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Abstract A numerical study has been made to investigate the effect of internal heating and
precursory cooling during quenching of an infinite tube. The finite difference solution gives the
quench front temperature as a function of various model parameters such as Peclet number, Biot
number and dimensionless heat flux. The parametric dependence of the rewetting rate is obtained
by the condition that the surface can only be wetted when its temperature is below the quench
front temperature. Also, the critical heat flux is obtained by setting Peclet number equal to zero,
which gives the minimum heat flux required to prevent the hot surface being rewetted. The
numerical model is validated by comparing the results with known closed form solutions.

Nomenclature
B = Biot number
C = specific heat
h = heat transfer coefficient
k = thermal conductivity
L = length of the tube
Pe = Peclet number
q = heat flux
Q = dimensionless heat flux
R, Z = dimensionless coordinates in quasi-

steady state
r, z = physical coordinates
r; z = coordinates in quasi-steady

state
t = time
T = temperature

u = quench front velocity

Greek
� = stretching parameter
� = radius ratio
� = dimensionless temperature
� = density
�; � = coordinates after infinite-finite

transformation
Subscripts
0 = quench front
1 = wet side
2 = dry side
s = saturation
w = wall condition

Introduction
The process of quenching of hot surfaces is of practical importance in the
nuclear and metallurgical industries. For instance, in the event of a postulated
loss-of-coolant accident (LOCA) in water cooled reactors, the clad surface of the
fuel elements may reach a very high temperature because the stored energy in
the fuel cannot be removed adequately by the surrounding steam. In order to
bring the reactor to a cooled shutdown condition, an emergency core cooling
system is activated to reflood the core. However, the injected coolant does not
immediately wet the cladding surface because a stable vapor blanket will
prevent the liquid-solid contact. Rewetting is the re-establishment of liquid
contact with a hot solid surface whose initial temperature is higher than the
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rewetting temperature, the maximal one for which the surface may wet. Surface
rewetting is essential for effective heat removal. Also, the quenching
phenomenon is of considerable practical interest in many other engineering
applications, such as start-up of LNG pipe lines, filling of cryogenic vessels at
room temperature, drying-out of evaporator tubes and heat treatment of
various materials.

During the cooling process, a local wet patch is instantaneously formed,
which eventually develops into a steadily moving quench front. As the quench
front moves along the hot solid, two regions can be identified: a dry region
ahead of the quench front and a wet region behind the quench front. In
conduction-controlled rewetting analysis, it is believed that conduction of heat
along the solid from dry region to wet region is the dominant mechanism of
heat removal, which results in a lowering of the surface temperature
immediately downstream of the quench front and causes the quench front to
progress further. The upstream end of the solid is cooled by convection to the
contacting liquid, while its downstream end is cooled by heat transfer to the
mixture of vapor and entrained liquid droplets, called precursory cooling.

The two-dimensional rewetting model for two-region heat transfer with a
step change in heat transfer coefficient at the quench front has been solved for a
single slab (Olek, 1988) or for a composite slab (Olek, 1994). In the single slab
model the dry region is considered to be adiabatic, whereas in the case of a
composite slab a three-layer composite is considered to simulate the fuel and
the cladding separated by a gas filled gap between them. Rewetting analyses in
the cylindrical geometry have been carried out for a solid rod (Evans, 1984) or
for a tube with an insulated core (Chakrabarti, 1986). The fuel-and-cladding
model with adiabatic dry side has been solved in the composite axisymmetric
geometry by Olek (1989). The rewetting model for a single slab geometry with
boundary heat flux (to simulate the decay heating of the fuel) has been solved
by Yao (1977). Chan and Zhang (1994) considered transient one-dimensional
rewetting equation with a uniform heat flux in some other context, i.e. the
design of heat pipes for thermal radiators. The solution methods commonly
employed are either separation of variables or the Wiener-Hopf technique and
solutions are obtained for either quench front temperature or quench front
velocity.

