Prediction of Minimum Fluidization Velocity for Gas–Solid Fluidization of Regular Particles in Conical Vessels

K C BISWAL, T BHOWMIK and G K ROY

National Institute of Technology, Rourkela India gkroy@nitrkl.ac.in

ABSTRACT

The application of a conical fluidized bed as a remedial measure for certain inherent drawbacks of gas-solid systems is suggested Investigations were carried out in Perspex cones with apex angles of 10° , 30° , 45° and 60° , with spherical glass beads of different sizes as the bed material, and air as the fluidizing medium With the help of available correlations and packed bed pressure drop data, minimum fluidization velocities for the above cases were computed and compared with experimental data obtained from bed pressure drop versus fluid mass velocity plots, and the mean and standard deviations were calculated

INTRODUCTION

Entrainment of particles, slugging, channelling and bubbling are some of the disadvantages of a deep large-diameter gas-solid fluidized bed which affect the fluidization quality to a considerable extent in a conventional cylindrical unit Better fluid-solid mixing and improved quality of fluidization can be achieved in a conical fluidizer [1], this is attributed primarily to the gradual decrease in superficial velocity due to the varying cross-sectional area. This is of specific importance in the case of solid fuel combustion and gas-solid reactions, where particles continuously decrease in size. So that conical beds may be used widely in the chemical process industry, adequate knowledge of the static and dynamic behaviour of such beds is needed. Although considerable information is available concerning the characteristics of packed and fluidized cylindrical beds [2-5], there is comparatively little identical information for conical beds [6 - 13].

In this paper an attempt has been made to develop an expression for the minimum fluidization velocity in the case of conical gas-solid fluidized beds

EXPERIMENTAL

Apparatus

A schematic diagram of the set-up has been given elsewhere [10] Cones with different apex angles, namely 10°, 30°, 45° and 60°, were used in the investigations; they were made from thick Perspex sheets. The inlet diameter of the cones was 4 cm. A screen of 60 mesh, used at the lower end, served as a support as well as a distributor. The calming section for the cones was filled with glass beads to obtain a uniform fluid distribution. Two pressure tappings, one at the entrance and the other at the exit section of the cone, were provided to record the bed pressure drop. Air was used as the fluid and was passed through a constant pressure reservoir followed by a silica-gel tower. The air flow rate was recorded with the help of two rotameters for two different ranges of flow.

Procedure

The porosity of the static bed was determined in separate experiments by allowing water to pass through the bed, without imparting movement to the particles, and then collecting the entrained water carefully. The procedure was repeated for a particular case until a nearly constant amount of water was recorded. For a given run, a cone was charged to a definite fixed bed height with a particular size of glass bead. The variation of pressure drop with fluid mass velocity was noted until particle movement was initiated in the bed Bed pressure drops were also recorded under fluidized bed conditions. In

TABLE 1

Experimental variables

Bed material glass beads, density of material 2 $3\times10^3~kg~m^{-3}$

Run No	Cone angle (deg)	Bed height (cm)	Particle diameter (mm)
1	10	9 2	10
2	30	107	15
3	45	130	2 0
4	60	15 4	25
5			30

subsequent runs the particle size as well as the fixed bed height were altered The above procedure was repeated for other cones The experimental variables are listed in Table 1

DEVELOPMENT OF THE CORRELATION

On the basis of Ergun's equation [14] and Baskakov and Gelperin's modification [6] for cone geometry, Suryanarayana *et al* [8] obtained an equation to predict the minimum fluidization velocity from the bed pressure drop for a cone of apex angle 10° and water as the fluid passing through the bed. Using a similar approach, a packed bed pressure drop equation for conical beds was developed by the present authors for gas-solid systems [12]

$$\Delta P_{\rm c} = \cos \frac{\alpha}{2} \left\{ 37 \ 17 (\tan \alpha)^{-0} \ {}^{47} \frac{\mu (1 - \epsilon_{\rm pa})^2}{g_{\rm c} d_{\rm p}^2 \epsilon_{\rm pa}} \times \frac{R_0}{R} (R - R_0) V_0 + 0.75 \frac{\rho_{\rm f} (1 - \epsilon_{\rm pa})}{g_{\rm c} d_{\rm p} \epsilon_{\rm pa}^3} \times \frac{R_0}{3R^3} (R^3 - R_0^3) V_0^2 \right\}$$
(1)

