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Abstract— Source direction of arrival (DOA) estimation is one 
of the challenging problems in a variety of applications, such as 
communications, radar, sonar, and seismic exploration. 
Several methods based on maximum likelihood (ML) criteria 
has been established in literature. Generally, to obtain the 
exact ML (EML) solutions, the DOAs must be estimated by 
optimizing a complicated nonlinear multimodal function over a 
high-dimensional problem space. Bacteria foraging 
optimization (BFO) based solution is proposed here to compute 
the ML functions and explore the potential of superior 
performances over traditional PSO algorithm. Simulation 
results confirms that the BFO-EML estimator is significantly 
giving better performance at lower SNR compared to 
conventional method like MUSIC in various scenarios at less 
computational costs. 
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I. INTRODUCTION 
       DOA estimation is an important problem in the fields of 
radar, sonar, radio, astronomy, under water surveillance and 
seismology etc to estimate the source location. One of the 
simplest versions of this problem is the estimation of the 
directions-of-arrival (DOAs) of narrow-band sources where 
the sources are located in the far field of the sensor array [1, 
2, 3]. Many high resolution suboptimal techniques have 
been proposed and analyzed, such as multiple signal 
classification (MUSIC) [4], the minimum variance method 
of Capon [5], estimation of signal parameters via rotational 
invariance technique (ESPRIT) [6] and more [7]. These 
techniques give better performance at high SNR only. The 
ML technique is used here because of its superior statistical 
performance compared to spectral based methods. The ML 
method is a standard technique in statistical estimation 
theory. A likelihood function can be formulated easily if we 
know the observed parametric data [8], [9]. The ML 
estimate is computed by maximizing the likelihood function 
or minimizing the negative likelihood function with respect 
to all unknown parameters, which may include the source 
DOA angles, the signal covariance, and the noise 
parameters. Since the ML function is multimodal, so direct 
optimization is seems to be unrealistic due to large 
computational burden. So main contribution is to reduce the 
dimensionality by taking some assumptions on signal, noise 
and array structure. There are different optimization 

techniques available in literature for optimization of ML 
function like AP-AML [10], simulated annealing (SA) [11], 
genetic algorithms (GA) [12] fast EM and SAGE algorithms 
[13] and a local search technique e.g. Quasi-Newton 
methods. GA is one of the most powerful and popular 
global search tools; however, its implementation is 
somewhat difficult due to slow convergence. All these 
techniques have several limitations because of 
multidimensional cost function which need extensive 
computation, good initialization is also crucial for global 
optimization and we cannot guarantee that these local search 
techniques always have global converge. The evolutionary 
algorithms like genetic algorithm [14], particle swarm 
optimization and simulated annealing [11], [15], [16] can be 
designed to optimize the ML function. Genetic algorithm 
[12] and particle swarm optimization [17] had already used 
as a global optimization technique to estimate the DOA for 
uniform array. In this paper, the bacteria foraging 
optimization algorithm is applied to ML criterion functions 
for accurate DOA estimation in uncorrelated Gaussian 
noise. Recently BFO algorithm has been successfully 
applied in different applications and shown that it is giving 
better performance compared to different constrained PSO. 
Due to multimodal, nonlinear, and high-dimensional nature 
of the parameter space, the problem seems to be a good 
application area for BFO, by which the excellent 
performance of ML criteria can be fully explored. 
Strategically pairing PSO with EML has the desired 
advantages over Newton-AML based schemes because of 
BFO-EML is expected to offer higher quality estimates, 
BFO has a better chance to attain the global optimum and 
BFO is less sensitive to initialization, however, a good 
initial guess speeds up the computation. All these features 
make BFO more attractive for direction finding 
applications. Via extensive simulation studies, we 
demonstrate that with properly chosen parameters, BFO 
achieves fast and robust global convergence over PSO and 
MUSIC. 

