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Abstract—This paper covers the implementation of the 

International Data Encryption Algorithm (IDEA) using Very 

Large Scale Integrated Circuits Hardware Description Language 

(VHDL) with the help of Xilinx – ISE 10.1. In terms of security, 

this algorithm is very much superior and is already patented by 

Ascom. The whole algorithm is divided into modules and among 

all of them the most time consuming one is the modulo 

multiplication module. The multiplication algorithm that is used 

computes the product in a recursive fashion and it uses Divide 

and Conquer approach during multiplication, as mentioned in 

[2], which ultimately consumes less time and increases the 

throughput in the algorithm. Moreover the design is made 

pipelined for increasing the throughput. The block size 

considered here is same as of traditional IDEA encryption 

algorithm [1] which is of 64 bits with 16 bit sub-blocks [1]. 

Keywords-CryptographicAlgorithm,IDEA,Hardware 

Implementations,Modulo Multiplier,VHDL,Partial Products. 

I.  INTRODUCTION  

Cryptography is the art of keeping data secure from 
unauthorized access so as to guarantee that only the intended 
users can access it. As computer technologies are getting 
advanced, more and more cryptographic applications are used. 
They are mainly used to support other applications which are 
very much sensitive to data security such as smart cards and 
commercial data exchange over a network. Not only for 
personal use but cryptographic algorithms are also very 
important in every aspect of professional activities. 

 A cryptographic algorithm generally consists of some 
specialized arithmetic computations which are complicated in 
terms of time complexity. It is because of the fact that these 
algorithms work with large amount of data either in blocks or 
simply in streams. Although a single traditional CPU is enough 
for performing these computations, but for a machine which 
works as a server in a huge network gets millions of client 
requests for performing cryptographic operations for them 
individually. This makes the workload huge. The 
computational resources may also be limited for example in 
smartcards, mobile phones, handheld computers, etc. Moreover 
if the associated network is of high speed, the speed of the 
necessary cryptographic computations also needs to be taken 
into account. For example in transmitting audio and video data 
for cable TV, pay TV, video conferencing and sensitive 

financial and commercial data, the speed of the cryptographic 
module to be embedded ,needs to be very high. Moreover for 
security related issues in wireless and sensor networks, there is 
a need for separate hardware device with very high processing 
rate because of limited battery of the nodes and for optimizing 
the bandwidth efficiency. So from the viewpoint of high speed 
and throughput, traditional software implementations of these 
complicated cryptographic algorithms are not efficient in real 
time applications like ATM, VPN, etc. This forces the system 
designers to go for hardware implementation of the 
cryptosystems [6]. 

Traditionally hardware implementations are based on ASIC 
technology, but they are not quite affordable every time 
especially in monetary terms. Moreover these ASICs are not 
adaptable to new changes once the hardware is built. The more 
efficient and convenient method is to use FPGA platforms 
which provides sufficient logics and storage elements on which 
any complex algorithm can be implemented [3]. They are 
adaptable to new changes and their granularity matches quite 
well with the cryptographic algorithms. 

In this paper, the cipher used is a symmetric key block cipher 
named IDEA. It takes its input as 64 bit plain text and gives a 
64 bit cipher text as output using a 128 bit key. While working 
on plain text, it divides the input data into 16 bit sub-blocks and 
operates on each block. It is described as one of the most 
secure block algorithm due to its high immunity to attacks. In 
spite of the fact that Data Encryption standard (DES) is another 
popular symmetric block cipher which is used in several 
financial and business applications, its drawback is the short 
key word length (56 bits), therefore highly prone to 
cryptanalysis attack. Thus IDEA is stronger compared to DES 
as it involves 128 bit key word length. Moreover unlike DES, 
IDEA doesn’t need any S-Box or P-Box for permutation and 
substitution, so no memory module is required for 
implementing this cipher. The most crucial module of this 
algorithm is the design of the multiplier modulo a Fermat 
prime, which is one of the algebraic group operation used and 
the entire speed of IDEA depends on this module. So designing 
the multiplier is a major during the hardware or software 
implementation of IDEA because its speed is a big issue when 
hardware implemented IDEA is used in real time applications. 
The overall objective for hardware implementation of IDEA is 
to minimize the hardware requirements which results in 
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efficient use of silicon area and at the same time improve the 
processing speed and high throughput of data. As the 
performance of IDEA cipher depends entirely on the modulo 
(2

n
 + 1) multiplier design, the main objective is to design an 

efficient and fast modulo multiplier which is to be used in the 
entire IDEA algorithm. 

