Rewetting of an infinite tube with a uniform heating
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Abstract The two-dimensional quasi-steady conduction
equation governing conduction controlled rewetting of an
infinite tube, with outer surface flooded and the inside
surface subjected to a constant heat flux, has been solved
by Wiener-Hopf technique. The solution yields the
quench front temperature as a function of various model
parameters such as Peclet number, Biot number and di-
mensionless heat flux. Also, the dryout heat flux is ob-
tained by setting the Peclet number equal to zero, which
gives the maximum sustainable heat flux to prevent the
dryout of the coolant.

List of symbols

B Biot number

C specific heat

h heat transfer coefficient

k thermal conductivity

L length of the tube

Pe  Peclet number

q heat flux

Q dimensionless heat flux

s half of the Peclet number
t time

T temperature

u quench front velocity

R,Z physical coordinates

7,z coordinates in quasi-steady state
r,z dimensionless coordinates in quasi-steady state
Greek

0 radius ratio

0 dimensionless temperature
p density

Subscripts

0 quench front

1 wet region

2 dry region

s saturation

w  wall condition
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Introduction

The process of quenching of hot surfaces is of practical
importance in nuclear and metallurgical industries. For
instance, in the event of a postulated loss-of-coolant ac-
cident (LOCA) in water cooled reactors, the clad surface of
the fuel elements may reach very high temperature be-
cause the residual core heat cannot be removed adequately
by the surrounding steam. In order to bring the reactor to
a cooled shutdown condition, an emergency core cooling
system is activated to reflood the core. However, the
injected coolant does not immediately wet the cladding
surface because a stable vapor blanket will prevent the
liquid-solid contact. The maximum surface temperature
when the coolant establishes contact with the hot surface is
the rewetting or quench front temperature. When the clad
surface is below the quench front temperature, rewetting
occurs. Also, quenching phenomenon is of considerable
practical interest in many other engineering applications,
such as start-up of LNG pipe lines, filling of cryogenic
vessels at room temperature, drying out of evaporator
tubes and heat treatment of various materials.

During the cooling process, a local wet patch is in-
stantaneously formed which eventually develops into a
steadily moving quench front. As the quench front moves
along the hot solid, two regions can be identified: a dry
region ahead of the quench front and a wet region behind
the quench front. In conduction-controlled rewetting
analysis, it is believed that conduction of heat in the solid
from dry region to wet region is the dominant mechanism
of heat removal, which results in a lowering of the surface
temperature immediately downstream of the quench front
and causes the quench front to progress further. The up-
stream end of the solid is cooled by convection to the
contacting liquid, while its downstream end is cooled by
heat transfer to a mixture of vapor and entrained liquid
droplets, called precursory cooling.

The two-dimensional rewetting model for two-region
heat transfer with a step change in heat transfer coefficient
at the quench front has been solved for a single slab
(Levine 1982; Olek 1988; Tien and Yao 1975) and for a
composite slab (Olek 1994). Rewetting models in the cy-
lindrical geometry have been solved for a solid rod (Evans
1984), for a tube with an insulated core (Chakrabarti 1986)
and for a composite tube (Olek 1989). In the single slab/
tube model the unwetted region is considered to be adia-
batic, whereas in case of a composite slab/tube a three-
layer composite is considered to simulate the fuel and the
cladding separated by a gas-filled gap between them. The
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solution methods commonly employed are Wiener-Hopf
technique. The two-dimensional rewetting model for a
single slab with a uniform heat flux and precursory cooling
has been solved by an approximate integral method (Yao
1977). The one-dimensional rewetting model with a uni-
form heat flux has been solved for a smooth plate (Peng
and Peterson 1992) and for both smooth and grooved
plates (Chan and Zhang 1994), considering the dry region
to be adiabatic.