Applying the above packed bed equation to the situation at the onset of fluidization, the equation becomes

Fig 1 Prediction of G_{mf} from a $\Delta p-G$ plot (bed height effect) Bed height \bigcirc , 9 2 cm, \triangle , 10 7 cm, \bullet , 13 0 cm, \bullet , 15 4 cm

Fig 2 Prediction of $G_{\rm mf}$ from a $\Delta p-G$ plot (particle size effect) Particle size $\bigcirc, 1 \text{ mm}, \triangle, 15 \text{ mm}, \bullet, 2 \text{ mm}, \blacktriangle, 25 \text{ mm}$

$$\Delta P_{\rm mf} = \cos \frac{\alpha}{2} \left\{ 37 \ 17(\tan \alpha)^{-0} \ {}^{47} \frac{\mu(1-\epsilon_{\rm pa})^2}{g_{\rm c} d_{\rm p}^{-2} \epsilon_{\rm pa}} \times \frac{R_0}{R} (R-R_0) V_{\rm 0mf} + 0.75 \frac{\rho_{\rm f}(1-\epsilon_{\rm pa})}{g_{\rm c} d_{\rm p} \epsilon_{\rm pa}^{-3}} \times \frac{R_0}{3R^3} (R^3-R_0^{-3}) V_{\rm 0mf}^2 \right\}$$
(2)

 $\Delta P_{\rm mf}$ may also be written as

$$\Delta P_{\rm mf} = R_{\rm mf} (1 - \epsilon_{\rm mf}) (\rho_{\rm p} - \rho_{\rm f}) \tag{3}$$

Experimental values for the minimum fluidization mass velocity, G_{mf} , were obtained from the pressure drop versus fluid mass velocity plots. Representative plots of G_{mf} as a function of static bed height, particle size, particle density and cone angle are given in Figs. 1 - 4, respectively. The linear fluid velocity corresponding to the minimum fluidization condition, V_{0mf} , was calculated from G_{mf} and the fluid density.

Fig 3 Prediction of G_{mf} from a $\Delta p-G$ plot (particle density effect) Bed material \bigcirc , mustard seed, \triangle , glass beads, \bullet , sago Cone angle = 10° for each case

TABLE 2

Comparison of minimum fluidization velocity in conical vessels

TABLE 2 (continued)

Run No	h _s (cm)		$V_{0, exp}$ (cm s ⁻¹)	Deviation (%)
Cone	$angle = 10^{\circ}$			
$d_{\mathbf{p}}$	= 1.0 mm			
1	92	52 92	54 25	245
2	10.7	$55\ 12$	69 00	$-20\ 12$
3	130	5855	71 61	$-18\ 24$
4	154	$62 \ 47$	75 95	-1775
d_{p}	= 1 5 mm			
5	92	97 44	$91\ 14$	6 91
6	107	$101 \ 38$	97 65	382
7	130	107 56	99 82	720
8	$15\ 4$	114 06	108 5	$5\ 12$
d_{p}	= 2 0 mm			
9	92	145 81	123 69	$17\ 88$
10	107	$151\ 64$	$128\ 03$	$18\ 44$
11	130	$160 \ 97$	138 88	15 91
12	$15\ 4$	$169\ 48$	160 58	554
$d_{\mathbf{p}}$	= 2 5 mm			
13	92	$177\ 83$	14953	18 93
14	107	185 60	$154 \ 07$	$20 \ 46$
15	130	$196 \ 21$	180 11	8 94
16	$15\ 4$	207 55	199.64	3 96
d_{p}	= 3 0 mm			
17	92	219 60	$156\ 24$	40 55
18	107	228 60	167 09	36 81
19	130	241 60	$195 \ 30$	$23 \ 71$
20	$15\ 4$	255 69	199 64	28 08
Cone	angle = 30°			
d_{p}	= 1 0 mm			
21	92	5209	567	-813
22	107	57 35	60 48	-5.18
23	130	63 25	63 31	-0 09
24	154	69 46	68 04	2 09
d_n	= 1 5 mm			
25	92	92 59	85 05	8 87
26	107	100 23	94 50	6 06
27	130	109 64	103 95	547
28	$15\ 4$	120 11	113 40	5 92
$d_{\mathbf{p}}$	= 2 0 mm			
29 [~]	92	1381	120 96	$11 \ 45$
30	107	144 46	130 41	10 77
31	130	157 59	149 31	5 55
32	$15\ 4$	171 13	160 65	6 52
d_{p}	= 2 5 mm			
33 ົ	92	$154 \ 33$	141 75	8 87
34	107	164 47	166 32	-1 11
<u>~</u> -	130	179 41	181 44	-112
35	15 /	194 36	193 73	0.33
35 36	104	10100		
35 36 d_	= 30 mm	101 00		
35 36 d _p 37	= 30 mm 9 2	176 90	171 99	2 85