In the present study, the physical model consists of an infinitely extended
vertical tube with the outer surface flooded and the inner surface subjected to a
uniform heat flux. The model assumes constant but different heat transfer
coefficients for the wet and dry regions on the flooded side. The two-
dimensional quasi-steady conduction equation governing the conduction-
controlled rewetting has been solved by finite difference method. The main
difficulty in the numerical solution of a rewetting problem is due to the infinite
domain of the geometry and prescription of spatial boundary conditions at
infinity. The pragmatic approach to achieve an approximate numerical solution
of an infinite domain problem requires the far-field boundary to be fixed at a
large but finite distance and the domain is only discretized up to this exterior
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boundary. Such an attempt may require a large number of grid points and a
rigorous experimentation. In the present paper an alternative method has been
presented, in which the infinite physical domain is transformed to a finite
computational domain. The value of the stretching parameter associated with
the transformation has been found by minimizing the overall heat balance. The
other difficulty lies in handling the mismatch boundary conditions at the
quench front. Blair (1975) and Olek (1988) have observed that a jump in the
boundary condition at the quench front yields a singularity in the analytical
solutions. In the context of the present numerical treatment, the presence of this
singularity may create an accuracy problem. This problem has been alleviated
by imposing the continuity matching condition for both the temperature and
the heat flux at the quench front, as described in the text. The present
numerical solution involves the control volume discretization formulation with
power law scheme and then solving the simultaneous algebraic equations by a
block iterative method. The numerical model is validated by comparing the
results with known analytical solutions.

Mathematical model
The two-dimensional transient heat conduction equation for the tube is
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where L is the length of the tube and r1 and r2 are the inner and outer radius of
the tube. The density, specific heat and thermal conductivity of the tube
material are �;C and k respectively. The origin of the coordinate frame is at the
bottom point on the axis of the tube. To convert this transient equation into a
quasi-steady state equation, the following transformation is used:

r � r z � zÿ ut

where u is the constant quench front velocity and r and z are radial and axial
coordinates respectively (Figure 1). Thus the transformed heat conduction
equation in a coordinate system moving with the quench front is
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In conduction-controlled rewetting analysis the effect of coolant mass flux,
coolant inlet subcooling and its pressure gradient etc. is not considered
explicitly, but only implicitly in terms of wet region heat transfer coefficient,
which is incorporated in the boundary condition. In the present study, the heat
transfer coefficient h1 is assumed to be constant over the entire wet region. The
coolant temperature is taken to be equal to its saturation temperature Ts. On
the dry side of the tube, the wall is cooled by the surrounding vapor. This
cooling effect is very small compared with that of the wet region and is usually
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considered to be trivial in many rewetting models. However, this small cooling
mechanism is very significant and essential in the rewetting analysis with
boundary heat flux and cannot be neglected (Yao, 1977). The heat transfer
coefficient accounting for both convective and radiative cooling effects on the
dry side is assumed to be equal to h2, a constant, which is smaller than h1. The
temperature of the surrounding vapor is assumed to beequal to Tw, which can
be interpreted as the steady-state temperature of the hot surface prior to the
onset of reflooding. Equation (2) can be expressed in the following
dimensionless form:
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where � is the radius ratio. The associated boundary conditions are:

@�
@R
� Q � 0 at R � �; ÿ1 < Z <1

@�
@R
� B1� � 0 at R � 1; Z < 0
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The non-dimensional variables used above are:

R � �r
r2

Z � �z
r2
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k
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The far-field boundary conditions may be derived with the assumption
that the temperature field is sufficiently flat in the Z-direction at infinity

Figure 1.
Physical and

computational domain
of infinite tube
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(Yao, 1977). Therefore, the first and second derivatives of temperature in Z-
direction (i.e. @�=@Z and @2�=@Z 2� may be neglected at infinity (Z ! �1).
With these two assumptions the far-field temperatures can be readily derived
as:

� � Q� 1
B1
ÿ ln R

� �
at Z ! ÿ1

� � 1� Q� 1
B2
ÿ ln R

� �
at Z ! �1

�6�

Estimation of rewetting (quench front) temperature is important in predicting
the rate at which the coolant quenches the hot surface. The main objective of
the present analysis is to obtain the temperature distribution in the domain for
given values of wetside Biot number B1, dryside Biot number B2, Peclet number
Pe and dimensionless heat flux Q. The non-dimensional quench front
temperature is defined by:

�0 � T0 ÿ Ts

Tw ÿ Ts
� ��1; 0� �7�

where T0 is the quench front temperature.
The infinite physical domain (ÿ1 < Z < �1) is then mapped to a finite

computational domain (Figure 1) by the following infinite-finite transformation:

