady state values of 
third equilibrium; x1s = 1.5302g/L, x2s = 0.1746g/L were 
considered for the database development required for 
training the NNs. For disturbance rejection problems, which 
were implemented using IMC based NN scheme, a state 
space model was developed to determine a (2×5) disturbance 
transfer function matrix.  The various disturbances 
considered were ߤ௫ ,ܻ,  ݇ ,ܦ, ଶݔ &    and the 
disturbance transfer function transfer functions were of same 
order to that of the process. Following are the state space 
matrices.  

ܣ = อ
ߤ − ௦ܦ ′௦ߤଵ௦ݔ

− ఓ


௦ܦ− −
௫భೞఓೞ′



อ              (12) 

ܤ =



ఓ
ఓ

                ିఓ௫మೞ
൫ା௫మೞାభ௫మೞమ ൯

             0            − ଵ௦ݔ              0

ଵ௦ݔ−
ఓ
ఓ

     ିఓ௫మೞ
൫ା௫మೞାభ௫మೞమ ൯

௫భೞ


ߤ      ௫భೞ
మ  

   − ൫ݔଶ௦ − ௦ܦ    ଶ௦൯ݔ
   

                                                       (13) 
ܥ = ቚ1 0

0 1ቚ                                        (14) 

ܦ  = ቂ0 0 0 0 0
0 0 0 0 0ቃ                         (15) 

Where load matrix is ݑ =

⎝

⎜
⎛

௫ߤ
 ݇
ܻ
ܦ
ଶݔ ⎠

⎟
⎞

       (16) 

2.2 Neural Network model for direct inverse controller 
 
In the direct method, a NN is trained with observed input-
output data from the open loop process to represent its 
inverse dynamics. Hence the resulting inverse NN model can 
be used as a controller typically in a feed forward fashion. In 
an IMC based NN scheme, a NN based process model is 
placed parallel with the process. The difference between the 
process and the network output is used for the feedback 
purpose. This feedback signal is then processed by the 
inverse NN in the forward path. It is to be noted that the 
implementation of IMC based NN is limited only to open 
loop stable processes. The learning phase of the network is 
an off-line process and the historic data base of the process is 
used for training and testing the networks. In the present 
study, the training as well as testing database was created by 
exciting the open loop process with pseudo random binary 
signals (PRBS). 

In order to develop DINN controller, the training of the 
proposed multi layer FF NN (4, 3, and 1) was performed 
using the gradient based Levenberg-Marquardt method. 
Performance criterion was MSE between the network output 
and target. The network predicted the outputs of the 
controller (ܦ,  ଶ) which actually are the manipulatedݔ &
variable to the process. The inputs and outputs of NN (4, 3.1 
or N1, N2 & N3) regarding the training & control phase 
were as follows, 
Training Phase: 

 ܰ1 = ,(ݐ)ݕ} ݐ)ݕ − 1), ݐ)ݕ − ݐ)ݑ,(2 − 2)}           (17) 
 ܰ3 = ݐ)ݑ − 1)                                   (18) 
Control Phase: 
 ܰ1 = ݐ)ݕ} + ,(ݐ)ݕ,(1 ݐ)ݕ − ݐ)ݑ,(1 − 1)}             (19) 
    ܰ3 =  (20)                                        (ݐ)ݑ
Fig. 1 presents the network architecture in the control mode. 
Sampling time of 0.8 time unit and 2 time unit were used for 
training the two kinds of turbidostat (ܦ → ܺ)  servo 
networks, each of the networks demonstrated minimum 
offset of 0.001 with simulation intervals of 2 time unit and 4 
time unit respectively. For nutristat (ܦ → ܵ) servo networks, 
sampling time of 0.8 time unit and 2 time unit were used for 
training, each of them demonstrated minimum offset of 
0.001 with simulation intervals of 4 time unit and 3 time 
unit, respectively.   
 

 
Fig.1 DINN network architecture in control mode. 
 
2.3 NN based internal model control 
An IMC structured closed loop was used with a disturbance 
transfer function of same order to that of process transfer 
function. The various disturbances considered were  
௫ߤ ,ܻ,  ݇ ,ܦ,  ଶ . In IMC scheme, the proposed FFݔ &
network (6, 3, and 1) representing the process model, used 
the following inputs & outputs, 

 
Training phase 

 
ܰ1 = ݐ)ݕ} − ݐ)ݕ,(3 − ݐ)ݑ,(2 − ݐ)ݑ,(3 − ݐ)ݑ,(2 −  (21) {(ݐ)ݑ,(1

 
ܰ3 = ݐ)ݕ − 1)                              (22) 

