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Abstract—It is known that sign sign LMS and sign regressor
LMS are faster than LMS. Inspiring from this idea we have
proposed sign regressor Wilcoxon and sign-sign wilcoxon which
are robust against the outlier present in the desired data and
also faster than Wilcoxon and sign Wilcoxon norm. It had
applied to varities of linear and nonlinear system identi�ca-
tion problems with Gaussian noise and impulse noise present
in the desired. The simulation results are compared among
Wilcoxon,sign Wilcoxon and proposed sign-sign Wilcoxon and
sign-regressor Wilcoxon. From simulation results it has proved
that the proposed techniques are robust against outlier in the
desired data and convergence speed are faster compared to other
two norms.
Index Terms—Sign-regressor Wilcoxon, sign-sign Wilcoxon,

sign Wilcoxon, Wilcoxon

I. INTRODUCTION

Wilcoxon norm is a robust norm used by statistician for
regression analysis [1], [2]. In [3] Wilcoxon learning machine
is designed which is robust against the outlier present in the
desired. In [4] wilcoxon LMS is proposed to estimate the
parameter of system in presence of outlier in desired data. It is
known that the convergence speed of sign-regressor LMS and
sign-sign LMS [5] are faster than the LMS but it’s performance
decreases with respect to LMS.

Inspiring form the above [5] literature we have proposed
sign-sign Wilcoxon and sign-regressor Wilcoxon which are
robust against the outlier in the desired data and convergence
speed are faster than the wilcoxon norm and sign Wilcoxon
norm. These are simulated for varieties of the system identi-
�cation problems in presence of outlier. The performance of
the proposed techniques are giving the less performance than
the Wilcoxon norm and sign Wilcoxon norm in some systems
but in case of some other systems the performance are better
than the Wilcoxon norm and sign Wilcoxon norm.

The notation of the paper is same as used in [6]. The
organization of the paper is as follows. In section II a short
description of the wilcoxon norm and sign wilcoxon norm is
given. The proposed techniques are given in section III. In
section IV the proposed techniques are applied for system
identi�cation and it’s simulation results are discussed. The
paper is cocluded in section V.

II. WILCOXON NORM

To de�ne the Wilcoxon norm a score function is required.
The score function is ϕ

[
0 1

] → � which is non decresing
and bounded

∫
ϕ2(u)du < ∞

The score value is

a(i) = ϕ (i/l + 1) (1)

Where i is a �xed positive integer. The following norm can
be shown as a pseuso norm [1].

‖v‖w =

l∑
i=1

a(R(vi))vi (2)

Where v =
[

v1 v2 · · · vl

]
Here l is the size of the

vector and R(vi) is the rank of vi among v1, v2, · · · , vl.
v(1) ≤ v(2) ≤ · · · ≤ v(l) is the ordered value of the vector.

a(i) = ϕ (R(vi)/ (l + 1)) (3)

and
ϕ(u) =

√
12 (u − 0.5) (4)

For the sign Wilcoxon norm only the score function of the
preveious norm (4) is changed to

ϕ(u) = sign(u − 0.5) (5)

III. PROPOSED TECHNIQUES

A. problem formulation
Let the model of a system is

di = uT
i w+ ei + vi

i = 1, 2, · · · , n (6)

w ∈ �p,ui ∈ �p are column matrix. Here p is the order of
the system.

In this linear model ui is the input to the system at ith

time which is a tap delay system of order p. Where ei is
the additive white Gaussian noise present in the system. The
outlier is indicated by vi which can think of as the impulse
noise present in the system. di is the output of the system at
ith time.

The model (6) can be written in vector form like below

d = UTw+ e+ v (7)

So in adaptive system identi�cation problem we have to
estimate the parameter w from the input U and output d.
From geometric point of view we can formulate the problem
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as below. We have to �nd a point on the span of the input
space for which the the distance between the desired point
and the point on the input space will be minimum, that is
called the projection of the desired to the input space. Let it
is du. Now the optimum parameter is w = d−1

u U.
In order to �nd the point on the span space of the input that

will minimize the distance a norm is used. In conventional
technique L2 norm is used but this norm is very sensitive to
the impulse noise present in the desired. But Wilcoxon norm
and sign wilcoxon norm are robust to the impulse noise. For
estimating the parameter of a system using Wilcoxon norm as
cost function gradient based technique has been using [1], [3],
[4]. The update equation is

ŵi+1 = ŵi + μ

⎛
⎝

L∑
j=1

ϕ (R (eiL+j))uiL+j

⎞
⎠ (8)

