
P a g e | 383

A Hardware implementation of IDEA cryptosystem

using a recursive multiplication approach.

Sourav Mukherjee

Department of Computer Science and Engineering

National Institute of Technology, Rourkela

Rourkela, Orissa, 769008

Email: - souravnitr@gmail.com

Bibhudatta Sahoo

 Department of Computer Science and Engineering

National Institute of Technology, Rourkela

Rourkela, Orissa, 769008

Email: - bibhudatta.sahoo@gmail.com

Abstract—This paper covers the implementation of the

International Data Encryption Algorithm (IDEA) using Very

Large Scale Integrated Circuits Hardware Description Language

(VHDL) with the help of Xilinx – ISE 10.1. In terms of security,

this algorithm is very much superior and is already patented by

Ascom. The whole algorithm is divided into modules and among

all of them the most time consuming one is the modulo

multiplication module. The multiplication algorithm that is used

computes the product in a recursive fashion and it uses Divide

and Conquer approach during multiplication, as mentioned in

[2], which ultimately consumes less time and increases the

throughput in the algorithm. Moreover the design is made

pipelined for increasing the throughput. The block size

considered here is same as of traditional IDEA encryption

algorithm [1] which is of 64 bits with 16 bit sub-blocks [1].

Keywords-CryptographicAlgorithm,IDEA,Hardware

Implementations,Modulo Multiplier,VHDL,Partial Products.

I. INTRODUCTION

Cryptography is the art of keeping data secure from
unauthorized access so as to guarantee that only the intended
users can access it. As computer technologies are getting
advanced, more and more cryptographic applications are used.
They are mainly used to support other applications which are
very much sensitive to data security such as smart cards and
commercial data exchange over a network. Not only for
personal use but cryptographic algorithms are also very
important in every aspect of professional activities.

 A cryptographic algorithm generally consists of some
specialized arithmetic computations which are complicated in
terms of time complexity. It is because of the fact that these
algorithms work with large amount of data either in blocks or
simply in streams. Although a single traditional CPU is enough
for performing these computations, but for a machine which
works as a server in a huge network gets millions of client
requests for performing cryptographic operations for them
individually. This makes the workload huge. The
computational resources may also be limited for example in
smartcards, mobile phones, handheld computers, etc. Moreover
if the associated network is of high speed, the speed of the
necessary cryptographic computations also needs to be taken
into account. For example in transmitting audio and video data
for cable TV, pay TV, video conferencing and sensitive

financial and commercial data, the speed of the cryptographic
module to be embedded ,needs to be very high. Moreover for
security related issues in wireless and sensor networks, there is
a need for separate hardware device with very high processing
rate because of limited battery of the nodes and for optimizing
the bandwidth efficiency. So from the viewpoint of high speed
and throughput, traditional software implementations of these
complicated cryptographic algorithms are not efficient in real
time applications like ATM, VPN, etc. This forces the system
designers to go for hardware implementation of the
cryptosystems [6].

Traditionally hardware implementations are based on ASIC
technology, but they are not quite affordable every time
especially in monetary terms. Moreover these ASICs are not
adaptable to new changes once the hardware is built. The more
efficient and convenient method is to use FPGA platforms
which provides sufficient logics and storage elements on which
any complex algorithm can be implemented [3]. They are
adaptable to new changes and their granularity matches quite
well with the cryptographic algorithms.

In this paper, the cipher used is a symmetric key block cipher
named IDEA. It takes its input as 64 bit plain text and gives a
64 bit cipher text as output using a 128 bit key. While working
on plain text, it divides the input data into 16 bit sub-blocks and
operates on each block. It is described as one of the most
secure block algorithm due to its high immunity to attacks. In
spite of the fact that Data Encryption standard (DES) is another
popular symmetric block cipher which is used in several
financial and business applications, its drawback is the short
key word length (56 bits), therefore highly prone to
cryptanalysis attack. Thus IDEA is stronger compared to DES
as it involves 128 bit key word length. Moreover unlike DES,
IDEA doesn’t need any S-Box or P-Box for permutation and
substitution, so no memory module is required for
implementing this cipher. The most crucial module of this
algorithm is the design of the multiplier modulo a Fermat
prime, which is one of the algebraic group operation used and
the entire speed of IDEA depends on this module. So designing
the multiplier is a major during the hardware or software
implementation of IDEA because its speed is a big issue when
hardware implemented IDEA is used in real time applications.
The overall objective for hardware implementation of IDEA is
to minimize the hardware requirements which results in