The organization of the rest of the paper is as follows. The 
previous hardware and software implementations are covered 
in section II. Section III describes the IDEA cipher and its 
detailed operations as well as modules. Section IV describes 
the general architecture of the cryptosystem to be implemented 
and the proposed modulo multiplier architecture. Section V 
discusses the performance reviews and comparisons with 
previous schemes and section VI finally concludes the paper. 

II. PREVIOUS WORK 

In spite of the fact that IDEA works with 16 bit word 
blocks, software implemented IDEA cannot reach the speed 
that is required for online encryption in high speed networks. 
IDEA was implemented in software by Ascom, the patent 
holder of IDEA, and it achieved an encryption rate of 23.53 
Mbps. Helger [11] proposed an approach using the Intel 
Pentium II 233MHz machine and achieved an encryption rate 
of 32.9 Mbps. Mencer [12] proposed a design of IDEA 
processor which achieved 528 Mbps on 4 XC4020XL devices. 
The first VLSI implementation of IDEA was developed and 
verified by Bonnenberg [13] using a CMOS technology with 
an encryption rate of 44 Mbps. With a system clock frequency 
of 25 MHz, Curiger et al. performed 177 Mbps VLSI 
implementation of IDEA [8]. Wolter reported a 355 Mbps 
VLSI implementation [14] in 1995. This is followed by 
Salomao’s approach of single round implementation on chip 
with 424 Mbps data conversion rate. In another approach, the 
modulus multiplier is optimized using temporal parallelism and 
implemented with VHDL with a data conversion rate of 522 
Mbps with comparatively less area requirements. Later Leong 
[3] proposed a 500 Mbps bit serial implementation of IDEA on 
Xilinx Virtex XCV300 -6 FPGA which is followed by 
Goldstein’s approach with conversion rate of 1013 Mbps. 
Finally Ascom developed IDEACrypt Kernel with a speed of 
720 Mbps. Recently Thaduri [5] implemented IDEA cipher 
having a throughput of 700 Mb/s. 

III. THE IDEA BLOCK CIPHER 

In this section, the entire algorithm for the IDEA block 
cipher is elaborated. It is a symmetric key cipher. The block 
size of data on which IDEA operates, is of 64 bit and the key 
size is of 128 bits. But all data operations in IDEA cipher are in 
16 bit unsigned integers. The length of the incoming data 
should be either in normal in integer multiple of 64 bits or if 
not, is made by using padding bits. At the end of the algorithm, 
a 64 bit cipher text is created. 

A. Basic structure of IDEA cipher. 

IDEA is based on mixing operation of three different 
algebraic groups which are  

• XOR (bitwise).  

• Addition modulo 2�. 

• Multiplication modulo (2� +  1).  

The security of IDEA depends on these three operations. 
The basic structure of IDEA cipher [9] is shown in Figure 1. 

 

 

Figure 1. Basic structure of IDEA Cipher and its data flow 

The IDEA cipher consists of 8 rounds which are identical in 
nature and a last output transformation round which is similar 
to upper half of any round. Before the starting of 1st round, the 
input 64 bit plain text is divided into four 16 bit sub-blocks, 
X1, X2, X3 and X4 respectively. At the end of encryption 
phase, four 16 bit sub-blocks of cipher text is created. Each 
round uses six 16 bit sub-key blocks Z1

 (n)
, Z2

 (n)
, … , Z6

(n)
 

which are made from the input 128 bit key. The super-script n 
denotes the nth round. The output transformation phase, which 
is considered as 9

th
 or the last round, uses 4 sub-keys, Z1

 (9)
, Z1

 

(9)
, Z1

 (9)
, Z1

 (9)
. Every round except the 1

st
 round, uses the output 

sub-blocks produced in the previous round. In between every 
round, the 2

nd
 and the 3

rd
 sub-blocks are swapped. The entire 

algorithm uses only three different algebraic group operations 
which are XOR, addition modulo 2

16
 and multiplication 

modulo (2
16

 + 1). The encryption phase of IDEA thus uses 
[(8*6) + 4] i.e. 52 sub-key blocks, which are made from the 
128 bit input key. As IDEA involves only algebraic operations, 
no look-up tables or S-Boxes are used like DES or AES.    