The analysis of rewetting of a hot surface with a spe-
cified boundary heat flux and the dryout induced by this
heat flux is of specific interest while considering the decay
heating of a nuclear fuel (Yao 1977) or in the design of heat
pipes for thermal radiators (Peng and Peterson 1992; Chan
and Zhang 1994). Chan and Zhang (1994) observed that
the existence of heat flux on the wall poses an unsteady
state solution for the heat conduction equation, even after
the equation is transformed to the Lagrangian coordinate
moving with the quench front. In this respect, they also
considered the rewetting velocity as well as the plate
temperature (at far ahead of the quench front) to be time
variant. In the present paper, however, precursory cooling
in the dry region has been included in the boundary
condition in order to consider the quasi-steady state
conduction equation, as described in the text. Further,
reported literature on analytical investigations indicates
that Wiener-Hopf solution for the rewetting model with a
boundary heat flux does not exist. In the present analysis,
Wiener-Hopf technique has been employed because of its
accuracy and computational simplicity. Besides, the sin-
gularity arising due to the discontinuous boundary con-
ditions (as in the case of a quenching problem) can be
readily resolved by the Wiener-Hopf technique.

In the present study, the physical model consists of an
infinitely extended vertical tube with outer surface flooded
and the inner surface subjected to a uniform heat flux. The
model assumes constant but different heat transfer coef-
ficients for the wet and dry regions on the flooded side.
The two-dimensional quasi-steady conduction equation
governing the conduction-controlled rewetting of the in-
finite-tube has been solved by the Wiener-Hopf technique.

The present solution involves the exact decomposition of
the kernel function, in order that the solution may be valid
for the entire range of the parameters used in the model.
The solution is shown to be easily reduced to the cases of
solid cylinder and tube with an insulated inner core and,
thus, its correctness is checked. Numerical results for the
quench front temperature are depicted in the graphical
form for a wide range of model parameters.
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Mathematical model

The two-dimensional transient heat conduction equation
for the tube is
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where L is the length of the tube and R;, R, are inner and
outer radius of the tube. The density, specific heat and
thermal conductivity of the tube material are p, C and k
respectively. The origin of the coordinate frame is at the
bottom point on the axis of the tube. To convert this
transient equation into a quasi-steady state equation, the
following transformation is used.
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where u is the constant quench front velocity and 7 and z
are radial and axial coordinates respectively (Fig. 1a).
Thus the transformed heat conduction equation for a
frame of reference (7,z) moving with the quench front at
this velocity is
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In conduction-controlled rewetting analysis the effect of
coolant mass flux, coolant inlet subcooling and its pres-
sure gradient etc. are not considered explicitly, but only
implicitly in terms of wet region heat transfer coefficient,
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Fig. 1. (a) Physical domain of infinite tube, (b) com-
mon strip of analyticity in the complex Fourier plane



which is incorporated in the boundary condition. In the
present study, the heat transfer coefficient h; is assumed to
be constant over the entire wet region. The coolant tem-
perature is taken to be equal to its saturation temperature
Ts. On the dry side of the tube, the wall is cooled by the
surrounding vapor. This cooling effect is very small as
compared to that of wet region and is usually neglected in
many rewetting models. However, this small cooling me-
chanism is very significant and essential in the rewetting
analysis with boundary heat flux and cannot be neglected.
The heat transfer coefficient accounting for both con-
vective and radiative cooling effects on the dry side is
assumed equal to h,, a constant, which is smaller than h;.
The temperature of the surrounding vapor is assumed
equal to T, which can be interpreted as the initial tem-
perature of the tube without a heating. The rewetting
(quench front) temperature is denoted by Tj.

The far-field boundary conditions may be derived with
the assumption that the temperature field is sufficiently
flat in the axial direction at infinity (Yao 1977). Therefore,
the first and second derivatives of temperature in z-di-
rection (i.e. 0T/0z and 0°T/0z%) may be neglected at in-
finity (Z — £00). The above two assumptions are
adequate to prescribe the temperature at infinity. The
corresponding boundary conditions then become

R, qR,, (R
T= Ts+hilR—l+% n<f> at z — —oo

r
R, 4qR, . (R .
T:Tw+h%R—:+% n(f) at z — +00

It may be verified that for no heat flux condition with
adiabatic dryside (by setting g = 0, h, = 0 and g/h, = 0),
the boundary conditions in Eq. (3) reduces to that of
conventional two-region model (Chakrabarti 1986; Olek
1989). The boundary conditions in Eq. (3) suggest that
precursory cooling in the dry region cannot be neglected
in case the tube wall is subjected to a heat flux. Equation
(2) can be expressed in the following dimensionless form.

