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ABSTRACT 
Damping exists in every material in varying degrees. So materials in general are viscoelastic in nature. 
Modelling of viscoelastic materials is always difficult since such materials store energy as well as dissipate 
it to the thermal domain.  This paper presents a theoretical study of the dynamics of a viscoelastic rotor-
shaft system, where the internal material damping in the rotor shaft introduces a rotary force well known 
to cause instability of the rotor-shaft system. For this the material constitutive relationship has been 
represented by a differential time operator. Use of operators enables to consider general linear 
viscoelastic behaviours, represented in the time domain, for which, in general, instantaneous stress and its 
derivatives are proportional to instantaneous strain and also its derivatives. The operator may be suitably 
chosen according to the material model. An efficient modelling technique for viscoelastic material 
augmenting thermodynamic field (ATF) has been found in literature. The constitutive relationships for 
ATF approach is represented in differential time operator to obtain the equations of motion of a rotor-
shaft system after discretizing the system using finite element method. The equations thus developed may 
easily be used to find the stability limit speed of a rotor-shaft system as well as the time response when the 
rotor-shaft-system is subjected to any kind of dynamic forcing function.  

Keywords: Viscoelastic rotor, Internal damping, Augmenting thermodynamic field, Stability limit of spin speed, 
Unbalance response. 

1. INTRODUCTION 
Viscoelasticity, as the name implies, is a property that combines elasticity and viscosity. In 

other words viscoelastic materials store energy and dissipate it as well. For this reason, it is 

extensively used in various engineering applications for controlling the amplitude of resonant 

vibrations and modifying wave attenuation and sound transmission properties, increasing 

structural life through reduction in structural fatigue. Nakra (1998) has reported many such 

applications. 

In viscoelastic materials stress and strain are not in phase under  dynamic deformation,, the 

frequency of which, in the case of cyclic deformation, has considerable influence on energy 
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storage and dissipation. For this reason, in linear viscoelastic solids, the instantaneous stress 

is obtained by operating the instantaneous strain by a linear differential time operator, which 

is a constant (the Young’s modulus) for the special case of linear elastic behaviour. Different 

multi-element spring-damper models like the 2, 3, 4 element models [Bland (1960)] as well 

as internal variable models e.g. Augmenting Thermodynamic Field (ATF) [Lesieutre (1989), 

Lesieutre and Mingori (1990)] and Anelastic Displacement Field (ADF) approaches 

[Lesieutre and Bianchini (1995), Lesieutre et. al. (1996)] are used to represent the operator as 

also the viscoelastic material behaviour physically. 

 This paper attempts to study the dynamics of a viscoelastic rotor shaft system considering 

the effect of internal material damping in the rotor. Unlike in structures, rotation of rotors 

introduces a rotary damping force due to internal material damping and acts tangential to the 

rotor orbit, which is well known to cause instability in rotor-shaft systems after certain spin 

speed. Thus, a reliable model is indeed necessary to represent the rotor internal damping for 

correct prediction of stability limit of spin speed of a rotor-shaft system. Modelling the rotor 

internal damping using viscous and hysteretic model has been attempted by many researchers 

[Dimentberg (1961), Tondl (1965), Genta (2005)]. Most of the authors have considered, in 

general, viscous form of internal damping and used 2-element Voigt model for representing 

the material behaviour to study the dynamics of rotor-shaft systems. Again Zorzi and Nelson 

(1977), Ozguven and Ozkan (1984), Ku (1998) developed a finite element model of the rotor 

material damping by representing its constitutive relationship with a Voigt model (2-element 

model) where internal material damping force was considered as a superposition of viscous 

and hysteretic damping forces to take into account the frequency dependent and frequency 

independent components of energy dissipation per cycle for properly representing the 

properties of structural materials like steel. In this regard Genta (2004) pointed out the correct 

interpretation and use of the hysteretic damping model. 