� � R and � � 0:5�1� tanh �Z�
where � is the stretching parameter. The rationale of such a transformation is
that the analytical boundary conditions at infinity can be implemented in the
finite-difference equations. Although similar types of infinite-finite mapping
functions (e.g. arctan or error function) do exist, the hyperbolic tangent is
seemingly convenient to use, since the function is explicitly differentiable and
invertible. The convection-diffusion equation (equation (3)) is thus transformed
to:
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where �z � @�
@Z
� 2���1ÿ ��. The transformed boundary conditions are:
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@�
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Numerical solution
The five-point representation of the elliptic partial differential equation
(equation (8)) can be written in the general form

A0
i;j�i;j � A1

i;j�i;j�1 � A2
i;j�i�1;j � A3

i;j�i;jÿ1 � A4
i;j�iÿ1;j � Si;j �10�

The coefficients Ai,j and the source term Si,j are evaluated by applying the
power law scheme (Patankar, 1980) which makes use of integrating equation (8)
over an elemental control volume, having a face area of ����. The same
procedure is applicable to all the nodal points except at the quench front. In
order to circumvent the discontinuous boundary conditions at the quench front,
numerically, the coefficients of the discretized equation at this location have
been obtained by an appropriate technique (Carnahan et al., 1969). �i,j at the
interface are expanded into Taylor series `̀ forwards'' for the dry region and
`̀ backwards'' for the wet region, dropping terms beyond second order. These
equations give @2�=@�2

ÿ �
i;j

for the dry and wet regions which, when
substituted in the non-conservative form of equation (8), yield @�=@�� �i;j for the
dry and wet regions, respectively. Now the expressions for @�=@�� �i;j at the
interface are put in the following compatibility conditions to determine Ai,j and
Si,j of the discretized equation (10):
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where superscripts I and II denote dry and wet regions respectively.
Expressions for the coefficients and the source term in equation (10) are
tabulated in the Appendix. The simultaneous algebraic equations thus formed
are then solved iteratively by `̀ Strongly Implicit Procedure'' (Stone, 1968). A
convergence criterion of 0.01 percent change in � at all the nodal points has
been selected to test the convergence of the iterative scheme. All computations
have been carried out using a non-uniform grid arrangement with 21 � 161
nodes. Since steep temperature gradients occur near the quench front, a grid
structure has been adopted with finer grids near the quench front and
progressively coarser grids away from it (Figure 1). Sample calculations were
also carried out by doubling the grid size to ensure that the results are
independent of the grid system. As is evident from the Appendix, the
coefficients as well as the source term are independent of temperature and
therefore they do not pose any divergence problem.

To further check the accuracy of the numerical results, the overall heat
balance criterion is verified. By integrating equation (8) over the entire
computational domain, the heat balance equation can be derived as:
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The integrals of equation (11) have been evaluated by Simpson's 1/3 rule. It
may be noted that, as the first and second integral of equation (11) become
improper at � = 0 and at � = 1 respectively, the indeterminate form of the
integrals at these locations is overcome by applying L'HoÃpital rule. The
absolute difference between the right and left sides of the above equation is
first divided by the minimum of the two values and then multiplied by 100 to
get the percentage difference.

The heat balance equation (equation (11)) indicates the fact that, with
particular choice of �, it is possible to satisfy the heat balance. In this respect, if
the heat balance difference so obtained is assumed to be the objective function,
the stretching parameter used in the mapping function can be treated as an
independent variable. Thus, starting from an arbitrary base point (� > 0), the
variable can be moved towards an optimum based on sequential minimization
of the objective function. To reduce the number of function evaluations, an
optimization technique (Golden Section Search) is used that does not require the
derivative of the function. A tolerance limit of 0.01 percent change of the
function value has been selected, below which the search process is terminated.
The heat balance, achieved through minimization as above, establishes the
accuracy of the temperature field obtained and thereby determines the optimal
value of the stretching parameter.

Results and discussion
The numerical computation of the temperature field has been carried out with B1,
B2, Pe, Q and � as input parameters. In particular, the variation of quench front
temperature with respect to the above model parameters is shown in the
graphical form. Temperature estimates are also obtained for the limiting case of
a solid rod where the radius ratio as well as the heat flux are taken as zero.
Reported literature on experimental investigation on quenching (Barnea et al.,
1994) indicates that quench front exists in the transition boiling zone. The heat
transfer coefficient in the transition zone is estimated to be 105~106W/m2 ± K and
the vapor cooling heat transfer coefficient in the film boiling zone is in the order
of 102 W/m2 ± K. Therefore, in the present analysis the values of B2 are set equal
to 10±3B1.