(3)
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where 0 is the radius ratio. The associated boundary
conditions are
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The non-dimensional variables used above are
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Estimation of quench front temperature is important in
predicting the rate at which the coolant quenches the hot
surface. The main objective of the present analysis is to
obtain the quench front temperature 0, in terms of wetside
Biot number B,, dryside Biot number B,, Peclet number
Pe, dimensionless heat flux Q and radius ratio 6.
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Analytical solution

In order to employ the Wiener-Hopf technique, Eq. (4) is
first transformed with a new dependent variable ¢, defined
by 0(r,z) =1+ (Q4/B;) — Qdlnr — ¢(r,z)e™%, in which
s = Pe/2. The governing equation (Eq. (4)) then becomes
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The boundary conditions in Eq. (5) can be written se-

quentially as

Gl

0<r<l —oo<z< o

— =0 atr=90 —-c0<z<

or

0 1 1

— +B;p =B, |1 of———1]|e¥ atr=12z<0
7 4 B [ +Q<B2 B)]

Op

—+B,p=0 atr=12z>0

or

= [14+Qd LI | R tz— —o0
] Bz B] € at Z

=0 at z— 400
0
(p:q00:1+Q——90 atr=12z=0
B,

(7)

3.1

Fourier transform

In the next step of the analysis, Fourier transform is used
to convert the partial differential equation (Eq. (6)) to an
ordinary differential equation. The Fourier transform is

defined by

O(o,r) = DOy (o, 1) + D_(o,7) = / o(r,z)e* dz

(8)

with @ (o, 1) = [°__ @(r,2)e* dz,

@, (o, 7) = J;° @(r,z)e**dz. The parameter o used above is



a complex quantity. The far-field boundary conditions in
Eq. (7) indicate that ¢(r,z) is of the order e** at z — —o0,
whereas ¢(r,z) is of the order e™** at z — +o00. The above
two conditions ensure that the functions @ (o, r), ®_ (o, 1)
are analytic in the domains D, and D_ respectively
(Roos 1969, p. 78). The domains D, and D_ are defined
(Fig. 1(b)) in the entire complex domain as:

D;:Im(o) > —s, D_ : Im(a) < +s. Applying the Fourier
transform, Eq. (6) assumes the form
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where prime denotes the transform of r-derivatives of
¢(r,z). The general solution of the second order ordinary
differential equation (Eq. (9)) is

O(a,r) = Ci(o)Io(yr) + Co(a)Ko(yr) (11)

where I, K, are zero-order modified Bessel functions of
first and second kinds respectively. Imposing the bound-
ary conditions of Eq. (10) into Eq. (11) yields
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3.2

Wiener-Hopf technique

The key step in successful execution of the Wiener-Hopf
technique depends on the factorization of a function,
which is analytic in a strip, into the product of two func-
tions that are analytic in the overlapping half-planes. In
this context, let

L+ B/(yf (7))
=T B (1) (13)

where the functions K, (o), K_ (o) are analytic in the domains
D, and D_ respectively. Now the kernel function K(«), in
connection with Eq. (12), is to be decomposed to K () and
K_ (o) in accordance with the Wiener-Hopf technique. This
is accomplished by rearranging Eq. (12) to obtain

K(2) = K. (9)K_ (%)
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In Eq. (14), each side characterizes the same ‘entire
function’, through its representation in the upper and
lower halves of the a-plane. Since @, (2,1) and ®_(x,1)
tend to zero at infinity in their half-planes of analyticity,
while K («) and K_ (o) remain bounded, it follows that the
entire function vanishes according to Liouville’s theorem
(Roos 1969, p. 27). Hence, equating both sides of the

Eq. (14) to zero, @, (o, 1) and ®_(a, 1) are determined as
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Quench front temperature

Using the above expressions of @ (a,1) and ®_(«, 1),
quench front temperature may be obtained by inverting
the Fourier transform (Eq. (8)). Such an attempt may
become tedious because, in order to perform the Fourier
inversion, it would be necessary to evaluate the residues of
the function ®(o, 1) in the complex domain. In the present
paper, alternatively, 0, has been calculated in a simple way
(Levine 1982) as follows.