II. DATA MODEL AND  MAXIMUM LIKELIHOOD 
ESTIMATION PROBLEM 

A major application of sensor array signal processing is the 
estimations of parameters of the impinging signal to the 
array. Parameters to be identified include number of signals, 
magnitudes, frequency, angle of arrival (AOA), distances 



from the sources, and speeds of signals. Of all these 
parameters, the DOA estimation is has been paid most 
attention, especially in farfield signal applications, in which 
case the wave front of the signal may be treated planar, 
indicating that the distance is irrelevant thus, the topic of 
current research is also focus on DOA estimation using far-
field source consideration. There  are two categories of ML 
are deterministic ML and Stochastic ML depending on the 
model of assumption on the signal waveform. Deterministic 
ML algorithms assumes that the signal waveform is 
deterministic but unknown, while the stochastic ML 
algorithms assumes that the signal waveform is Gaussian 
random processes. Both classes of ML algorithms assume 
zero mean Gaussian random noise. Let us consider an array 
of M WSN nodes are distributed in an arbitrary geometry 
and received signals form N narrow band far-field signal 
sources at unknown locations. The output of sensor nodes 
modelled by standard equation as  
 
ሺ݅ሻݔ                    ൌ ሺ݅ሻݏሺѲሻܣ ൅ ݊ሺ݅ሻ, i=1,2. . . . L.          (1)  
 
Where s(i) is the unknown vector of signal waveforms, n(i) 
is unpredicted noise process, L denotes the number of data 
samples (snapshots). The matrix ܣሺѲሻ has the following 
special structure defined as 
 
 ሺѲሻ= [a(θ1), . . . a(θN)]                                   (2)ܣ                 
 
Where a(θ) is called steering vector and θ = [θ1, θ2, . . . , θN]T 

are the parameters of interest or true DOA’s. The exact form 
of a(θ) depends on the position of the nodes in sensor 
network. Further, the vectors of signals and noise are 
assumed to be stationary, temporarily white, zero-mean 
complex Gaussian random variables with the following 
second-order moments given by 

                          
E[s(i)s(j)H] = Sδij   and     E[s(i)s(j)T] = 0 
 
E[n(i)n(j)H] = σ2Iδij     and  E[n(i)n(j)T] = 0                         (3)    
 
Where δij is the Kronecker delta, (·)H denotes complex 
conjugate transpose, (·)T denotes transpose, E(·) stands for 
expectation. 

A. Maximum Likelihood Estimation 
In many applications it is appropriate to model the signals as 
stationary stochastic processes, possessing a certain 
probability distribution. Then by far most commonly 
advocated distribution is the Gaussian one. Not only is this 
for the mathematical convenience of the resulting approach, 
but the Gaussian assumption is also often motivated by the 
Central Limit Theorem. 
       Under the assumptions taken above, the observation 
process, x(i), constitutes a stationary, zero-mean Gaussian 
random process having second-order moments 
 
              E[x(i)x(i)H] = R = A(θ)SAH(θ)+σ2I                       (4) 

 
In most applications, no a-priori information on the signal 
covariance matrix and the number of sources are available. 
But here in this work we assume that the number of signals 
are known to us. The problem addressed herein is the 
estimation of  Ѳ along with the parameter in S and σ2(noise 
power) from a batch of L measured data x(1), . . . , x(L). 
     Under the assumption of additive Gaussian noise and 
complex Gaussian distributed signals we can have negative 
log likelihood function [3], [17] is given as 
 
           ݈ሺѲ, S,σଶሻ ൌ |R|݃݋݈  ൅ tr൛RିଵR෡ൟ                            (5) 
 
where R෡ is the sample covariance matrix and it defined as 
 
                ෠ܴ ൌ ଵ

ே
∑ ሺ݅ሻு ேݔሺ݅ሻݔ

௜ୀଵ                                         (6) 
 
The ML criterion function can be concentrated with respect 
to S and σ2 by following [23]–[25]. The stochastic maximum 
likelihood (SML) estimates of the signal covariance matrix 
and the noise power are obtained by inserting the SML 
estimates of  in the following expressions  
 
                S෠ሺѲሻ ൌ ൫A† ሺѲሻ൫R෡ െ σෝଶI൯ A†H ሺѲሻ ൯                 (7a) 
 
                   σෝଶሺѲሻ ൌ ଵ

MିN
Tr൛PA

٣ ሺѲሻR෡ൟ                            (7b) 
Where A† is the psedo-inverse of A and PA

٣ is the orthogonal 
projection onto the null space of AH and are defined as  
 
†ܣ                             ൌ ሺܣுܣሻିଵܣு                                 (8a) 
 
                                   ஺ܲ ൌ  (8b)                                       †ܣܣ
 
                                 PA

٣ ൌ I െ ஺ܲ                                      (8c) 
Therefore the concentrated form of the UML function now 
can be obtained  by using (7) in (5) as  
 
