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Abstract—Wireless sensor networks have been proposed as a
solution to environment sensing, target tracking, data collection
and other applications. Source localization is one of the important
problem in wireless sensor network. In literature a decentralized
approach using strong antena arrays at each node or sensor
arrays at different positions are used to localize the sources. In
this paper a purely co-operative method where every node will
participate in estimation. The network does the bearing esti-
mation by optimizing maximum likelihood function by forming
random array among all the nodes. Particle swarm optimization
is used to optimize ML function because it is more efficient
compared to other evolutionary algorithm like GA. Finally the
results are compared with most analyzed MUSIC algorithm.

Index Terms—Wireless sensor network, Maximum Likelihood
estimation, MUSIC, particle swarm optimization.

I. INTRODUCTION

Sensor signal processing in wireless sensor network deals
with the problem of extracting information from a collection
of measurements obtained from sensors distributed in space.
The number of signals present is assumed to be finite, and
each signal is parameterized by a finite number of parameters.
Based on measurements of the sensor output, the objective is
to estimate some desired parameters. This research area has
attracted considerable interest for several years. A vast number
of algorithms has appeared in the literature for estimating
unknown signal parameters from the measured output of a
sensor array [1]. In wireless sensor network where the sensor
nodes are distributed arbitrarily in an geographical area has an
important signal-processing task is source localization.

The functionality of the localization systems depends on
the requirements and constraints at hand. Most localization
methods depend on three types of physical variables measured
by or derived from sensor readings for localization: time delay
of arrival (TDOA), direction of arrival (DOA) and received
sensor signal strength(RSS) or power. Widely used localization
methods are time of arrival (TOA) and time difference of
arrival(TDOA). Both these methodes provids accurate source
localization in WSN [2]. The main disadvantages here is
that both TOA and DOA need network synchronization. The

DOA estimate can be obtained using array signal processing
techniques. The DOA estimation is based on time difference
between the sinsor or phase differnce in case of narrow band
signals.

In literature we can find people were trying to estimate
source location by measuring DOA with an antenna strong
array at each sensor node [3], [4] or by taking group of sensor
subarrays [5]. The processor of fusion is used to the DOA
estimate from each subarray of sensors. Then the triangulation
process of determining the intersection of these cross bearing
DOA angles can be used to estimate the source location.

In this paper we doveloped efficient sensor network to
estimate source DOA by forming a random array. The MLE
technique is used here because of its superior statistical
performance compared to other existing method. A likelihood
function can be formulated easily if we know the observed
parametric data [6]. The ML estimate is computed by maxi-
mizing the likelihood function or minimizing the negative like-
lihood function with respect to all unknown parameters, which
may include the source DOA angles, the signal covariance, and
the noise parameters. Since the ML function is multimodal,
so direct optimization is seems to be unrealistic due to large
computational burden. So main contribution is to reduce the
dimensionality by taking some assumptions on signal, noise
and array structure.

There are different optimization techniques available in
literature for optimization of ML function like AP-AML [7],
fast EM and SAGE algorithms [8] and a local search technique
e.g. Quasi-Newton methods. All these techniques have several
limitations because of multidimensional cost function which
need extensive computation, good initialization is also crucial
for global optimization and we can not guarantee that these
local search techniques always have global converge.

Basically the ML function is a multimodal function. The
gradient basd algorithms like simplex algorithm are available
in literature which need good initialization to avoid to fall
the solution in local minima. The evolutionary algorithms
like genetic algorithm [9], particle swarm optimization and
simulated annealing [10], [11] can be designed to optimize
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the ML function.

The feasibility of PSO to ML criterion for the accurate
estimation of signal parameters is studied here. PSO is a
recent evolutionary algorithm first introduced by Eberhart and
Kennedy in 1995 [12], [13]. As an emerging technology, PSO
has attracted a lot of attention in recent years, and has been
successfully applied in many fields, such as phased array
synthesis [14], [15], electromagnetic optimization [16], and
etc. Most of the applications demonstrated that PSO could
give competitive or even better results in a faster and cheaper
way, compared with other heuristic methods such as GA.

Here each node in the network form an arbitrary array
at fussion center to optimize ML function. After collecting
spatially uncorrelated data it share to fussion center once with
their relative postions to have global ML cost function. The
global ML function is optimized by using PSO. We can choose
node 1 is the central node or fussion center for the bearing
estimation.

II. DATA MODEL AND MAXIMUM LIKELIHOOD
ESTIMATION PROBLEM

A major application of sensor array technology is estima-
tions of parameters of the impinging signal to the array. Param-
eters to be identified include number of signals, magnitudes,
frequencies, direction of arrival (DOA), distances and speeds
of signals. Of all these parameters, the DOA estimation is
has been paid most attention, especially in far-field signal
applications, in which case the wave front of the signal may be
treated planar, indicating that the distance is irrelevant. thus,
the topic of current research is also focus on DOA estimation
using far-field source consideration.