(continued)

Run No	h _s (cm)	$V_{0, cal} (cm s^{-1})$	$V_{0, exp}$ (cm s ⁻¹)	Deviation (%)
39	130	206 40	193 73	6 54
40	104	222 11	226 80	-178
Cone d _n	angle = 45° = 1 0 mm			
41 p	92	52 77	56 70	-6 93
42	107	58 05	66 15	-12 24
43	130	66 34	70 87	-6 39
44	$15\ 4$	71 68	102 0	- 29 73
d_{p}	= 1 5 mm		10100	00.07
45	92	71 53	104 88	-3207
40	107	81 37	1140	-28 45
48	15.4	96.88	159 6	-3930
	- 20 mm	0000	100 0	0000
49 ap	- 20 mm	127.6	129.96	-1.82
50	107	133 33	145 92	-8 63
51	130	151 96	171 00	-1113
52	$15\ 4$	165 91	18 9 96	-11 26
$d_{\mathbf{p}}$	= 2 5 mm			
53 [°]	92	171 90	$171\ 00$	0 53
54	107	184 75	200 64	-792
55	130	211 43	239 40	-1168
56	154	218 58	262 22	-16 64
d_{p}	= 30 mm			
57	92	196 02	207 48	-5 53
58 50	107	210 63	228 00	-7.62 -7.34
60	$150 \\ 154$	251 73	296 40	-1539
Cone	angle = 60°			
$d_{ m p}$	= 1 0 mm			
61	92	43 07	67 29	-35 99
62	107	47 18	71 24	-3377
63	130	53 11 50 12	79 16	-3291
	104	5515	J4 JJ	51 10
dp 65	= 15 mm	76 51	93.0	
66	107	82 71	112.0	
67	130	92 47	130 0	-2887
68	$15\ 4$	101 83	134 0	$-24\ 43$
$d_{\mathbf{n}}$	= 2 0 mm			
69 P	92	103 05	$112 \ 0$	-799
70	107	110 90	138 5	-1993
71	130	$123\ 08$	$148 \ 4$	-1706
72	$15\ 4$	135 10	186 0	-27 37
d_{p}	= 2 5 mm			
73	92	$125\ 14$	152 38	-1788
14	10/	104 95	102 28	-1734 -171^{2}
76	154	162 97	197 92	-17.65
~	= 3.0 mm			2.00
77 ^{<i>u</i>p}	- 3 0 mm	175 52	217 00	-1912
78	107	188 88	227 59	-1701
79	130	208 47	257 27	-1897
00	154	226 71	296 85	-2363

Fig 4 Prediction of $G_{\rm mf}$ from a $\Delta p-G$ plot (cone angle effect) Cone angle $\circ, 10^{\circ}, \triangle, 30^{\circ}, \bullet, 45^{\circ}, \blacktriangle, 60^{\circ}$

RESULTS AND DISCUSSION

Values of the minimum fluidization velocity calculated with the help of eqns. (2) and (3) were compared with the experimental values for a number of cases. The deviations lie within $\pm 25\%$ for most of the cases (Table 2). The mean and standard deviation calculated for about 80 experimental points were found to be 14.20% and 21.52%, respectively.