However viscous and hysteretic damping models are unsuitable for proper representation of 

viscoelastic material behaviour, which shows considerable dependence on wide range of 

excitation frequencies. Not many papers are found to report dynamic simulation of 

viscoelastic rotors. Grybos (1991) used 3-element material model and studied the dynamics 

of a viscoelastic rotor. Roy et al. (2008) reported a finite-element approach, where 

viscoelastic behaviour of a rotor-continuum was represented by ATF (Augmenting 

Thermodynamic Field). Recently Dutt and Roy (2010) obtained the equation of motion of 

viscoelastic rotor-shaft system after discretizing the continuum by finite beam element 
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method. The rotor-shaft material was assumed to behave as a linear viscoelastic solid for 

which the instantaneous stress was obtained by operating the instantaneous strain by a 

generic linear differential time operator. The advantage of using a generic operator approach 

is that it may be suitably tailored according to the material constitutive relationship to obtain 

the equations of motion for a particular material model. 

In this present reporting, an attempt has been made to study theoretically the stability limit of 

the spin speed,unbalance vibration response and subsequently time response within the stable 

zone of operation of a simply supported aluminium rotor-shaft having a central disc made of 

aluminium. The rotor-shaft material is assumed to behave as a linear viscoelastic solid for 

which the instantaneous stress is obtained by operating the instantaneous strain by a linear 

differential time operator. The internal variable approach i.e. ATF is used for modelling the 

viscoelastic material. The constitutive relationships for ATF approach is represented in 

differential time operator, where the coefficients of the operator are formed by ATF 

parameters. The equations of motion of a rotor-shaft system are obtained after discretizing the 

continuum using finite beam element. So this work is useful for dynamic analysis of 

viscoelastic rotors under any type of dynamic forcing function. 

2. CONSTITUTIVE RELATIONS AND EQUATIONS OF MOTION 
The constitutive relationships are obtained from the Helmholtz free energy density function, 

'H'  representing a thermodynamic potential, where strain ( )ε  is an independent variable. The 

function, 'H'  is defined as [Lesieutre and Mingori (1990)] 

 2 21 1
2 2Eε δεξ αξ= − +H   (1) 

The constitutive equations are obtained as:  

 ,Eσ ε δξ
ε

∂
= = −

∂

H
δε αξ

ξ

∂
= − = −

∂
A

H  (2) 

In the above equation E  is the un-relaxed modulus, σ  is the mechanical stress, ξ  is the 

augmenting thermodynamic field (ATF), A  is the affinity, α  is a material property relating 

the changes in A  to ξ  and δ  is the strength of coupling between the mechanical 

displacement field and the thermodynamic field. 

Following [Lesieutre and Mingori (1990)] the relaxation equation is given as: 

 BB δ
αξ ξ ε+ =  Or, 1B

B D
δ
αξ ε= +   (3) 

Putting values of ξ  from equation (3) in equation (2), the constitutive relationship is 

rewritten as: 
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  ( )2 0 1

0 1

D1
D1 a aB

B D b bE δ
ασ εε +

+ += − =  (4) 

where, 2

0 ,a E δ
α= −  1 ,Ea B=  0 1,b =  1

1 ,b B=  D .d
dt=  

The instantaneous normal stress σx  is obtained from the equation (4) i.e. by operating the 

expression of εx by the operator E ( ), the generic form of which is expressed in equation (5) 

below, where Nu(D) and Dn(D) are the numerator and denominator polynomials of 

differential time operator, D ≡ d/dt. For the special case of linear elastic behaviour, E is a 

constant called the Young’s modulus. 

 ( ) Nu(D)E
Dn(D)

=  (5) 

Mechanical models for physical representation of viscoelastic behaviour are given by Bland 

(1960) among others. Expressions of E ( ), for 2, 3, and 4-element models for example, as 

shown in figure 1, are given bellow. 

1k
1d

2k

1k 1d
1k

2d

2k
1d

Figure 1: Different Viscoelastic Models  

  2 0 1 0 1 1 1() D, ,E a a a k a d= + = =  (6a) 

  0 1 1 1 1
3 0 1 1 1 0 1

0 1 2 2

D() , , , 1,
( D)
a a k d dE a k a d b b
b b k k
+

= = = + = =
+

 (6b) 

  
2

0 1 2 1 2 1 2 1
4 0 1 1 1 2 2 0 1

0 2 2 2 2

D() , , , , 1,
( D)

a a a D k d d d dE a k a d d a b b
b b k k k
+ +

= = = + + = = =
+

 (6c) 

For the nomenclature, all springs and dampers directly connected to the ground are called 

‘primary’ and those connected in series are called ‘secondary’. Following this, all springs and 

dashpots with subscript ‘1’ are primary and the ones with subscript ‘2’ are secondary. 