The parametric DOA algorithms are based on minimizing
quadratic penalty functions. The penalty function came from
some signal-noise model equation, which holds when the
tried angle of arrival is exactly the actual incident angle.
Because the exact incident angle is unknown, the model
equation is supposed to be violated with a guessed angle. An
optimal estimation of the incident angle may be obtained by
minimizing a penalty function, which is usually a quadratic
function on of the residue of the signal-noise model equation.
This is known as maximum likelihood solution. Different ML
algorithms have different likelihood functions, which came
from different models of the signals to be estimated.

There are two categories of ML which are deterministic ML
and Stochastic ML depending on the model of assumption
on the signal waveform. Deterministic ML algorithms as-
sumes that the signal waveform is deterministic but unknown,
while the stochastic ML algorithms assumes that the signal
waveform is Gaussian random processes. Both classes of ML
algorithms assume zero mean Gaussian random noise.

Let us consider an array of M WSN nodes are distributed
in an arbitrary geometry and received signals form N nar-
row band far-field signal sources at unknown locations at
[01,...,0n]T. The known nominal location of the mzh sensor
is given by [Z.,, Ym]. The output of sensor nodes modeled by
standard equation fo L snapshots as

x(i) = A@)s(i) +n(i), i=1,2,...,L (1)

where s(i) is the unknown vector of signal waveforms, n (%)
is unpredicted noise process, , L denotes the number of
data samples (snapshots). The matrix A(0) has the following
special structure defined as

A(0) =[a(by),...a(0n)] (2

where a(#) is called steering vector and 8 = [0y, 0, ...,0x]"
are the parameters of interest or true DOA’s. The exact form of
a(f) depends on the position of the nodes in sensor network,
where then, mth element of the array manifold A(0) is

2
exp {j; [, S0 0y, + Yy, COS Gm]}

in which X is the wavelength of the signal.

Further, the vectors of signals and noise are assumed to
be stationary, temporarily white, zero-mean complex Gaussian
random variables with the following second-order moments
given by

—_ = —
H

] = Sé;
]=0
H] o2
|=0 3)
where §;; is the Kronecker delta, (-)" denotes complex

conjugate transpose, (-)T denotes transpose, F(-) stands for
expectation.

A. Maximum Likelihood Estimation

In many applications it is appropriate to model the signals
as stationary stochastic processes, possessing a certain prob-
ability distribution. Then by far most commonly advocated
distribution is the Gaussian one. Not only is this for the
mathematical convenience of the resulting approach, but the
Gaussian assumption is also often motivated by the Central
Limit Theorem.

Under the assumptions taken above, the observation process,
x(i), constitutes a stationary, zero-mean Gaussian random
process having second-order moments

E[x(i)x(i))%] = R = A(0)SAY(0) + 0’1 (4)

In most applications, no a-priori information on the signal
covariance matrix and the number of sources are available. But
here in this work we assume that the number of signals are
known to us. The problem addressed herein is the estimation
of @ along with the parameter in S and o(noise power) from
a batch of L measured data x(1),...,x(L).

Under the assumption of additive Gaussian noise and
complex Gaussian distributed signals we can have negative
loglikelihood function [1], [17] is given as

0(6,8,0?) = log|R| + tr{R"'R} (5)

where R is the sample covariance matrix and it defined as

o1 N n .
_N;x(z)x(z) (6)
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The ML criterion function can be concentrated with respect
to S and o2 by following [18]-[20]. The stochastic maximum
likelihood (SML) estimates of the signal covariance matrix and
the noise power are obtained by inserting the SML estimates
of @ in the following expressions

S(6) = At(9) (R - &21) ATH(g)

1
M —N

(7a)

5%(0) = Tr{Px(6)R}

(7b)

where AT is the psedo-inverse of A and Py is the orthogonal
projection onto the null space of A and are defined as

At = (ATA) " AT (8a)
Pa=AAT (8b)
Px=1-Pj4 (8¢)

Therefore the concentrated form of the UML function now
can be obtained bu using (7) in (5) as

foarL(6) = log|A(8)S(8)A™(6) + 62(6)]] ©)

Stoica and Nehorai [21] proved that for uncorrelated
sources, the statistical performances of CML and UML are
similar; while for highly correlated or coherent sources, the
performance of UML is significantly superior. Here we focus
on the problem how to optimize the UML function by using
PSO in cooperative way.