P a g e | 384

efficient use of silicon area and at the same time improve the
processing speed and high throughput of data. As the
performance of IDEA cipher depends entirely on the modulo
(2

n
 + 1) multiplier design, the main objective is to design an

efficient and fast modulo multiplier which is to be used in the
entire IDEA algorithm.

The organization of the rest of the paper is as follows. The
previous hardware and software implementations are covered
in section II. Section III describes the IDEA cipher and its
detailed operations as well as modules. Section IV describes
the general architecture of the cryptosystem to be implemented
and the proposed modulo multiplier architecture. Section V
discusses the performance reviews and comparisons with
previous schemes and section VI finally concludes the paper.

II. PREVIOUS WORK

In spite of the fact that IDEA works with 16 bit word
blocks, software implemented IDEA cannot reach the speed
that is required for online encryption in high speed networks.
IDEA was implemented in software by Ascom, the patent
holder of IDEA, and it achieved an encryption rate of 23.53
Mbps. Helger [11] proposed an approach using the Intel
Pentium II 233MHz machine and achieved an encryption rate
of 32.9 Mbps. Mencer [12] proposed a design of IDEA
processor which achieved 528 Mbps on 4 XC4020XL devices.
The first VLSI implementation of IDEA was developed and
verified by Bonnenberg [13] using a CMOS technology with
an encryption rate of 44 Mbps. With a system clock frequency
of 25 MHz, Curiger et al. performed 177 Mbps VLSI
implementation of IDEA [8]. Wolter reported a 355 Mbps
VLSI implementation [14] in 1995. This is followed by
Salomao’s approach of single round implementation on chip
with 424 Mbps data conversion rate. In another approach, the
modulus multiplier is optimized using temporal parallelism and
implemented with VHDL with a data conversion rate of 522
Mbps with comparatively less area requirements. Later Leong
[3] proposed a 500 Mbps bit serial implementation of IDEA on
Xilinx Virtex XCV300 -6 FPGA which is followed by
Goldstein’s approach with conversion rate of 1013 Mbps.
Finally Ascom developed IDEACrypt Kernel with a speed of
720 Mbps. Recently Thaduri [5] implemented IDEA cipher
having a throughput of 700 Mb/s.

III. THE IDEA BLOCK CIPHER

In this section, the entire algorithm for the IDEA block
cipher is elaborated. It is a symmetric key cipher. The block
size of data on which IDEA operates, is of 64 bit and the key
size is of 128 bits. But all data operations in IDEA cipher are in
16 bit unsigned integers. The length of the incoming data
should be either in normal in integer multiple of 64 bits or if
not, is made by using padding bits. At the end of the algorithm,
a 64 bit cipher text is created.

A. Basic structure of IDEA cipher.

IDEA is based on mixing operation of three different
algebraic groups which are

• XOR (bitwise).

• Addition modulo 2�.

• Multiplication modulo (2� + 1).

The security of IDEA depends on these three operations.
The basic structure of IDEA cipher [9] is shown in Figure 1.

Figure 1. Basic structure of IDEA Cipher and its data flow

The IDEA cipher consists of 8 rounds which are identical in
nature and a last output transformation round which is similar
to upper half of any round. Before the starting of 1st round, the
input 64 bit plain text is divided into four 16 bit sub-blocks,
X1, X2, X3 and X4 respectively. At the end of encryption
phase, four 16 bit sub-blocks of cipher text is created. Each
round uses six 16 bit sub-key blocks Z1

 (n)
, Z2

 (n)
, … , Z6

(n)

which are made from the input 128 bit key. The super-script n
denotes the nth round. The output transformation phase, which
is considered as 9

th
 or the last round, uses 4 sub-keys, Z1

 (9)
, Z1

(9)
, Z1

 (9)
, Z1

 (9)
. Every round except the 1

st
 round, uses the output

sub-blocks produced in the previous round. In between every
round, the 2

nd
 and the 3

rd
 sub-blocks are swapped. The entire

algorithm uses only three different algebraic group operations
which are XOR, addition modulo 2

16
 and multiplication

modulo (2
16

 + 1). The encryption phase of IDEA thus uses
[(8*6) + 4] i.e. 52 sub-key blocks, which are made from the
128 bit input key. As IDEA involves only algebraic operations,
no look-up tables or S-Boxes are used like DES or AES.