Let xε denotes the mechanical strain induced in the element at an instant of time. Zorzi and 

Nelson (1977) expressed the mechanical strain in the ' 'x  direction as 

 ( )[ ] 2

2 ),(cos
x

txRtrx ∂
∂

−Ω−= ωε  (7) 

Zorzi and Nelson (1977) obtained the bending moment expressions after considering a 2-

element material model (Voigt model) to represent the constitutive-relationship of the 
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material. The bending moments expression at any instant of time about the y and z-axes, M yy  

and M zz  respectively, are expressed as given below. 

 
( )( )

( )( )o

2 o

0 0

2

0 0

cos ( )

sin ( )

r

zz x

r

yy x

M v r t rdrd t

M w r t rdrd t

π

π

σ

σ

= − + Ω Ω∫ ∫

= + Ω Ω∫ ∫
 (8) 

The displaced cross-section of the rotor-shaft is shown in figure 2, the outer radius r0 is 

measured at any distance ‘x’ from the left end along the length of the shaft, called the ‘x’ 

direction. Coordinates of the shaft centre at any instant of time,‘t’, are given as (v(x,t), w(x,t)) 

along ‘y’ and ‘z’, the transverse directions respectively, where (x,t) are the spatial and 

temporal variables. Angle ‘Ωt’ in the figure, denotes the instantaneous orientation of the 

radius vector showing the instantaneous deflection R(x,t), shown in the figure as ‘R’ for 

convenience. An infinitesimal element of thickness ‘dr’, subtending an angle ‘d(Ωt)’ at the 

centre is chosen at a radius ‘r’ and angular location ‘Ωt’, is shown in the figure, where ‘Ω’ 

and ‘ω’ denote the spin and whirl frequency of the rotor in radians per second.  

v

wR

z

( )tω

( )tΩ

y
Figure 2: Displaced position of the shaft cross-sedtion

r0

( )d tΩ

r

dr

 
The instantaneous bending moments are written next by extending the work by Zorzi and 

Nelson (1977). Substituting σx from equation (4) in the bending moment expressions 

(equations (8)) and utilizing the expressions of εx given in equation (7), the bending moment 

expressions are rewritten as 

( )( ) ( )

( )( ) ( )
o

0 1

0 1

22 o
0 1

2
0 0 0 1

22 D
D 2

0 0

cos ( )

sin ( )

( , )D cosD

( , )cos

r

zz

r
a a

yy b b

M v r t rdrd t

M w r t rdrd t

R x ta a r t tb b x

R x tr t t
x

π

π

ω

ω+
+

= − + Ω Ω∫ ∫

= + Ω Ω∫ ∫

⎡ ⎤∂+
− Ω −⎢ ⎥+ ∂⎣ ⎦

⎡ ⎤∂
− Ω −⎢ ⎥∂⎣ ⎦

 (9) 

It may be noted in equation (9) that the operator E ( ) is operated exclusively on the terms 

inside the bracket [ ] containing the expression of strain to give the stress. The operator does 
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not work on other terms, (v + r cos (Ωt) and w + r sin (Ωt)) forming the momentums in the 

respective planes at any instant of time,‘t’. Hence the expressions of momentums are 

perceived as constants as far as the operator E ( ) is concerned. Following this logic the 

equation (9) may be rewritten as 

( )( ) ( ) ( )

( ) ( ) ( )

o2 2 3
2

0 12 2
0 1 0 0

2

1 2

1 cos [ cos cosD

sin ]

r

zz
R RM r v r t a t t a t tb b x x t

Ra t t drd t
x

π

ω ω

ω ω

∂ ∂
= + Ω Ω − + Ω −+ ∂ ∂ ∂

∂
− Ω− Ω − Ω

∂

∫ ∫
 

( )( ) ( ) ( )