III. PARTICLE SWARM OPTIMIZATION PSO

Particle swarm optimization (PSO) is a population based
stochastic optimization technique developed by Dr. Eberhart
and Dr. Kennedy in 1995 [12], [13], inspired by social
behavior of bird flocking or fish schooling. In past several
years, PSO has been successfully applied in many research
and application areas. It is demonstrated that PSO gets better
results in a faster, cheaper way compared with other methods.
Another reason that PSO is attractive is that there are few
parameters to adjust. One version, with slight variations,
works well in a wide variety of applications. Particle swarm
optimization has been used for approaches that can be used
across a wide range of applications, as well as for specific
applications focused on a specific requirement.

PSO shares many similarities with evolutionary computation
techniques such as Genetic Algorithms (GA). A problem is
given, and some way to evaluate a proposed solution to it
exists in the form of a fitness function. A communication
structure or social network is also defined, assigning neighbors
for each individual to interact with. Then a population of
individuals defined as random guesses at the problem solutions
is initialized. These individuals are candidate solutions. They
are also known as the particles, hence the name particle swarm.
An iterative process to improve these particle solutions is set
in motion. The particles iteratively evaluate the fitness of the
particle solutions and remember the location where they had
their best success. The individuals best solution is called the
particle best or the local best known as pbest. Each particle
makes this information available to their neighbors. Another

best value that is tracked by the particle swarm optimizer is
the best value, obtained so far by any particle in the neighbors
of the particle. when a particle takes all the population as its
topological neighbors, the best value is a global best and is
called gbest.

The swarm is typically modeled by particles in multidimen-
sional space that have a position and a velocity. Consider a
D-dimensional problem space and a swarm consisting of P
particles. The position of the ith particle is a D-dimensional
vector x; = [Z;1, %2, ..., x;p]. The velocity of this particle
is represented as v; = [v;1,V;2,...,v;p]. These particles fly
through hyperspace (i.e., R”) and have two essential reasoning
capabilities: their memory of their own best position and
knowledge of the global or their neighborhood’s best. The
best previous position of the ith particle, which gives the best
fitness value, is denoted as p; = [p;1,pi2,--.,Pip| and the
best position found by any particle in the swarm is represented
by pg = [Pg1,Pg2; - - -, Pgn]. In a minimization optimization
problem, problems are formulated so that best simply means
the position with the smallest objective value. Members of a
swarm communicate good positions to each other and adjust
their own position and velocity based on these good positions.
So a particle has the following information to make a suitable
change in its position and velocity:

At every iteration, the velocity and the position of each
particle are updated according to the following equations:

+1 _
viT =w"vl +arl © (P —xj) + cory © (py — )
(10)
n+l _ _n n+1
X; =% +v; (1
where ® denotes element-wise product, 7 = 1,2,..., P, and
n =1,2,..., indicates the iterations, w is a parameter called

the inertia weight, c¢; and co are positive constants referred
to as cognitive and social parameters respectively, r; and ro
are D-dimensional vectors consisting of independent random
numbers uniformly distributed between O and 1, which are
used to stochastically vary the relative pull of p; and pg
in order to simulate the unpredictable component of natural
swarm behaviour.

IV. PSO FOR DOA ESTIMATION IN WIRELESS SENSOR
NETWORK

Here we describe the formulation of the PSO algorithm
for UML optimization to estimate source DOA’s by wireless
sensor network. At first the network starts by initializing a pop-
ulation of particles in the search space with random positions
constrained between 0 and 7 in each dimension, and random
velocities in between 0 and 17. The N-dimensional position
vector of the jth particle takes the form z; = [01,...,0n],
where 6 represents the DOAs of the sources. A particle posi-
tion vector is converted to a candidate solution vector in the
problem space through a suitable mapping. The score of the
mapped vector evaluated by a likelihood function fi 5,z which
is given in (9), is regarded as the fitness of the corresponding
particle.

Every node in the network collect group of spatial and
temporal complex uncorrelated data. To evaluate the likelihood
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function fy s the network need the data from all the nodes.
Therefore after collecting the data, each nodes sends to central
node once per each experiments. During the evolution of
algorithm, in every iteration update each particles velocity and
position, then evaluate the global best.

The manipulation of a particle’s velocity according to (10)
is regarded as the central element of the entire optimization.
Three components typically contribute to the new velocity. The
first part refers to the inertial effect of the movement, which is
just proportional to the old velocity and is the tendency of the
particle to proceed in the same direction it has been travailing.
The inertial weight w is considered critical for the convergence
behaviour of PSO [22]. A larger w facilitates searching new
area and global exploration while a smaller w tends to facilitate
local exploitation in the current search area. In this study, w
is selected to decrease during the optimization process, thus
PSO tends to have more global search ability at the beginning
of the run while having more local search ability near the end
of the optimization.