The temperature profiles for the outer surface of the tube are illustrated in
Figure 2 for different Peclet numbers with Q = 0.01 and B1 = 10. The
temperature at � = 1 is Q�/B2 higher than the initial wall temperature. Similarly,
the temperature at � = 0 is Q�/B1 higher than the coolant temperature. At lower
values of Peclet number (for Pe = 0.1 and 1.0), a part of the dry region
immediately ahead of the quench front has a temperature less than 1 and the
other part is more than 1. This implies that the former part of the dry region will
be heated by the vapor instead of being cooled, as the temperature of the vapor is
assumed to be equal to the initial wall temperature. But in the case of higher
Peclet numbers (for Pe = 10 and 100), the whole of the dry region is of a
temperature greater than 1 and it will be cooled by vapor. Moreover, quench
front temperature is found to increase with increase in Peclet number. With fixed
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material properties and dimensions, Peclet number and Biot number represent
the quench front velocity and the heat transfer coefficient respectively. For the
specified heat flux and Biot numbers, the quench front temperature increases
with the increase in quench front velocity. This is probably due to the fact that a
higher relative velocity between the tube and the coolant allows less time for
sufficient heat transfer to take place, resulting in a higher value of �0. The above
trend also reflects the fact that, for the same rewetting rate, an increasing
cladding thermal diffusivity tends to reduce �0.

The temperature profiles for the outer surface of the tube for different Biot
numbers are shown in Figure 3. In this case, quench front temperature
decreases with the increase in Biot number for a given Pe, Q and �. A higher
Biot number results in a higher heat transfer coefficient, which may cause a
decrease in �0. The temperature gradient at the quench front also increases
with the increase in Biot number in the computational domain. This reveals the
fact, that at higher values of heat transfer coefficients, the axial conduction
across the quench front may be significant.

The dependence of the quench front temperature on Biot number and
dimensionless heat flux is shown in Figure 4. For a fixed Biot number, the
quench front temperature increases with the increase in Q. Apparently, a higher
heat flux causes more heat transfer to the cladding and hence this would increase
�0. Also, in this case the quench front temperature decreases with increase in Biot
number, consistent with Figure 3. The above trends are in obvious accord with
the interpretations based on physical ground. In all cases, �0 decreases as the
Biot number increases, reflecting the fact that a quench front progresses more
easily when the heat transfer to the coolant is increased. Figure 5 shows the

Figure 2.
Surface temperature

distribution on the
coolant side for various

Peclet numbers
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effect of radius ratio � on quench front temperature for the fixed values of B1, Pe
and Q. Although �0 increases with increase in � in the presence of boundary heat
flux, an opposite trend is observed in the case of zero heat flux.

The variation of �0 on Biot number and Q for the case of zero Peclet number
has been displayed in Figure 6. The physical meaning of Pe = 0 is that the
quench front ceases to move when Q approaches its critical value. In such
cases, the tube can no longer be wetted. For Q > Qcri, the quench front will

Figure 3.
Surface temperature
distribution on the
coolant side for various
Biot numbers

Figure 4.
Quench front
temperature for various
heat flux and Biot
numbers
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reverse its direction and the wetted surface will be dried. In this case, the tube
will be heated by a heat flux that exceeds the maximum heat removal capacity
by convection and boiling. Thus dryout will occur.

Finally, the model is reduced to that of the conventional model (tube with
insulated inner core and no precursory cooling). By setting Q = 0, the present
model simulates the flooding situation of a hot tube with an inside adiabatic
surface and without any precursory cooling. The present solution also reduces to

Figure 5.
Quench front

temperature variation
with radius ratio and

Biot number

Figure 6.
Quench front

temperature at the
critical heat flux
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that of a solid cylinder by setting � = 0 and Q = 0. The present solution has been
compared with those of Olek (1989) in Figures 7 and 8. As expected, the quench
front temperature increases with the increase in Peclet number and with the
decrease in Biot number. The numerical results are in good agreement with the
analytical ones for low Biot numbers, while the accuracy deteriorates as the Biot
number becomes large. This is probably due to the existence of mismatch
boundary conditions (normal temperature gradient i.e. @�=@�) at the quench
front (equation (9)). Apparently, the strength of the discontinuity increases with

Figure 8.
Quench front
temperature variation
with Biot and Peclet
number for the rod
(� = 0)

Figure 7.
Quench front
temperature variation
with Biot and Peclet
number for the tube
with � = 0.9
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the increase in Biot number and, thus, the accuracy of the solution deteriorates.
On the contrary, the Wiener-Hopf solution has been proved to be the most
accurate one in handling discontinuous boundary conditions, which makes use of
decomposing an appropriate kernel function in the complex Fourier domain.
Nevertheless, the present solution may be beneficial in the case of solving non-
linear rewetting equations arising due to temperature dependent thermo-physical
properties, whereas a plausible analytical solution may not exist.