( ) ( ) ( )

o

0 1

2 2 3
2

0 12 2
0 0

2

1 2

1 sin [ cos cosD

sin ]

r

yy b b

R RM r w r t a t t a t t
x x t

Ra t t drd t
x

π

ω ω

ω ω

∂ ∂
= − + Ω Ω − + Ω −+ ∂ ∂ ∂

∂
− Ω− Ω − Ω

∂

∫ ∫
 

After performing the integration 

  0 1 1
0 1

[ ]Dzz
IM a v a v a wb b ′′ ′′ ′′= + +Ω+  

  0 1 1
0 1

[ ]Dyy
IM a w a w a vb b ′′ ′′ ′′= − + −Ω+  

Or,  

 0 1 1

1 0 10 1

0
0D

zz

yy

M a a av vI
M a a aw wb b

′′ ′′⎡ Ω ⎤⎧ ⎫ ⎡ ⎤ ⎡ ⎤⎧ ⎫ ⎧ ⎫
= +⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥⎢ ⎥ ⎢ ⎥′′ ′′Ω − −+ ⎩ ⎭ ⎩ ⎭⎣ ⎦⎣ ⎦⎩ ⎭ ⎣ ⎦

 (10) 

For developing the equations of motion the rotor-shaft continuum is discretized into finite 

beam elements having two nodes at the ends and 4 degrees of freedom, which are the 

displacements and slopes in x-y and z-x planes at each node. The expression of translations 

and relations with rotations are given as 

 ( )
( ) ( ) ( ){ },

;
,

Tv x t
x q t

w x t
φ

⎧ ⎫⎪ ⎪ ⎡ ⎤=⎨ ⎬ ⎣ ⎦⎪ ⎪⎩ ⎭
;w

x
∂

Φ = −
∂

v
x
∂

Γ =
∂

 (11) 

where ,v  w  denote the deformations along and ,Φ Γ  are the rotations about the y  and z  

axes respectively. 

The equations of motion may easily be written using complex coordinates. Expressions of the 

stiffness, damping and circulatory matrices due to bending are obtained from the strain 

energy and dissipation function calculated from the expression of bending moments given in 

the equation (10). Diagonal elements of each coefficient matrix in this equation  give rise to a 

direct matrix (e.g. direct stiffness, direct damping matrix) whereas the cross-diagonal 

elements give rise cross coupled matrices; reference (Ozguven and Ozkan (1984)) may be 
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seen for details. The expressions of generalized force vectors comprising of forces and 

moments acting in the ‘x-y’ and ‘z-x’ planes i.e. {[ xyF ](1x4) [ zxF ](1x4)}T. Composition of 

stiffness, circulatory as well as damping matrices are also shown below. 

{ }
{ } ( ) [ ] { } [ ] { } [ ] { }

xy (1x4)
0 b 1 c 1 b(1x8) (1x8) (1x8)(8x8) (8x8) (8x8)

0 1zx (1x4)

F
a K q a K q a K q

DF
I

b b

⎧ ⎫⎪ ⎪ ⎡ ⎤= + Ω +⎨ ⎬ ⎣ ⎦+⎪ ⎪⎩ ⎭
 (12) 

The expression of [ ]bK  and [ ]cK  are given as 

 [ ] ( )[ ] ( )[ ] ,
0

T
b x x

l
I dxK φ φ′′ ′′= ∫  [ ] [ ] [ ]

0

0 1
( ) ( )

1 0

l T
c I x x dxK φ φ′′ ′′= ∫

−
⎡ ⎤
⎢ ⎥⎣ ⎦

where the Hermite shape 

function matrix ( ) ,xφ⎡ ⎤⎣ ⎦  (refer to Rao (1996)) is given by ( ) ( ){ } { }

{ } ( ){ }
0

,
0

xxyx
xzx

φ
φ

φ
=
⎡ ⎤

⎡ ⎤ ⎢ ⎥⎣ ⎦
⎢ ⎥⎣ ⎦

 with 

subscripts in the elements showing the respective planes.  

Operating by the operator Dn(D)= ( )0 1b b D+  throughout and arranging terms with same orders 

of differentiation together, the equations of motion of one shaft element are given below. 

Assuming the rotor is rotating at a uniform speed (Ω). 