The decryption phase of IDEA is identical to that of the 
encryption phase. It uses the same sequence of operations as in 
the encryption phase. The only change is that the sub-keys are 
reversed and are slightly different. That means the sub-keys 
which are used in round 1 during encryption phase are 
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manipulated during last round of decryption phase. The sub-
keys used in decryption are either additive or multiplicative 
inverse of the sub-keys used in the encryption phase. 

B. Key Generation 

The key generation phase of IDEA generates 52 sub-keys 
from the 128 bit input key. The basic steps of generating the 
encryption keys are: 

• All the sub-keys are named as Z1
(1),….Z6

(1) ,  
Z1

(2)
,….Z6

(2) 
 , … , Z1

(8)
,….Z6

(8)  
 , Z1

(9)
,….Z4

(9)
.  

• From the input 128 bit key, eight sub-blocks of 16 
bits are partitioned and are assigned to 
Z1

(1)
,….Z2

(2)    
directly. 

• Now the original 128 bit key block is rotated by 
25 bits and a new 128 bit block is formed. Now 
another eight sub-blocks are generated from this 
new block. 

• The rotation procedure is repeated until and unless 
sub-blocks used in previous rounds are found. 

 

 

Figure 2.  IDEA Encryption Key generation 

 

Once the encryption keys are generated, the decryption 
keys can be generated directly by taking their additive inverse 
modulo 2

16  
 and multiplicative inverse modulo (2

16 + 
1) as 

required. 

IV. ARCHITECTURE AND VHDL IMPLEMENTATION 

The main objective of implementing a cryptosystem is to 
increase the data encryption and decryption rate so as to 

increase the throughput. FPGA implementations of 
cryptosystem offer adequate speed so that it can be easily 
embedded in real time applications. To implement an algorithm 
in hardware, we have to first realize the architecture of the 
entire system. The general architecture of hardware 
implementation of a cryptosystem is shown in Figure 3. 

 

Figure 3.  Hardware implementation of a Cryptosystem. 

By implementing a cryptosystem in hardware, we can embed it 
as a separate encryption/Decryption module such that no extra 
overhead related to data security is required by the other 
modules. 

A. Hardware Implementation of IDEA. 

The IDEA cipher has three separate units other than key 
generation module. The performance and speed of hardware 
implemented IDEA depends on these three modules. These 
modules are: 

• Multiplier Module. 

• Addition unit. 

• Inverse modulo Multiplier. 

Among these modules, the main component which 

controls the speed and performance of IDEA is the modulo 

(2
n
 + 1)  multiplier module. It consumes the major portion 

of the clock cycles required by the entire algorithm. The 

modulus used in the multiplication is a Fermat prime 
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which is (2�� +  1). One important thing here is that the 

operand 0 is treated as 2�� . The implementation of this 

multiplier in hardware is the most difficult task because 

the word length of the operands is comparatively large and 

implementing the multiplication sequentially is really time 

consuming. 

B. Multiplication Modulo )12( +
n

 

Multiplication modulo a Fermat prime (p) is used as an 
important operation in many algorithms and it is crucial in 
various applications like pseudorandom number generation, 
Arithmetic processing and Cryptography [8]. In IDEA 
algorithm, this modulo multiplier plays a very important role in 
the throughput and speed. In general, a modulo multiplier 
consists of two stages, Multiplier module and modulo 
reduction. This paper mainly deals with the various 
multiplication schemes that have been implemented along with 
some newly proposed schemes. 

The multiplier module is the stage where two binary n bit 
numbers are multiplied to form a product of 2n bits. The 
modulo reduction stage produce the product modulo the Fermat 
prime number and the final output becomes an n bit number. 
Various implementations have been done on this multiplier 
module so as to improve the efficiency of the cryptosystem. 
The most crucial part of multiplying two binary numbers is the 
generation of partial products. A lot of problems arise when 
two numbers are multiplied in a straightforward approach in 
hardware. As per human nature of calculation, when any 
expression is given as 

zzxy
nn

=+=+ )12mod(')12mod(  

At first the product is calculated by traditional method and then 
the modulo reduction is done by iterative subtraction method 
until the value falls under the range of 0 and  2� .But the 
drawbacks of this implementation is inefficient use of silicon 
area which increases the hardware cost and it is time 
consuming. 