           ா݂ெ௅ ሺѲሻ ൌ ห൫AሺѲሻS෠ሺѲሻAு ሺѲሻ݃݋݈ ൅ σෝଶሺѲሻI൯ห      (9) 

III. BACTERIA FORAGING OPTIMIZATION 
Bacterial foraging is a new evolutionary computational 
method proposed by Passino[26]. The idea of bacteria 
foraging algorithm is based on the fact that natural selection 
tends to eliminate animals with poor foraging strategies and 
favour those having successful foraging strategies. After 
many generations poor foraging strategies are either 
eliminated or reshaped into new ones. The E.coli bacteria 
that are present in our intensities have a foraging strategy 
governed by four processes namely Chemotaxis, Swarming, 
Reproduction, Elimination and Dispersal 
 
Step-by-step of the algorithm 
[Step 1] Initialize parameters n, S,  Nc, Ns , Nre, Ned , Ped , 
C(i) (i=1,2…S) , θi Where, 
      n: Dimension of the search space, 



      S: The number of bacterium, 
      Nc: chemotactic steps, 
      Ns: swim steps, 
      Nre: reproductive steps, 
      Ned: elimination and dispersal steps, 
      Ped: probability of elimination, 
     C(i):the run-length unit during each run or tumble. 
 
[Step 2] Elimination-dispersal loop: l=l+1 
 
[Step 3] Reproduction loop: k = k+1. 
 
[Step 4] Chemotaxis loop: j = j+1. 
[a] For i=1,2…,S, take a chemotactic step for bacteria i as 
follows. 
[b] Compute fitness function, J (i,j,k,l). 
[c] Let Jlast= J(i,j,k,l) to save this value since we may find 
better value via a run. 
[d] Tumble: Generate a random vector  ∆(i) Є Rn with each 
element ∆m(i), m = 1, 2, …, S, a random number on [-1, 1]. 
[e] Move: Let 
 
        Ѳ௜ሺ݆ ൅ 1, ݇, ݈ሻ ൌ Ѳ௜ሺ݆, ݇, ݈ሻ ൅ ሺ݅ሻ ∆ሺ௜ሻܥ

ඥ∆Tሺ௜ሻ∆ሺ௜ሻ
              (10) 

 
This results in a step of size C(i) in the direction of the 
tumble for bacteria i. 
[f] Compute J(i,j+1,k,l) with Ѳ௜(j+1,k,l). 
[g] Swim: 
(i) Let m = 0 (counter for swim length). 
(ii) While m <Ns (if have not climbed down too long) 
• Let m = m+1. 
• If J(i,j+1,k,l) <Jlast, let Jlast = J(i,j+1,k,l). then another step 
of size C(i) in this same direction will be taken as 
equation(1) and use the new generated Ѳ௜(j+1,k,l) to 
compute the new J(i,j+1,k,l). 
• Else let m = Ns. 
[h] Go to next bacterium (i+1): if i • S go to (b) to process 
the next bacteria. 
 
[Step 5] If j <Nc, go to step 3. In this case, continue 
chemotaxis since the life of the bacteria is not over. 
 
[Step 6] Reproduction: 
[a] For the given k and l, and for each i = 1, 2, …,S, let Jhealth 
be the health of the bacteria. Sort bacterium in order of 
ascending values. 
 
୦ୣୟ୪୲୦ܬ            

௜ ൌ ∑ ,ሺ݅ ܬ ݆, ݇, ݈ሻே௖ାଵ 
௝ୀଵ                                    (11) 

 
[b] The Sr bacteria with the highest Jhealth values die and the 
other Sr bacteria with the best values split and the copies that 
are made are placed at the same location as their parent. 
 
 [Step 7] If k <Nre go to step 2. In this case the number of 
specified reproduction steps is not reached and start the next 
generation in the chemotactic loop. 

 
[Step 8] Elimination–dispersal: For i = 1, 2, …, S, with 
probability Ped, eliminate and disperse each bacteria, which 
results in keeping the number of bacteria in the population 
constant. To do this, if a bacterium is eliminated, simply 
disperse one to a random location on the optimization 
domain. If l <Ned, then go to step 2; otherwise end. 
 