Given a maximum value wp,x and a minimum value Wiy,
w is updated as follows:

wn:{

where [nK]| is the number of iterations with time decreasing
inertial weight, 0 < n < 1 is a ratio, K is the maximum
iteration number, and [] is a rounding operator. Based on
empirical practice [23] and extensive test runs, we select
Wax = 0.9, Wiin = 0.4, and »r = 0.4 ~ 0.8.

The second and third components of the velocity update
equation introduce stochastic tendencies to return toward the
particles own best historical position and the group’s best
historical position. These paradigms allow particles to profit
both from their own discoveries as well as the discoveries of
the swarm as a whole, mixing local and global information
uniquely for each particle on each iteration. Constants c;
and co are used to bias the particle’s search towards the
two best locations. These two parameters are not critical for
the convergence of PSO. Following common practice in the
literature [13], ¢c; = co = 2, although these values could
be fine-tuned for the problem at hand. Since there was no
actual mechanism for controlling the velocity of a particle, it
is necessary to define a maximum velocity to avoid the danger
of swarm explosion and divergence [24]. The velocity limit can
be applied along each dimension at every node as

A k

VMAX7 if an > VMAX

VMIN7 if U;-fn < VMmN
where n = 1,...,N. In this work, we keep the limitation
of VMmax is set to the half value of the dynamic range, i.e.,
Vmax = 0.5. The new particle position is calculated using
(10). If any dimension of the new position vector is less than
zero or more than one, it is clipped or adjusted to stay within
this range.

Winax — wmu;l;(wmin (’I’L _ 1),

Wmin,

if 1 <n <[nK]
for nK]+1<n<K
12)

13)

The optimization iteration will be terminated if the specified
maximum iteration number K is reached. The final global best

—%— MUSIC
—&— PSO-ML|
—=—CRB

RMSE(in degree)

(S 5 1‘0 1‘5 26 2‘5 30
SNR(in dB)

Fig. 1. DOA estimation RMSE values by global PSO and MUSIC

position py, is taken as the ML estimates of source DOA.

V. SIMULATION RESULTS AND DISCUSSIONS

Here we present a numerical example to demonstrate the
performance of PSO based DOA estimation using (9) against
MUSIC [25] which is the best known and well investigated
algorithm. The performances of those methods are compared
in two ways: (a) the DOA estimation root-mean-squared error
(RMSE), which is calculated as [26]

wn N

W 2o 2 (60 =0n)’

where N is the number of sources, én(l ) is the estimate of the
nth DOA achieved in the Ith run, 6,, is the true DOA of the nth
source; and (b) the ability to resolve closely spaced sources
known as probability of resolution (PR). By definition, two
sources are said to be resolved in a given run if both |t§1 — 04|
and |05 — 05| are smaller than |6, — 05]/2.

RMSE =

(14)

A. Example

In this example we consider N = 8 nodes with better
connectivity to share ther observed information to the central
node. We are assumed that each node knows its position co-
ordinates for the determination of array manifold matrix A (6).
Then It act as an arbitrary array and form its own steering
matrix accordingly their position of the nodes. We assume that
two equal power uncorrelated signal sources are impinging on
the sensor network with true DOA’s [150° 158°] with respect
to X-axis.

First the DOA is estimated by optimizing ML globally by
PSO. We consider node#1 is a central node to compute fu/r,
and all the node shared their received data to it. After that
we used MUSIC algorithm for the same estimation. Fig. 1
describes the DOA estimation RMSE obtained using global
PSO-UML and MUSIC as a function of SNR. Fig. 2 shows
the resolution probability for the same methods.
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Fig. 2. DOA estimation PR values by global PSO and MUSIC

We can see from Fig. 1 and Fig. 2 the PSO-UML produce
much superior performance compared to global MUSIC algo-
rithm. The MUSIC algorithm gives better DOA estimation at
high SNR, but at very low SNR the PSO-UML produce very
good performance. The SNR simulated range is from -20dB to
30dB with 1dB step size. At lower SNR we can also ovbserve
that around 5dB gain getting over gloval MUSIC algorithm.
We have taken 100 Motecarlo trial are performed for each
SNR. The array shape which is arbitrary here is remained
shame that means the sensors are not changing their position
through out the estimation process. Here very small number of
(L =20) snapshots taken for PSO-ML estimation, but to achive
theoretical bound MUSIC algorithms need 2000 snapshots. So
that MUSIC needs more communication among the nodes to
have all the information at central processor for the estimation.

VI. CONCLUSION

Here we proposed a new method to estimate the direction
of arrival of sources in wireless sensor network. In the
network every node participate to estimate source bearing by
optimizing the ML function after forming the whole network
as an arbitrary array. This methods gives best performance
even at low SNR compared to other algortithm. The PSO-ML
estimates required very less number of snapshots than MUSIC,
so that the data communication is reduced here which is the
another advatage for energy efficient WSN.
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