®, (o, 1) :/q)(l,z)emdz
0
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In the limit o — oo, the second integral appearing in
Eq. (16) vanishes since the quantity ¢ /0z is bounded
(Levine 1982). Then, from Eqgs. (15)-(16) and assuming
that K. () approaches unity as & — oo (the assumption
will be proved later), we obtain

p(1,0) = lim [~io, (5, 1)
B,
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The quench front temperature then becomes
0o =1+ Q5/B, — ¢(1,0)

R e B; B,
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The function K. (is) appearing in Eq. (18) is then derived
by decomposing K(«), for which the ‘contour integral

(17)
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approach’ has been adopted in the present case. On
applying the Cauchy residue theorem within the strip, the
function In K(o) can be represented by the following
contour integral.
InK(x) =InK, () +InK_(x)

1 InK (&) d 1
- 2mi
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 2ri E—ua d¢
c
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where C,/C_ is an infinite contour lying inside the strip
and passing below/above the point o (Fig. 1b). It may be
noted that, due to the asymptotic nature of In K(«) func-
tion (the order of In K(«) being 1/x), the contribution of
vertical sides of the contour to the integral vanishes at
Re(a) — to00. Equation (19) can be precisely written as

1 InK(¢)
-4 e~
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from which it follows that Ky (x) =1 as o — o0, as as-
sumed earlier. In order to evaluate the function K (is), the
contour C; may be shifted to the real axis to yield
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Further, due to the even property of the function In K(¢),
Eq. (21) thereby reduces to

(22)

For computational purposes it is advantageous to trans-
form &, by & = stan (), to finally obtain the quench front
temperature
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/
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f(Q)

where I,, K, denote the modified Bessel functions of the
first and second kinds respectively. It is of interest to ex-
amine the limiting solution of the above equation for the
case that has been obtained by other investigators, namely,
the rewetting of an infinite tube without any heating or
precursory cooling. By assigning Q = 0,B, = 0 and

Q/B; = 0 in Eq. (23), the expression for 0, reduces to
exactly the same as that of Chakrabarti (1986) and Olek
(1989) which, in turn, substantiates the present solution.
Moreover, the present model simulates the rewetting of a
solid rod with an adiabatic dryside (by assigning Q = 0,
B, =0, Q/B, = 0 and 6 = 0), that results in

/2

B 1 B; Ih(ssecQ)
o = exp n/ ln{1+ssechl(ssecQ) do

(24)

which is the same expression as obtained by Evans (1984).

3.4

Critical heat flux

The quench front temperature at the critical (dryout) heat
flux has been deduced by specifying s = 0 in Eq. (23).
Thus, K, (is) simplifies to

/2

K, (is) = exp %/ In(B;/B,)dQ| =

0

B,

B,

The quench front temperature at the critical heat flux is
finally obtained as

__® VB (25)
VBB,  v/Bi +vB;

The heat flux Q appearing in Eq. (25) may be regarded as

the critical heat flux Q, which represents the maximum

allowable boundary heat flux so as to prevent the dryout of
the coolant.

0o

4
Results and discussion
Reported literature on experimental investigations on
quenching (Barnea et al. 1994) reveals the existence of four
distinct heat transfer regimes along the wall, the regimes
being demarcated by the characteristic hot surface tem-
perature. These four zones are: forced convection of sub-
cooled liquid, nucleate boiling, wet and dry transition
boiling and film boiling. Quench front is observed to exist
in the transition zone. The heat transfer coefficient in the
transition zone is shown to be in the order of 10°-
10® W/m? K and the vapor cooling heat transfer coefficient
in the film boiling zone is in the order of 10> W/m* K.
Hence, in the present analysis the values of B, are set equal
to 107°B,. Numerical values of the quench front tem-
perature are obtained from the expressions in Egs. (23)-
(25), for a practical range of model parameters By, B,, Pe
and Q. For this purpose, the integrals appearing in
Eqgs. (23) and (24) have been numerically calculated by
Simpson’s 1/3 rule with 101 equally spaced base points.
The dependence of quench front temperature on Biot
number and dimensionless heat flux is shown in Fig. 2,
where 0, decreases with increase in Biot number for a
given Pe and Q. With fixed material properties and di-
mensions, Peclet number and Biot number represent the
quench front velocity and the heat transfer coefficient re-
spectively. Thus, a higher Biot number results in a higher
heat transfer coefficient. This enhanced heat transfer
coefficient may cause to decrease 6. Further, for a fixed
Peclet number, 0, increases with increase in Q. Apparently,
a higher heat flux causes more heat transfer to the tube
and hence this would increase 0,. The above trends are in