 
{ } ( ){ } [ ]( ){ }

[ ] [ ]( ){ } ( ){ }0

1 0 1 0 1

0 1 1D
b

b c b b

b M q b M b G q b G a K q

a K a K q P

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦+ + + +

+ + Ω = +
 (13) 

Where (8x8) (8x8) (8x8)T RM M M⎡ ⎤ ⎡ ⎤⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦= + , (8x8)TM⎡ ⎤⎣ ⎦  is the translational mass matrix, (8x8)RM⎡ ⎤⎣ ⎦  is 

the rotary inertia matrix, (8x8)TG⎡ ⎤⎣ ⎦  is the gyroscopic matrix. Effects due to simultaneous action 

of spin and vibratory motion the rotary inertia and gyroscopic matrix are taken into account. 

The expressions of translational mass matrix, rotary inertia matrix and gyroscopic matrix are 

given below after following Rao (1996). 

 ( ) ( )
0

,
l T

TM A x x dxρ φ φ= ∫⎡ ⎤⎣ ⎦ , [ ] ( ) ( )
0

l T
RM I x x dxρ φ φ′ ′= ∫ , [ ] ( ) ( )

0

0 1
1 0

2
l TI x x dxG ρ φ φ

⎡ ⎤
⎢ ⎥
−⎣ ⎦

′ ′= ∫  

It may be noted that the 3rd order differential equation result in this process. Dutt and Nakra 

(1992) also obtained a third order differential equation as they modelled the rotor supports of 

an elastic rotor-shaft using a 4-element spring-dashpot model. 

Again equation (13) may be further combined and rewritten as  

 [ ]{ } [ ]{ } { }+ =A X B X P  (14) 

[ ]
[ ] [ ] [ ]
[ ] [ ] [ ]
[ ] [ ] [ ]

3

3

3

0 0
0 0 ,
0 0

A
A

A

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

A  [ ]
[ ] [ ] [ ]
[ ] [ ] [ ]
[ ] [ ] [ ]

3

3

0 1 2

0 0
0 0 ,

A
A

A A A

⎡ ⎤−
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

B  { }
{ }
{ }
{ }

{ } ( )
{ }
{ }
{ }

0 1, D

0

0b b

q

q

q P

+= =

⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪
⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪
⎩ ⎭ ⎩ ⎭

X P  
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3. STABILITY LIMIT OF THE SPIN SPEED AND SYNCHRONOUS UNBALANCE 
RESPONSE OF THE DISC 

Stability of the system is determined from the eigenvalues estimated from the equation of 

motions for free vibration obtained by putting a zero vector on the right hand side of equation 

(14). A code written in MATLAB (version 7.1) has been used to find out the eigenvalues at a 

spin speed of the rotor. The eigenvalue to be in general complex, the system is stable only if 

the maximum real part of the eigenvalues is < 0. Stability limit of the spin speed SLS is the 

maximum spin-speed till which all the eigen values have negative real parts. 

Synchronous unbalance response (UBR) at the disc location for speeds < SLS is obtained 

from the equation of motion with force vector { } { } i te ΩP P=  where the angle Ωt is measured 

from the y-axis in the direction of rotation of the rotor. 

Using the trial solution { } { }ei tΩ=X X  in the equation of motion (14) 

 { } [ ] [ ] { }1
i

−
= + Ω⎡ ⎤⎣ ⎦X B A P  

The disc response amplitude is given by ( ) ( )max Real e Real e- -
i t i tR idisc y disc z disc
Ω Ω= +X X  

where -y discX and -z discX  are the complex elements in { }X at the disc node along y  and z  

directions. 

4. NON-DIMENSIONALISATION 
To ensure the applicability of the results to rotor shaft systems and for ease of presentation a 

few non-dimensional parameters are defined. 

Non-dimensional Stability Limit Speed, limSLS
nω

Ω
=  

where kn Meff
ω = is the natural frequency of a uniform simply supported shaft of mass M  

having an central disc of mass ,m  48
3
EI

k
L

=  is the stiffness of the simply supported shaft and 

Meff  is its effective mass. Raleigh’s principle is used to find out Meff  from the expression of 

maximum kinetic energy calculated by assuming the static deflection function of the elastic 
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curve. For a simply supported beam with a central load as in this situation the maximum 

kinetic energy maxT  is given by  

2

23
2 2 2

2max max max
0

1 1 1 3
max 2 2 2

4
L

eff y y y
M x x

T M m dx
L L L

= = + ∫
⎧ ⎫⎪ ⎪⎛ ⎞ ⎛ ⎞ ⎛ ⎞−⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭
 where maxy is the 

maximum velocity at the mid span. From the above expression it is seen that Meff = 

m+0.4853M.   