The decryption phase of IDEA is identical to that of the
encryption phase. It uses the same sequence of operations as in
the encryption phase. The only change is that the sub-keys are
reversed and are slightly different. That means the sub-keys
which are used in round 1 during encryption phase are

X1 X3 X4X2

Z1
(1)

Z2
(1)

Z3
(1) Z4

(1)

Z5
(1)

Z6
(1)

SEVEN MORE

SIMILAR ROUNDS
OUTPUT

TRANSFORMATION

C1
C2 C4

C3

BITWISE XOR

16 BIT INTEGER ADDITION MODULO

2
16

16 BIT INTEGER MULTIPLICATION

MODULO (2
16
+ 1)

Z1
(9) Z2

(9)
Z3

(9)
Z4

(9)

ROUND 1

P a g e | 385

manipulated during last round of decryption phase. The sub-
keys used in decryption are either additive or multiplicative
inverse of the sub-keys used in the encryption phase.

B. Key Generation

The key generation phase of IDEA generates 52 sub-keys
from the 128 bit input key. The basic steps of generating the
encryption keys are:

• All the sub-keys are named as Z1
(1),….Z6

(1) ,
Z1

(2)
,….Z6

(2)
 , … , Z1

(8)
,….Z6

(8)
 , Z1

(9)
,….Z4

(9)
.

• From the input 128 bit key, eight sub-blocks of 16
bits are partitioned and are assigned to
Z1

(1)
,….Z2

(2)
directly.

• Now the original 128 bit key block is rotated by
25 bits and a new 128 bit block is formed. Now
another eight sub-blocks are generated from this
new block.

• The rotation procedure is repeated until and unless
sub-blocks used in previous rounds are found.

Figure 2. IDEA Encryption Key generation

Once the encryption keys are generated, the decryption
keys can be generated directly by taking their additive inverse
modulo 2

16
 and multiplicative inverse modulo (2

16 +
1) as

required.

IV. ARCHITECTURE AND VHDL IMPLEMENTATION

The main objective of implementing a cryptosystem is to
increase the data encryption and decryption rate so as to

increase the throughput. FPGA implementations of
cryptosystem offer adequate speed so that it can be easily
embedded in real time applications. To implement an algorithm
in hardware, we have to first realize the architecture of the
entire system. The general architecture of hardware
implementation of a cryptosystem is shown in Figure 3.

Figure 3. Hardware implementation of a Cryptosystem.

By implementing a cryptosystem in hardware, we can embed it
as a separate encryption/Decryption module such that no extra
overhead related to data security is required by the other
modules.

A. Hardware Implementation of IDEA.

The IDEA cipher has three separate units other than key
generation module. The performance and speed of hardware
implemented IDEA depends on these three modules. These
modules are:

• Multiplier Module.

• Addition unit.

• Inverse modulo Multiplier.

Among these modules, the main component which

controls the speed and performance of IDEA is the modulo

(2
n
 + 1) multiplier module. It consumes the major portion

of the clock cycles required by the entire algorithm. The

modulus used in the multiplication is a Fermat prime

INPUT BUFFER

KEY SCHEDULING

MODULE

MODE OF OPERATION

OF THE CRYPTOSYSTEM

OUTPUT BUFFER

ENCRYPTION

OR

DECRYPTION

To other modules

P a g e | 386

which is (2�� + 1). One important thing here is that the

operand 0 is treated as 2�� . The implementation of this

multiplier in hardware is the most difficult task because

the word length of the operands is comparatively large and

implementing the multiplication sequentially is really time

consuming.

