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Abstract: The aim in this paper is to design a sliding 
mode speed and flux controller in order to make the 
system robust to external disturbances, noise, and 
unmodeled dynamics. The transient response of the 
system is also improved. The sliding mode control 
technique is justified for its robust nonlinear control to 
model uncertainty. Simulation results under load 
disturbances, parameter variations are obtained to verify 
the consistency of the SMC over PI controller. 
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1. INTRODUCTION 

 Induction machine is widely used in industries 
due to its low cost and reliability. It is a high order 
nonlinear system and coupling exists between the control 
variables. Also, from the practical point of view, the 
machine parameters may vary with temperature. The aim 
here is to make the speed and flux control robust to 
parameter variations by the use of a sliding mode 
controller which is an advantage over a PI controller. In 
case of a PI controller, the variation of motor parameters 
(such as stator and rotor résistance) degrades the 
performance of the controller and the machine becomes 
unstable. 

 Here, a 5HP induction motor is simulated with a 
sliding mode speed and flux controller and its responses 
are compared with that of a PI- controller. The PI 
controllers are commonly used, but the problem 
associated with it is the gains are subjected to continuous 
adjustment due to the noise and external perturbations. 
Also, due to sudden change in load and reference speed, 
the transient performance of the IM is not so admirable 

and there is a dip in the actual rotor speed and torque. 
Whereas, by designing the sliding mode controller for the 
same vector controlled induction machine, we observed 
better transient response in the performance of the IM. By 
taking parameter variations such as change in the rotor and 
stator resistances with temperature (up to 50% variation), 
load disturbance and speed variation up to 50%, with SMC, 
we get desired response. Hence, the robustness is verified.  

2. INDUCTION MOTOR MODELLING 

  

 

  

 

          (1) 

 The induction motor is modeled taking a rotor flux 
oriented synchronously rotating reference frame with stator 
current and rotor flux as the state-space variables. 

3. FIELD ORIENTED INDUCTION MOTOR    DRIVE 

Vector or field oriented induction motor is achieved 
with a synchronously rotating reference frame (d-q) by 
aligning the flux component of stator current along the rotor 
flux and making the torque component of stator current 

perpendicular to it such that 0qrψ = and dr rψ ψ= . 

The electromagnetic torque is given by; 
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The decoupling of torque and flux is verified by this 
vector control technique. This technique is simulated 
using both PI and sliding mode controller.   

4. SMC DESIGN PRINCIPLE 

A time varying surface S(t) is defined in the 
state space by the scalar equation S(x, t) = 0. 

Where 
.
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λ = positive constant that determines the bandwidth of 
the system.  
The sliding condition is; 
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η = positive constant that determines the degree to 

which the system state is attracted to the switching line. 
The control law for the sliding mode speed and flux 
control is derived and the gains of the controller are 
designed according to the control law. To reduce the 
chattering, a boundary layer of definite width on both 
sides of the switching line is introduced such as ; 
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Where φ  = width of the boundary layer on either side 

of the switching line.  

 Fig. 1: Sliding Mode Speed and Flux Control of Vector 
Controlled Induction machine 
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Fig. 2: Reference rotor speed trajectory Vs time 
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 Fig. 3: Load Torque trajectory Vs time 
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      Fig. 4:d-axis controlled stator volatge with SMC 
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Fig. 5: q-axis controlled stator voltage with SMC 
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Fig. 6: d-axis controlled stator volatge with PI controller 
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Fig. 7: q-axis controlled stator volatge with PI 
controller 
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Fig. 8: Actual rotor peed Vs time with PI controller 
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Fig. 9: Actual rotor speed Vs time with SMC  
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Fig. 10: Error in speed Vs time with SMC  
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Fig. 11: Error in rotor flux Vs time with SMC  
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Fig. 12: Direct axis rotor flux Vs quadrature axis rotor 
flux  
with 

SMC 

 

Fig. 13: 
Direct 

axis rotor 
flux Vs 
quadratu

re axis 
rotor flux  with PI controller 
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Fig. 14: Electromagnetic Torque Vs time with PI 
controller 
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Fig. 15: Electromagnetic Torque Vs time with SMC  

TABLE - 1  

RATINGS and PARAMETERS OF THE INDUCTION 
MOTOR 

Three phase, 50Hz, 5hp, 415volts, 1500RPM 

Stator and Rotor Resistances: Rs = 7.34Ω, Rr = 5.46Ω 

Stator and Rotor self inductances: Ls = Lr = 0.521H  

Mutual inductance between stator and rotor:Lm=0.5H 

Moment of inertia: J = 0.16kg . m2 

Coefficient of viscous friction: B = 0.035N. m .s/rad 

5. ADVANTAGES OF SMC OVER PI 
CONTROLLER 

 In this scheme, with sliding mode speed and 
flux control, the machine parameters Rs and Rr are 
varied with temperature and the above responses were 
taken from which the system robustness is verified as the 
transient responses are smooth and better as compared to 
that of PI controller. Also with a step change in speed 
and load command, there is no change in actual rotor 
speed.With PI controller, the above responses were 
obtained with the variation of Rr. By varying Rs, it is 
observed that the system is getting unstable and it 

requires to reset the gain values of PI controller. The d- and 
q-axis controlled voltages are more accurate in case of SMC 
than that of PI controller. Also, with a step change in speed 
and load, the motor speed changes.The speed and flux error 
in SMC are very small, whereas for the PI controller it is 
larger than SMC. 
 

6. CONCLUSION 
 The simulation is done by MATLAB M-file and 
from the result it is concluded that sliding mode control 
offers a robust control of field oriented induction motor drive 
as compared to that of PI controller.The induction motor is 
subjected to change in rotor and stator resistancec with 
temperature and the torque, speed and flux responses were 
observed.The transient behaviour of sliding mode control, 
such as change in speed, load torque shows better results 
than that of PI controller.Thus, the system is made robust to 
external disturbances, noise and unmodelled dynamics by the 
nonlinear controller such as sliding mode speed and flux 
control. 
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