 
Simulation Phase 
ܰ1 = ݐ)ݕ} − ݐ)ݕ,(2 − ݐ)ݑ,(1 − ݐ)ݑ,(3 − ݐ)ݑ,(2 −  (23) {(ݐ)ݑ,(1
ܰ3 =  (24)                               (ݐ)ݕ
 

 
Fig.2  Block diagram of closed loop IMC scheme. 
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Fig. 2 represents the block diagram of closed loop IMC 
scheme. The following filter transfer function was used in 
the closed loop simulation. 
ܩ             = ఊௌାଵ

(ఒ௦ାଵ)మ                                                           (25) 

 Where  ߣ = ߬
5ൗ , and ߛ = ൫ଶఒఛିఒమ൯

ఛ
                        (26) 

 
3. Results & discussions 

The performance of the developed controllers was tested of 
their set point tracking ability. The closed loop response in 
biomass concentration for unit step change in dilution rate at 
t=20 th time instant using the conventional turbidostat servo 
controller is shown in Fig.3, which reflect a perfect set point 
tracking. For monitoring substrate concentrations, the closed 
loop response of the substrate concentration for unit step 
change in dilution rate at t=24 th time instant using 
conventional nutristat controller is shown in Fig. 4, which 
also ensures the perfect set point tracking. 
To assess the controllability of each of the continuous 
bioreactor configurations, the closed loop disturbance 
rejection performance of them were taken in to 
consideration. Table 2 represents the offset in disturbance 
rejection for unit step change in all the load variables 
(mentioned in eq. (16)) by all 4 continuous bioreactor 
configurations without any adjustment of bias.  For the 
present equilibrium point where the cell growth is substrate 
limited, the concentration turbidostat using the feed substrate 
concentration as the manipulated variable seems the best 
control configuration. The performance of conventional 
turbidostat is poor in rejecting the disturbance in the yield  ܻ. 
Conventional nutristat is unacceptable control configuration 
especially; when it is the case of disturbance rejection in 
 ௫ &  ݇. Concentration nutristat is incapable ofߤ
disturbance rejection in (݁ݐܽݎ ݊݅ݐݑ݈݅݀) ܦ. The disturbance 
rejection performances of concentration turbidostat are 
shown in Fig. 5.  
 
Table 2  Disturbance rejection performance by closed loop 
bioreactor configurations 
 
Configurations/ 
Disturbances 

D—X D—S ݔଶ—X ݔଶ—S 

 ௫ 0.4711ߤ
 

8.3554 
 

0.198 
 

-0.239 
 

 ݇ -3.15 
 

10.3195 -1.153 
 

-0.392 
 

ܻ 1.2874 
 

-5.6397 
 

0.331 
 

0.5639 
 

 0.608- ܦ
 

-6.0281 
 

-0.396 
 

1.4473 
 

 ଶ 0.1342ݔ
 

-1.1808 
 

0.1011 
 

0.0035 
 

 

  
Fig.3  Response in biomass concentration for unit step 

change in dilution rate using conventional servo 
turbidostat controller (trained network with 0.8 time 
unit sampling intervals). 

 

 
 

Fig.4  Response in substrate concentration for unit step 
change in dilution rate using conventional servo 
nutristat controller (trained network with 2 time unit 
sampling interval). 

 
 
 

 
(a) 
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(b) 

 
(c) 

 
(d) 

 
(e) 

Fig.5 Disturbance rejection by concentration turbidostat: 
in (a) in ߤ௫ (b) in   ݇ (c) in ܻ (d) in ܦ (e) in ݔଶ 
 
4. Conclusion 

Present study utilized the neural network as non-linear 
controller for a continuous bioreactor process. The training 
as well as testing database was created by exciting the open 
loop process with pseudo random binary signals (PRBS). 
Both DINN and IMC based NN controller strategies were 
implemented successfully. The process chosen was open 
loop stable. The designed FFNN (4 3 1) SISO controllers 
effectively could track the changes in biomass as well as 
substrate concentration. To address the disturbance rejection; 

caused by either of  ߤ௫ ,ܻ,  ݇ ,ܦ,  ଶ , IMC basedݔ &
neural control architecture (6 3 1) was proposed with 
suitable choice of filter and disturbance transfer functions 
having the same order to that of the process. To assess the 
controllability of the various configurations, the offset or 
degree of disturbance rejection of the proposed IMC based 
NN controllers were utilized. The concentration turbidostat 
using the feed substrate concentration as the manipulated 
variable was found to be the best disturbance rejecting SISO 
control configuration. Hence, making the other uncontrolled 
state; the substrate concentration being relatively insensitive 
to disturbances while manipulated variable ܦ is kept 
constant. One can thus achieve control of both outputs by 
controlling only one of them. 

. 
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