Various techniques have been implemented before for 
multiplying two binary numbers of n bits where n is 
comparatively large. 

• One of the implemented methods is the look-up table 
method where the two numbers to be multiplied forms 
an address in a table and in that address the product of 
the two numbers is to be stored. This method is very 
inefficient in terms of storage requirements as it takes 

a memory space of nn
×

22  bits for n bit numbers. 

• Another implemented approach for binary 
multiplication is the sequential method of shift and 
add technique. A binary 1 in multiplier just adds the 
multiplicand with the partial product and a value 0 
does nothing except shifting the partial product. This 
technique requires n iterations for an n bit number and 
thus the performance depends on the number of bits in 
the multiplier. This approach is efficient when there is 
a long sequence of 0’s in the multiplier. 

• A slightly more efficient algorithm is the Booth’s 
multiplication and its modified scheme. This approach 
is also used for signed 2’s complement multiplication. 
Here instead of checking every individual bits of 
multiplier, the checking is done on bit pair for judging 
whether the multiplier has sequences of 0’s or 1’s. 

• For fast implementations, Wallace trees are used. 
Wallace tree is an interconnection of carry save 
adders where the main objective is to reduce the 
number of partial products. In the last stage carry save 
adders are used for fast addition. 

• For further increase of throughput, parallelism is 
exploited both in temporal and spatial aspects. In the 
pipelined approach, the advantage is that it takes 
sufficiently less time for giving the results but 
increases area consumption in slices. In the parallel 
approach, the multiplicand and the multiplier bits are 
processed parallel and there is no iterative addition of 
partial products. So in this case also, the time taken is 
much less but the design complexity is more 

C. Proposed multiplier scheme and architecture 

In this paper, the multiplier proposed is different from the 

previous implemented approaches. It uses a divide and conquer 

strategy where it divides the entire problem and each sub-

problems are solved recursively. The basic strategy of this 

design is shown in Figure 4. This is new approach [2] for 

multiplication which is incorporated in IDEA hardware 

implementation. This algorithm is special in the sense that 

instead of having n additions for n bit multiplications; it is 

having )log(n  additions. The basic idea is discussed below. 

 

 
 

Figure 4: Divide and Conquer strategy for multiplying two 

N bit numbers. 

 

If A and B are two N bit binary numbers and if they are 

split into two halves as AHAL and BHBL respectively, four 

N/2 bit multipliers can be used to calculate four partial 

products which are AHBH , ALBL , AHBL , ALBH . Then the 

partial products can be arranged as shown in Figure 4. This 

is one step of breaking N X N bit multiplication into 

22
NN ×  bit multiplication. These 

22
NN ×  bit multipliers 

can be further degraded into four 
4

N  bit multipliers in the 

same way. So in general way we are breaking a problem 
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into a number of sub problems and each such sub problems 

are solved recursively. This is Divide and Conquer 

strategy. The basic idea of this recursive approach [2] is to 

break the larger number into smaller numbers and multiply 

them in parallel and then combine their result to get the 

final product.  
If two unsigned binary numbers are represented as 

i
n

i

iaA 2
1

0

∑
−

=

=   and 
i

n

i

ibB 2
1

0

∑
−

=

=  
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1
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0
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n
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i
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                                                       ……………………. (1) 

Such that  

0
2

12 AAA
n

+=  

0
2

12 BBB
n

+=  ……………………………………... (2) 

Then  

00
2

01
2

1011 2)(2)(2)( BABABABAAB
nn

n
+++=  

                                   ………………………………….. (3) 

So from (3), we can conclude that multiplication of 
two n bit numbers involves four n/2 bit multiplications and 
addition of four results. 

However the addition (A1 * B1)* 2� + (A0 * B0) takes 
no time as there is no overlapping of digits between them. 
So it requires only concatenation of two n bit sub-products. 
The block diagram of N bit recursive fast multiplier [2] is 
shown in Figure 5. 