CONCLUSION

The equation developed here can be used for the prediction of the minimum fluidization velocity of spherical particles of different sizes in cones of varying angles, with air as the fluid medium. The equation has also been tested for a few other spherical particles, such as sago ($\rho_p = 1.30 \text{ kg m}^{-3}$, $d_p = 1.5 \text{ mm}$) and mustard seeds ($\rho_p = 1.10 \text{ kg m}^{-3}$, $d_p = 1.5 \text{ mm}$); it was found that the calculated values agree fairly well with the experimental minimum fluidization velocity values.

ACKNOWLEDGMENT

The authors are grateful to the Government of India, Ministry of Education and Social Welfare, for providing the funds necessary to carry out the above investigations

REFERENCES

- 1 T C Kolomi and E J Farkas, Can J Chem Eng, 51 (Aug) (1973) 499
- 2 M Leva, Fluidization, McGraw-Hill, New York, 1959
- 3 F A Zenz and D F Othmer, Fluidization and Fluid-Particle Systems, Reinhold, New York, 1960
- 4 J F Davidson and D Harrison, Fluidized Particles, Cambridge University Press, New York, 1963
- 5 D Kunn and O Levenspiel, Fluidization Engineering, Wiley, New York, 1969.
- 6 A P Baskakov and L G Gelperin, Ing Fiz Zh, 9 (1965) 217
- 7 J S N Murthy, A Suryanarayana, P Rath and K J Sarma, Indian Chem Eng, 23 (1981) 44
- 8 A Suryanarayana, J S N Murthy and K J R Sarma, J Inst Eng (India), 63 (1982) 1
- 9 Y Chandra, Ph D Dissertation, University of Roorkee, 1978
- 10 K C Biswal, S Sahu and G K Roy, Chem. Eng J, 23 (1982) 97
- 11 K C Biswal, B B Samal and G K Roy, J Inst Eng (India), (1985) in press
- 12 K C Biswal, T Bhowmik and G K Roy, Chem Eng J, 29 (1984) 47
- 13 K C Biswal and G K Roy, Paper presented at the Annual Meeting of the Chem Eng Div, Inst Eng (India), Calcutta, December 1984
- 14 S Ergun, Chem Eng Prog, 48 (1952) 89

APPENDIX A NOMENCLATURE

- D diameter of cone at any bed height (cm)
- D_0 diameter of cone at entrance of bed (cm)
- $d_{\rm p}$ particle diameter (mm)
- g_c Newton's constant (kg m kgf⁻¹ h⁻²)
- $h_{\rm s}$ static bed height (cm)
- G mass velocity of fluid (kg m⁻² h⁻¹)
- $G_{\rm mf}$ mass velocity of fluid for minimum fluidization conditions (kg m⁻² h⁻¹)
- $\Delta P_{\rm c}$ calculated value of bed pressure drop (kgf m⁻²)
- ΔP_{mf} bed pressure drop for minimum fluidization conditions (kgf m⁻²)
- R radial distance from apex of cone to terminal point (m)
- R_0 radial distance from apex of cone to bottom of bed (m)
- R_{mf} radial distance from apex of cone to terminal point corresponding to minimum fluidization conditions (m)

 V_0 linear velocity of fluid (cm s⁻¹) $V_{0 \text{ mf}}$ linear velocity of fluid for minimum fluidization conditions (cm s⁻¹)

Greek symbols

apex angle of cone α

- porosity at minimum fluidiza- $\epsilon_{\rm mf}$ tion condition
- porosity of packed bed ϵ_{pa}
- viscosity of fluid (kg m⁻¹ h⁻¹) density of fluid (kg m⁻³) density of particle (kg m⁻³) μ
- $ho_{
 m f}$
- ho_{p}