Conclusion
A numerical solution for solving infinite domain problems arising out of
rewetting analysis has been suggested. The value of stretching parameter used
for infinite-finite transformation can be obtained by minimizing the heat balance.
In general, quench front temperature is found to increase with the increase in
Peclet number and dimensionless heat flux, and with the decrease in Biot
number. The boundary conditions in the present formulation require liquid/vapor
temperatures and liquid/vapor heat transfer coefficients as input parameters,
these limitations being inherent in a conduction-controlled rewetting model. The
arbitrariness of the choice of their values can only be eliminated if a conjugate
heat transfer model is considered. The present numerical procedure may
therefore be extended to the conjugate heat transfer problem, where the energy
equations of solid, liquid and vapor regions need to be solved simultaneously.

References

Barnea, Y., Elias, E. and Shai, I. (1994), `̀ Flow and heat transfer regimes during quenching of hot
surfaces'', International Journal of Heat and Mass Transfer, Vol. 37, pp. 1441-53.

Blair, J.B. (1975), `̀ An analytical solution to a two-dimensional model of the rewetting of a hot dry
rod'', Nuclear Engineering and Design, Vol. 32, pp. 159-70.

Carnahan, B., Luther, H.A. and Wilkes, J.O. (1969), Applied Numerical Methods, John Wiley &
Sons, New York, NY, p. 462.

Chakrabarti, A. (1986), `̀ The sputtering temperature of a cooling cylindrical rod with an insulated
core'', Applied Scientific Research, Vol. 43, pp. 107-13.

Chan, S.H. and Zhang, W. (1994), `̀ Rewetting theory and the dryout heat flux of smooth and grooved
plates with a uniform heating'', ASME Journal of Heat Transfer, Vol. 116, pp. 173-9.

Evans, D.V. (1984), `̀ A note on the cooling of a cylinder entering a fluid'', IMA Journal of Applied
Mathematics, Vol. 33, pp. 49-54.

Olek, S. (1988), `̀ On the two-region rewetting model with a step change in the heat transfer
coefficient'', Nuclear Engineering and Design, Vol. 108, pp. 315-22.

Olek, S. (1989), `̀ Solution to a fuel-and-cladding rewetting model'', International Communications
in Heat and Mass Transfer, Vol. 16, pp. 146-58.

Olek, S. (1994), `̀ Quenching of a composite slab'', International Communications in Heat and
Mass Transfer, Vol. 21, pp. 333-44.

Patankar, S.V. (1980), Numerical Heat Transfer and Fluid Flow, Hemisphere, Washington, DC, p. 96.

Stone, H.L. (1968), `̀ Iterative solution of implicit approximations of multidimensional partial
differential equations'', SIAM Journal of Numerical Analysis, Vol. 5, pp. 530-58.

Yao, L.S. (1977), `̀ Rewetting of a vertical surface with internal heat generation'', AIChE
Symposium Series, Vol. 73, pp. 46-50.



HFF
11,3

212

Appendix. Coefficients of finite difference equations
(a) Internal and boundary nodes (except at the quench front):
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For internal nodes: f1 � ��=�h1 � h3� f2 � �ÿ=�h1 � h3� f3 � f4 � 0 f ��� � ��� � �ÿ�=2

For boundary nodes: �� � ��: f1 � ��=h1 f2 � f3 � 0 f4 � Q�=h1 f ��� � �� � ���=2

�� � 1; � > 0:5�: f1� 0 f2 � �ÿ=h3 f3� f4�B2=h3 f �����1� �ÿ�=2
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(b) Quench front node: (� = 1, � = 0.5)
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Superscripts plus and minus in � denote (i � 1=2; j) and (i ÿ 1=2; j) locations.

Superscripts plus and minus in � denote (i; j� 1=2) and (i; jÿ 1=2) locations.

k k denotes larger between the two values.