obvious accord with the predictions based on physical
ground. Quench front temperature decreases as the Biot
number increases, reflecting the fact that a quench front
progresses more easily when the heat transfer to the
coolant is increased. On a similar ground, conversely, one
would conclude that an increasing Q has the opposite
effect on the quench front velocity.
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The variation of quench front temperature with di-
mensionless heat flux and Peclet number is shown in
Fig. 3, for a fixed value of Biot number. Here 0, is found
to increase with increase in Peclet number (quench front
velocity). This may be due to the fact that a higher re-
lative velocity between the tube and the coolant allows
less time for sufficient heat transfer to take place, re-
sulting in a higher value of ). The above trend also
reflects the fact that, for the same rewetting rate and the
physical dimension, an increasing solid thermal diffu-
sivity tends to reduce 0,. Figure 4 shows the dependence
of quench front temperature with the radius ratio 6 and
Biot number, for fixed values of Pe and Q. In this case 0,
increases with increase in J. Evidently, due to the pre-
sence of the heat flux on the tube wall, an increase in o
results in an increase in the far-field temperatures which
may cause to increase 0p. Further, an increase in the
value of 0 means the thickness of the tube decreases and
thereby its thermal resistance also decreases. Thus the
quench front temperature would increase with increase
in 6.

The dependence of quench front temperature on Biot
number and dimensionless heat flux is shown in Fig. 5,
with Pe = 0. The physical meaning of Pe = 0 is that the
quench front ceases to move when Q approaches its critical
value. In this case, the surface can no longer be wetted. For
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Q > Q> the quench front will reverse its direction and the
wetted surface will be dried. This is the case that the tube
will be heated by a heat flux that exceeds the maximum
heat removal capacity by convection and boiling and, thus,
dryout would occur. Finally, the model is reduced to the
conventional model of a tube without any heating or
precursory cooling (by setting Q =0, B, = 0 and
Q/B; = 0) and illustrated in Fig. 6. Moreover, the present
model is reduced to the rewetting of a solid rod with an
adiabatic dryside by setting 6 = 0 and illustrated in Fig. 7.
As expected, in both the cases 0y increases with increase in
Peclet number and with decrease in Biot number.

The boundary conditions in the present formulation
require liquid/vapor temperatures and liquid/vapor heat
transfer coefficients as input parameters, these limitations

being inherent in a conduction-controlled rewetting
model. The arbitrariness of the choice of their values may
be eliminated if a conjugate heat transfer model is con-
sidered, where the energy equations of solid, liquid and
vapor regions need to be solved simultaneously.

References

Barnea Y; Elias E; Shai I (1994) Flow and heat transfer regimes
during quenching of hot surfaces. Int ] Heat Mass Transfer
37: 1441-1453

Chakrabarti A (1986) The sputtering temperature of a cooling
cylindrical rod with an insulated core. Appl Scientific Res 43:
107-113

Chan SH; Zhang W (1994) Rewetting theory and the dryout heat
flux of smooth and grooved plates with a uniform heating.
ASME ] Heat Transfer 116: 173-179

Evans DV (1984) A note on the cooling of a cylinder entering a
fluid. IMA ] Appl Math 33: 49-54

Levine H (1982) On a mixed boundary value problem of diffusion
type. Appl Scientific Res 39: 261-276

Olek S (1988) On the two-region rewetting model with a step
change in the heat transfer coefficient. Nuclear Engng Design
108: 315-322

Olek S (1989) Solution to a fuel-and-cladding rewetting model.
Int Comm Heat Mass Transfer 16: 143-158

Olek S (1994) Quenching of a composite slab. Int Comm Heat
Mass Transfer 21: 333-344

Peng XF; Peterson GP (1992) Analysis of rewetting for surface
tension induced flow. ASME ] Heat Transfer 114: 703-707

Roos BD (1969) Analytical Functions and Distributions in Physics
and Engineering. John Wiley & Sons, New York

Tien CL; Yao LS (1975) Analysis of conduction controlled re-
wetting of a vertical surface. ASME ] Heat Transfer 97: 161-
165

Yao LS (1977) Rewetting of a vertical surface with internal heat
generation. AIChE Symposium Series 73: 46-50