B. Multiplication Modulo)12(+
n

Multiplication modulo a Fermat prime (p) is used as an
important operation in many algorithms and it is crucial in
various applications like pseudorandom number generation,
Arithmetic processing and Cryptography [8]. In IDEA
algorithm, this modulo multiplier plays a very important role in
the throughput and speed. In general, a modulo multiplier
consists of two stages, Multiplier module and modulo
reduction. This paper mainly deals with the various
multiplication schemes that have been implemented along with
some newly proposed schemes.

The multiplier module is the stage where two binary n bit
numbers are multiplied to form a product of 2n bits. The
modulo reduction stage produce the product modulo the Fermat
prime number and the final output becomes an n bit number.
Various implementations have been done on this multiplier
module so as to improve the efficiency of the cryptosystem.
The most crucial part of multiplying two binary numbers is the
generation of partial products. A lot of problems arise when
two numbers are multiplied in a straightforward approach in
hardware. As per human nature of calculation, when any
expression is given as

zzxy
nn

=+=+)12mod(')12mod(

At first the product is calculated by traditional method and then
the modulo reduction is done by iterative subtraction method
until the value falls under the range of 0 and 2� .But the
drawbacks of this implementation is inefficient use of silicon
area which increases the hardware cost and it is time
consuming.

Various techniques have been implemented before for
multiplying two binary numbers of n bits where n is
comparatively large.

• One of the implemented methods is the look-up table
method where the two numbers to be multiplied forms
an address in a table and in that address the product of
the two numbers is to be stored. This method is very
inefficient in terms of storage requirements as it takes

a memory space of nn
×

22 bits for n bit numbers.

• Another implemented approach for binary
multiplication is the sequential method of shift and
add technique. A binary 1 in multiplier just adds the
multiplicand with the partial product and a value 0
does nothing except shifting the partial product. This
technique requires n iterations for an n bit number and
thus the performance depends on the number of bits in
the multiplier. This approach is efficient when there is
a long sequence of 0’s in the multiplier.

• A slightly more efficient algorithm is the Booth’s
multiplication and its modified scheme. This approach
is also used for signed 2’s complement multiplication.
Here instead of checking every individual bits of
multiplier, the checking is done on bit pair for judging
whether the multiplier has sequences of 0’s or 1’s.

• For fast implementations, Wallace trees are used.
Wallace tree is an interconnection of carry save
adders where the main objective is to reduce the
number of partial products. In the last stage carry save
adders are used for fast addition.

• For further increase of throughput, parallelism is
exploited both in temporal and spatial aspects. In the
pipelined approach, the advantage is that it takes
sufficiently less time for giving the results but
increases area consumption in slices. In the parallel
approach, the multiplicand and the multiplier bits are
processed parallel and there is no iterative addition of
partial products. So in this case also, the time taken is
much less but the design complexity is more

C. Proposed multiplier scheme and architecture

In this paper, the multiplier proposed is different from the

previous implemented approaches. It uses a divide and conquer

strategy where it divides the entire problem and each sub-

problems are solved recursively. The basic strategy of this

design is shown in Figure 4. This is new approach [2] for

multiplication which is incorporated in IDEA hardware

implementation. This algorithm is special in the sense that

instead of having n additions for n bit multiplications; it is

having)log(n additions. The basic idea is discussed below.

Figure 4: Divide and Conquer strategy for multiplying two

N bit numbers.

If A and B are two N bit binary numbers and if they are

split into two halves as AHAL and BHBL respectively, four

N/2 bit multipliers can be used to calculate four partial

products which are AHBH , ALBL , AHBL , ALBH . Then the

partial products can be arranged as shown in Figure 4. This

is one step of breaking N X N bit multiplication into

22
NN × bit multiplication. These

22
NN × bit multipliers

can be further degraded into four
4

N bit multipliers in the

same way. So in general way we are breaking a problem

P a g e | 387

into a number of sub problems and each such sub problems

are solved recursively. This is Divide and Conquer

strategy. The basic idea of this recursive approach [2] is to

break the larger number into smaller numbers and multiply

them in parallel and then combine their result to get the

final product.
If two unsigned binary numbers are represented as

i
n

i

iaA 2
1

0

∑
−

=

= and
i

n

i

ibB 2
1

0

∑
−

=

=

And if

∑
=

=

n

ni

i

iaA

2

1 2 and ∑
=

=

n

ni

i

ibB

2

1 2

∑
−

=

=

1
2

0

0 2

n

i

i

iaA and ∑
−

=

=

1
2

0

0 2

n

i

i

ibB

 ……………………. (1)