Base condition [2] can be anything in this context. 
The original numbers can be divided into small bit numbers 
until they are small enough to be multiplier directly. Here 
the approach is to break them into 2 bit multiplications using 
logic gates. Suppose the two 2 bit numbers are a1a0 and b1b0 . 

 

Using logic gates, the final product P3P2P1P0 can be 
written as  

))(( 00113 babaP =  

))(( '

0

'

0112 babaP +=  

)))((()))((( '

0

'

110

'

1

'

0011 babababaP +++=  

)( 000 baP =  

This above multiplier contains 12 two input logic gates. 

 

Figure 5. Block diagram of N bit recursive fast multiplier 

 

After calculating the final product of the two numbers, the 
modulo reduction is performed. This is done using Low High 
Lemma introduced by Lai and Massey [1] 

nnn
divxyxyxy 2)(2mod)()12mod()( −=+  

If 
nn

divxyxy 2)(2mod)( ≥  

Else if  
nn

divxyxy 2)(2mod)( <  

122)(2mod)()12mod()( ++−=+
nnnn

divxyxyxy  

Here 
n

xy 2mod)( corresponds to the least significant bits of 

xy and 
n

divxy 2)( corresponds to right-shift of xy by n bits. 

One thing to note is that 
nn

divxyxy 2)(2mod)( = implies 

that the value of 0)12mod()( =+
n

xy  but it is not possible 

as 1216
+  is a prime number. 
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Figure 6. Pipelined architecture of the proposed multiplier. 

 

For increasing the throughput of the design, a three stage 
pipeline is used in the original modulo multiplier.  To do this, 
pipelined registers are incorporated inside the design which is 
driven by clocks. The pipelined architecture is shown in Figure 
6 

V. RESULTS AND OBSERVATIONS 

The performance parameters [10] which are to be accounted 
for implementing IDEA in hardware are: 

• Throughput or data conversion rate: It is taken as an 
important tool for measuring the timing performance 
of IDEA i.e. the amount of data processed and 
encrypted per unit of time. 

• Area Requirements: It can be reported either in terms 
of number of Look-Up Tables (LUTs) or number of 
slices. 

• Maximum Clock frequency: It is the maximum clock 
frequency that can be achieved by the design. 

• Latency: It denotes the delay i.e. the time taken for the 
input data to move to the output port. For a pipelined 
design, the latency is measured by product of delay of 
a single pipelined stage and the number of pipelined 
stages. 

The proposed multiplier is synthesized using VHDL and the 
synthesis report is given in Table I.    

TABLE I 

 

Preferred FPGA 

Device 

Virtex2P-XC2VP40-FG676-7 

Number of slices 

used 

264 

Number of internal 

multiplier used 

4 

Maximum clock 

Frequency 

               1099.505 MHz 

Minimum input 

arrival time before 

clock 

 

15.153 ns 

Maximum output 

required after clock 

8.135 ns 

Size of bits processed 16  

 

Table I shows the data corresponding to the implemented 

multiplier and the corresponding test bench waveform is 

shown in Figure 7. From this Table I, the throughput can be 

calculated as 

 

cyclesclockofNumber

bitsofnumberffrequencyAllowed
Throughput

___

__)(_ ×
=  

So based on the operational frequency (f), the throughput will 

be different. 

 

Figure 7. Test bench waveform of the implemented    
multiplier 

VI.  CONCLUSION 

This paper gives a thorough study of the previous implemented 
schemes of the IDEA block cipher in hardware. Finally, a new 
multiplication scheme has been proposed which follows a 
divide and conquers strategy to get the final result. The 
proposed design is implemented and synthesized using VHDL 
and it is found that it works faster than traditional 
multiplication algorithm. For 16 bit numbers, the 
decomposition can be made as 16 => 8 => 4 => 2. So instead 
of taking N additions, this algorithm now takes log (N), N bit 
additions as a whole. Although the IDEA algorithm is not 
implemented as a whole using this multiplication algorithm, it 
is expected to give a comparatively better result that the 
sequential approach. The implementation is partial in the sense 

that only the modulo )12( +
n

multiplier, which is one of the 

main module of this IDEA block cipher, is tested. The other 
modules are yet to be tested as a whole for testing the entire 
encryption-decryption process. The concept of modified 
Booth’s recoding is also planned to be incorporated in future 
work. The performance of the cipher using this scheme is yet to 
achieve.     
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