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Introduction

According to Stecke [1], an FMS is characterized as an integrated, computer-
controlled complex arrangement of automated material-handling devices and
numerically controlled (NC) machine tools that can simultaneously process
medium-sized volumes of a variety of part types.

The highly integrated FMS offers the opportunity to combine the efficiency of a
transfer line and the flexibility of a job shop to best suit the batch production of
mid-volume and mid-variety of products.

However, flexibility has a cost, and the capital investment sustained by firms to
acquire such systems is generally very high. Therefore, particular attention must
be paid to the proper planning of an FMS during its development phase in order
to evaluate the performance of the system and justify the investment incurred.
Prior to production, careful operational planning is essential to establish how well
the system interacts with the operations over time.
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The decisions related to FMS operations can be broadly divided into pre-
release and post-release decisions.

Pre- release decisions include the FMS operational planning problem that
deals with the pre-arrangement of jobs and tools before the processing
begins whereas post-release decisions deal with the scheduling problems.

Pre-release decisions, e.g. machine grouping, part type selection,
production ratio determination, resource allocation, and loading problems
must be solved while setting up an FMS.

Amongst pre-release decisions, machine loading is considered as one of
the most vital production planning problems because the performance of
the FMS largely depends on it.

Loading problems, in particular, deal with the allocation of jobs to various
machines under technological constraints, with the objective of meeting
certain performance measures; hence, it is considered as a combinatorial
optimization problem and happens to be NP-hard in nature.
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Numerous methods based on mathematical, heuristics, meta-heuristics, and
simulation have been suggested by researchers in the pursuit of obtaining quality
solutions to loading problems and reduce computational burden [1-10].

But these approaches are barely capable of producing optimal/near-optimal
solutions or require excessive computational efforts to arrive at quality solutions.

In order to alleviate these difficulties, an attempt has been made in this work to
propose an algorithm based on Artificial Immune Systems (AIS) to solve the
machine-loading problem of a random FMS with the objective of the minimization
of system unbalance while satisfying the constraints related to the available
machining time and tool slots. The novelty of the approach lies in the fact of
applying chaotic search as it has nice capability of hill-climbing and escaping from
local optima, and is more efficient than random search
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Logistic Function

Logistic function is represented as
N (t+1)=RxN(t)x(1-N(t))

where, N(t) is the value of chaotic variable in t" iteration and R shows the
bifurcation parameter of the system.

The reason behind opting the chaotic sequences is due to their ability to converge
fast toward optimal solution while retaining a proper balance between exploitation
and exploration.

The logistic map shows one of the simplest dynamic systems evidencing chaotic
behaviour.
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The graphical representation of one-dimensional logistic chaotic function is
illustrated below (for 400 generations with initial value of N(0)=0.1 and R=4).
From this figure, it is evident that the spread spectrum characteristic of logistic
mapping enables it to be utilized in place of RNGs
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The Algorithm

Initialization: Initially a population of size ‘n’ is generated and each
individual represents a job sequence for loading problem in FMS.

. For a five job problem, the string length equals 5.

0.52 0.32 | 0.09 0.95 0.41

Arrange the above string in ascending order

0.09 0.32 0.41 0.52

Generated string is

2 5

So permutation coding creates the string of antibodies.
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Selection of Antibodies: The initial population is exposed to the threats
posed the antigens and antigenic affinity (f,) is evaluated for each antibodies
present in population. Based on their affinity, the antibodies are selected to
proliferate and to produce clones (greater the affinity of the antibodies, greater
will be there chance of cloning). A roulette wheel selection rule is adopted for
the selection of antibodies for proliferation.

Proliferation: Here highest affinity antibodies are selected and proliferated by
duplication known as Cloning. This process is called clonal expansion where
each antibody produces clones independently and proportionally to their
antigenic affinity. Higher the fithess value, then higher the number of clones
generated for each antibody.

Hyper mutation: It is usually used in Immune Algorithms to introduce random
changes in to the individuals. The higher affinity antibodies selected in the
previous step are submitted to the process of hyper mutation.
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Receptor editing: Receptor editing can prevent the immune system from
becoming “premature” and also increase the affinity. Receptor is editing to
provide an additional mean of introducing diversity in immune cells during the
process of affinity maturation. It works as replacing B% of lower affinity clones.

Termination criteria: The termination criteria are considered when the number
of generations reaches the maximum specified value or no further improvement
IS possible.
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Result and discussions

Two benchmark problems are taken from open literature [2,18].

Reference B Solution by [2] Solution by [18] Proposed AIS
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Different Different Heuristic Approaches
FMS
Scenarios

GA based sequence rule Proposed Algorithm

SuU Th SU Th
Problem 1 63 48 14 55
Problem 2 61 61
Problem 3 51 55
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
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The average population affinity
increases with an increase in n.
This can be attributed to the fact
that the higher the value of n, the
larger the number of antibodies,
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While, evaluating the effect of N, n
was set to 10. It can be seen that
higher the value of N, the faster the
convergence occurs in terms of
number of generations. However, the
computational time per generation
increases reasonably linearly with
Nc.
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Conclusions

The proposed Artificial Immune System enhances the applicability of
traditional Clonal algorithm by making some modifications in the operators.

The chaotic representation gives better results compared to other computing
meta-heuristics for machine loading problem.

The main focus of present work is to find a more versatile and efficient
methodology, which is capable of maintaining good memory and can give
better quality results with fast convergence rate,
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