Such that

0
2

12 AAA
n

+=

0
2

12 BBB
n

+= ……………………………………... (2)

Then

00
2

01
2

1011 2)(2)(2)(BABABABAAB
nn

n
+++=

 ………………………………….. (3)

So from (3), we can conclude that multiplication of
two n bit numbers involves four n/2 bit multiplications and
addition of four results.

However the addition (A1 * B1)* 2� + (A0 * B0) takes
no time as there is no overlapping of digits between them.
So it requires only concatenation of two n bit sub-products.
The block diagram of N bit recursive fast multiplier [2] is
shown in Figure 5.

Base condition [2] can be anything in this context.
The original numbers can be divided into small bit numbers
until they are small enough to be multiplier directly. Here
the approach is to break them into 2 bit multiplications using
logic gates. Suppose the two 2 bit numbers are a1a0 and b1b0 .

Using logic gates, the final product P3P2P1P0 can be
written as

))((00113 babaP =

))(('

0

'

0112 babaP +=

)))((()))((('

0

'

110

'

1

'

0011 babababaP +++=

)(000 baP =

This above multiplier contains 12 two input logic gates.

Figure 5. Block diagram of N bit recursive fast multiplier

After calculating the final product of the two numbers, the
modulo reduction is performed. This is done using Low High
Lemma introduced by Lai and Massey [1]

nnn
divxyxyxy 2)(2mod)()12mod()(−=+

If
nn

divxyxy 2)(2mod)(≥

Else if
nn

divxyxy 2)(2mod)(<

122)(2mod)()12mod()(++−=+
nnnn

divxyxyxy

Here
n

xy 2mod)(corresponds to the least significant bits of

xy and
n

divxy 2)(corresponds to right-shift of xy by n bits.

One thing to note is that
nn

divxyxy 2)(2mod)(= implies

that the value of 0)12mod()(=+
n

xy but it is not possible

as 1216
+ is a prime number.

P a g e | 388

Figure 6. Pipelined architecture of the proposed multiplier.

For increasing the throughput of the design, a three stage
pipeline is used in the original modulo multiplier. To do this,
pipelined registers are incorporated inside the design which is
driven by clocks. The pipelined architecture is shown in Figure
6

V. RESULTS AND OBSERVATIONS

The performance parameters [10] which are to be accounted
for implementing IDEA in hardware are:

• Throughput or data conversion rate: It is taken as an
important tool for measuring the timing performance
of IDEA i.e. the amount of data processed and
encrypted per unit of time.

• Area Requirements: It can be reported either in terms
of number of Look-Up Tables (LUTs) or number of
slices.

• Maximum Clock frequency: It is the maximum clock
frequency that can be achieved by the design.

• Latency: It denotes the delay i.e. the time taken for the
input data to move to the output port. For a pipelined
design, the latency is measured by product of delay of
a single pipelined stage and the number of pipelined
stages.

The proposed multiplier is synthesized using VHDL and the
synthesis report is given in Table I.

TABLE I

Preferred FPGA

Device

Virtex2P-XC2VP40-FG676-7

Number of slices

used

264

Number of internal

multiplier used

4

Maximum clock

Frequency

 1099.505 MHz

Minimum input

arrival time before

clock

15.153 ns

Maximum output

required after clock

8.135 ns

Size of bits processed 16

Table I shows the data corresponding to the implemented

multiplier and the corresponding test bench waveform is

shown in Figure 7. From this Table I, the throughput can be

calculated as

cyclesclockofNumber

bitsofnumberffrequencyAllowed
Throughput

__)(_ ×
=

So based on the operational frequency (f), the throughput will

be different.