IV. BFO-EML DOA ESTIMATION 
Here we describe the formulation of the BFO algorithm[27] 
for EML optimization to estimate source DOA’s. At first 
initialize a population of Particles in the search space with 
random positions and random velocities constrained 
between 0 and π in each dimension [17]. The N 
dimensional position vector of the jth particle takes the form 
xj = [θ1, . . . , θN], where θ represents the DOAs. A particle 
position vector is converted to a candidate solution vector in 
the problem space through a suitable mapping. The score of 
the mapped vector evaluated by a likelihood function fEML 
which is given in (9), is regarded as the fitness of  the 
corresponding particle. To evaluate the likelihood function 
fEML required the data from all the elements of the array for 
K number of snapshots .  K=20, n=2, S=10, Nc =20 Ns=4, 
Nre =4 Ned=2, Ped=0.25, C(i)=0.005 are initialized for the 
optimization algorithm. By using algorithm particles with 
highest health will be obtained. The optimization iteration 
will be terminated if the specified maximum iteration 
number is reached. 
.  

V. SIMULATION RESULTS AND DISCUSSIONS 
Here we present a numerical example to demonstrate the 
performance of BFO based DOA estimation using (9) 
against PSO and MUSIC [4] which is the best known and 
well investigated algorithm. The performances of those 
methods are compared in two ways: (a) the DOA estimation 
root-meansquared error (RMSE), which is calculated as [12] 

ܧܵܯܴ              ൌ ට ଵ
ே ேೝೠ೙

∑ ′ேೝೠ೙
௟ୀଵ  ∑ ሾΘ̂௡ሺ݈ሻ െ Θ௡ሿଶே

௜ୀଵ         (12) 

where N is the number of sources, �෡ ୬ሺlሻ) is the estimate of 
the nth DOA achieved in the lth run, θn is the true DOA of 
the nth source; and (b) the ability to resolve closely spaced 
sources known as probability of resolution (PR). By 
definition, two sources are said to be resolved in a given run 
if both |θ෠ଵ −θ1| and |θ෠ଶ − θ2| are smaller than |θ1 − θ2|/2. 

A. Example 1 
      Here our aim is to demonstrate the performance of ML 
estimator computed by PSO, BFO algorithm, and to 
compare with MUSIC algorithm. We assume that two 
equal-power, uncorrelated signals impinge on 8 sensor UCA 
from 130o and 140o. The number of snapshots is taken as 20, 
and the SNR varies from -20 dB to 30 dB with the step size 
of 1 dB taken for simulation. The function fEML is optimized 
using PSO and APSO algorithms for 20 snapshots in case of 



PSO and BFO, but 1000 snapshots taken for MUSIC.       
The Fig.1 gives the Surface of Exact Maximum Likelihood 
function fEML corresponding to 0o to 180o is given in. The 
Fig. 2 gives the DOA estimation RMSE values obtained 
using PSO-EML, BFO-EML, and MUSIC as a function of 
SNR. Fig. 3 shows the resolution probabilities (RP) for the 
same methods. Two sources are considered to be resolved in 
an experiment if both DOA estimation errors are less than 
the half of their angular separation.  
      As can be seen from Fig. 2 and Fig. 3, BFO-EML yields 
significantly superior performance over PSO-EML as a 
whole, by demonstrating lower DOA estimation RMSE and 
higher resolution probabilities. The accurate DOA estimates 
are observed because 1) EML criterion functions are 
statistically optimal although computation-extensive, and 2) 
the designed BFO is a robust and reliable global 
optimization algorithm. MUSIC, on the other hand, 
produces less accurate estimates. 
 

 
 

Fig 1: Surface of Exact Maximum Likelihood function corresponding to 0o 
to 180o. 

  
 
 
Fig. 2. DOA estimation RMSE values of PSO-EML, APSO-EML, and 
MUSIC versus SNR. Two uncorrelated sources impinge on 8-sensor UCA 

at 130O and 140O. Number of snapshots is 20. 
 

 
Fig. 3. Resolution probabilities of  PSO-EML, BFO-EML and MUSIC 
versus SNR. Two uncorrelated sources impinge on 8-sensor UCA at 130O 

and 140O Number of snapshots is 20. 

VI CONCLUSION 
In this paper, bacteria foraging optimization (BFO) is 
proposed to estimate the DOA using maximum likelihood 
function. With newly introduced features matching scheme 
and intelligent initialization, carefully selected evolution 
operators and fine-tuned parameters, the BFO-EML 
estimator achieves fast convergence. Simulation results also 
demonstrate that BFO-EML outperforms other estimators, 
MUSIC of the DOA estimation RMSE and source 
resolution probability, with less computational cost, which 
is similar to that of MUSIC, and the result estimates 
asymptotically achieve the stochastic CRLB. 
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