Non-dimensional Unbalance Response Amplitude, UBR ,
Rdisc

e
=  where, 

U
e

m
=  and U is the 

unbalance in the disc. 

Non-dimensional spin speed is defined as
nω

∗ Ω
Ω =  

5. RESULTS AND DISCUSSION 

5.1 The rotor shaft system 
A rotor shaft system as shown in figure 3, is made of aluminium (E = 7.13e10 Pa, ρ = 2750 

Kg/m3), has been considered. The rotor shaft (L = 1.0 m, DR = 0.05 m) is mounted at the ends 

in bearings considered as simply supported ends. The aluminium disc (DD = 0.15 m, tD = 0.03 

m) is put centrally and has an unbalance, U = 10 gm-mm.  Following Lesieutre and Mingori 

(1990) the ATF parameters of aluminium are B = 8000 sec-1, α = 8000 Pa, δ = 4.7766e6 Pa. 

Figure 3 Schematic diagram of the rotor

DR

tD

DD x

y

z
kyy

dyy

BA

dyykyy

C
Ll

 

5.2 Stability limit of spin speed 
Stability Limit of the Spin speed (SLS) of the rotor–shaft system (figure 3) has been found 

out by plotting the maximum real part of all eigen values vs. non-dimensional spin speed 

( *Ω )  in figure 4(a). SLS corresponds to the non-dimensional spin speed when the maximum 

value of the real part of all the eigenvalues touches the zero line. Steady state non-

dimensional synchronous Unbalance Response Amplitude (UBR) of the disc is plotted in 

figure 4(b) within the respective stable speed zones of operation (i.e. below the unstable zone 

marked by UZ) of the rotor-shaft. It may be seen that the value of SLS is very close to 1, 

which was noted by several researchers [Dimentberg (1961). 
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Figure 4 UBR for various spin speeds within stable zone 
Figure 5 shows the effect of different positions of the disc along the shaft on the SLS. It is 

seen that SLS has the lowest value when the disc is placed in the middle of the shaft. This 

happens as the gyroscopic stiffening due to the disc, increases when the disc is gradually 

displaced from the mid span to the ends. 
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Figure 5 SLS for various disc positions 

Transient and steady state time response of the disc due to unbalance have been shown in 

figure 6 and figure 7 respectively for speeds below and over the SLS, two different spin 
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speed. When the rotor is allowed to rotate with *Ω = 0.9, figure 6(a) shows the rotor orbit 

quenchs gradually and in figure 7(a) it is remain constant, because the speed is below the 

SLS. In both cases the rotor orbit increases in amplitude monotonically for the rotor speed of 
*Ω = 1.4, because the speed is over SLS. So beyond this speed the system becomes unstable 

and does not reach any steady state. 
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Figure 6 Rotor orbit at the disc due to transient vibration 

−0.02 −0.015 −0.01 −0.005 0 0.005 0.01 0.015 0.02
−0.02

−0.01

0

0.01

0.02
Ω* = 0.9

y
disc

 (m)

z di
sc

 (
m

)

−0.02 −0.015 −0.01 −0.005 0 0.005 0.01 0.015 0.02
−0.02

−0.01

0

0.01

0.02
Ω* = 1.4

y
disc

 (m)

z di
sc

 (
m

)

(a)

(b)
 

Figure 7 Rotor orbit at the disc due to steady state vibration 
 



 12

5. CONCLUSIONS 
This paper has given the equations of motion of a rotor-shaft system having a viscoelastic 

rotor. The linear viscoelastic rotor-material behaviour is represented in the time domain 

where the instantaneous stress is obtained by operating the instantaneous strain. The 

mechanical analogy i.e rheological model is sometime difficult to represent for all 

viscoelastic materials. The operator may be suitably chosen according to the material model. 

The formulation has been found very useful to generate equations motion by discretizing the 

rotor continuum into finite beam elements and study the dynamic behaviour of rotor-shaft 

systems in terms of stability limit of the spin speed as well as unbalance response of the disc. 

Temporal variation of disc response has also been plotted as a further verification of stability 

of the rotor-shaft system. So this work is useful for dynamic analysis of viscoelastic rotors 

under any type of dynamic forcing function. 
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