Figure 7. Test bench waveform of the implemented
multiplier

VI. CONCLUSION

This paper gives a thorough study of the previous implemented
schemes of the IDEA block cipher in hardware. Finally, a new
multiplication scheme has been proposed which follows a
divide and conquers strategy to get the final result. The
proposed design is implemented and synthesized using VHDL
and it is found that it works faster than traditional
multiplication algorithm. For 16 bit numbers, the
decomposition can be made as 16 => 8 => 4 => 2. So instead
of taking N additions, this algorithm now takes log (N), N bit
additions as a whole. Although the IDEA algorithm is not
implemented as a whole using this multiplication algorithm, it
is expected to give a comparatively better result that the
sequential approach. The implementation is partial in the sense

that only the modulo)12(+
n

multiplier, which is one of the

main module of this IDEA block cipher, is tested. The other
modules are yet to be tested as a whole for testing the entire
encryption-decryption process. The concept of modified
Booth’s recoding is also planned to be incorporated in future
work. The performance of the cipher using this scheme is yet to
achieve.

REFERENCES

[1] X.Lai and J.L Massey “A Proposal for a New Block Encryption

Standard,” in advances in Cryptology – EUROCRYPT
90,Berlia,Germany: Springer Verlag pp. 389-404, 1990.

[2] Albert N.Danysh, A Recursive Fast Multiplier, Signals, Systems &
Computers, 1998, pp.197-201

[3] Tsoi Kuen Hung,Leong,” Cryptographic Primitives on Reconfigurable
Platforms”, PhD thesis,The Chinese University of Hong Kong,2002.

[4] R.Zimmermann,A.Curiger,H.Bonnenberg,H.Kaeslin,N.Felher,W.Fitchne
r,”A 177 Mb/s VLSI Implementation of the International Data
Encryption Algorithm”, IEEE Journal of Solid State
Circuit,vol.29,110.3,pp.303-307,March 1994.

[5] Thaduri,M.,Yoo,S. and Gaede,R, “ An Efficient Implementation of
IDEA encryption algorithm using VHDL”, ©2004 Elsevier.

[6] P. Kitsos *, N. Sklavos, M.D. Galanis, O. Koufopavlou , “64 Bit Block
ciphers: Hardware Implementations and Comparison analysis”,593-
604,3rd November,2004,Elsevier.

[7] Stefan Wolter,Hogler Matz,Andreas Schubert and Ruiner Laur, “ On the
VLSI Implementation of International Data Encryption Algorithm.”, ©
IEEE 1995.

[8] Curiger,Bonnenberg and Kaeslin,H., “Regular VLSI Architecture for
Multiplication Modulo (2� + 1) .”,IEEE Journal of Solid State
Circuits,vol.27,NO. 7,July 1991,pp 990-994.

[9] Bruce Schneier,”Applied Cryptography”, 2nd Edition,Wiley publications.

[10] Francisco Rodríguez-Henríquez, N. A. Saqib, A. Díaz-Pèrez, and Cetin
Kaya Koc. 2006.Cryptographic Algorithms on Reconfigurable
Hardware (Signals and Communication Technology). Springer-Verlag
New York, Inc., Secaucus, NJ, USA.

[11] Helger Lipmaa. Idea: A cipher for multimedia architectures, In Selected
Areas in Cryptography 98, pages 248{263. Springer-Verlag, 1998.

P a g e | 389

[12] O. Mencer, M. Morf, and M.J. Flynn. Hardware software tri-design of

encryption for mobile communication units. In Acoustics, Speech and

Signal Processing, 1998. Proceedings of the 1998 IEEE International

Conference on, volume 5, pages 3045 –3048 vol.5, May 1998.

[13] H. Bonnenberg, Andreas Curiger, Norbert Felber, Hubert Kaeslin, and
Xuejia Lai. Vlsi implementation of a new block cipher. In Proceedings
of the 1991 IEEE International Conference on Computer Design on

VLSI in Computer & Processors, ICCD ’91, pages 510–513,
Washington, DC, USA, 1991. IEEE Computer Society.

[14] Stefan Wolter,Hogler Matz,Andreas Schubert and Ruiner Laur, “ On the
VLSI Implementation of International Data Encryption Algorithm.”, ©
IEEE 1995.