For sign wilcoxon norm based estimation the update equa-
tion (8) will changed to

ŵi+1 = ŵi + μ

⎛
⎝

L∑
j=1

ϕ (R (eiL+j))uiL+j

⎞
⎠ (9)

The update equation for LMS case is

ŵi+1 = ŵi + μuiei (10)

Equation (9),(9) can modify to matrix vecor multiplication
form as given below

ŵi+1 = ŵi + μ

⎡
⎢⎢⎣
uT

iL+1

uT
iL+2

· · ·
uT

(i+1)L

⎤
⎥⎥⎦

T ⎡
⎢⎢⎣

ϕ (R (eiL+1))
ϕ (R (eiL+2))

· · ·
ϕ

(
R

(
e(i+1)L

))

⎤
⎥⎥⎦ (11)

Which can be written like

ŵi+1 = ŵi + μUT
i si (12)

Where Ui =
[
uiL+1 uiL+2 · · · uiL+n

]
and sTi =[

ϕ (R (eiL+1)) ϕ (R (eiL+2)) · · · ϕ (R (eiL+n))
]

In case of sign Wilcoxon norm we can write simillar matrix
vector multiplication form like (12) as

ŵi+1 = ŵi + μUT
i sign (si) (13)

B. Sign-regressor Wilcoxon
Comparing (10),(12) and (13), we can �nd that UT

i and si
in wilcoxon update equation are acting like input and error in
LMS respectively. It is known that sign regressor LMS and
sign-sign LMS are faster than the LMS.

The update equation for sign regressor LMS is

ŵi+1 = ŵi + μsign (ui) ei (14)

Comparing (14) with (12) and taking sign of the UT
i of (12)

we designed the update equation for sign regressor Wilcoxon
like below

ŵi+1 = ŵi + μsign
(
UT

i

)
si (15)

Changing the matrix vector multiplication part of (15) into
summation of multiplication form we can get

ŵi+1 = ŵi + μ

⎛
⎝

L∑
j=1

ϕ (R (eiL+j)) sign (uiL+j)

⎞
⎠ (16)

This is the �nal equation for sign-regressor Wilcoxon.

C. Sign-sign Wilcoxon
The update equation for sign-sign LMS is

ŵi+1 = ŵi + μsign (ui) sign (ei) (17)

Comparing (17) with (12) and taking sign of the UT
i and

si in (12) we have designed the update equation of sign-sign
wilcoxon

ŵi+1 = ŵi + μsign
(
UT

i

)
sign (si) (18)

Changing the matrix vector multiplication part of (18) into
summation of multiplication term we will get

ŵi+1 = ŵi + μ

⎛
⎝

L∑
j=1

sign (ϕ (R (eiL+j))) sign (uiL+j)

⎞
⎠

(19)

IV. APPLICATION FOR ADAPTIVE SYSTEM IDENTIFICATION
PROBLEM

In this section we have applied proposed techniques for
adaptive system identi�cation problem. The parameters of the
system are

w =

⎡
⎣

0.26
0.93
0.26

⎤
⎦ (20)

.
The 20000 input data is taken which is a random value

between (−0.5, 0.5). The output is generated passing the input
data through a tap delay system like (6). Here e is the additive
white Gaussian noise having SNR 30dB.The impulse noise
v is a random value between (−R, R) where R is a �xed
maximum value. The number of data added with impulse noise
per 100 data of the desired is called the percentage of the
additive impulse noise. Simulation is done taking combination
of random value between (-30,30) magnitude with 10% and
40% of total desired data. The simulation result is plotted
between iteration and normalized MSD in dB. The given plot
is obtained by averaging it over 20 independent experiments.
The block of the data is 40 and the step size is 0.001.

Normalized MSD in dB is 10 log
‖w−ŵ‖2

2

‖w‖2
2

. In addition to
the linear system (6), following nonlinear system are also
tested with the proposed techniques
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system-II
di = tan

(
uT

i w+ ei + vi

)
(21)

system-III
di = tan

(
uT

i w
)

+ ei + vi (22)

system-IV

di = uT
i w+ 0.2 × (

uT
i w

)2 − 0.1 × (
uT

i w
)3

+ ei + vi (23)

system-V

di = uT
i w− 0.9 × (

uT
i w

)3
+ ei + vi (24)

Fig.1-2 are for linear system (6). In this case we have given
outlier 10% and 40% with magnitude between(-30,30). From
the plot we can found that the proposed technique is robust and
convergence speed is faster than the other two norm. The same
result we can also found for other impulse noise percentage
upto 60%.

Fig 3-4 are for nonlinear system-II. In this case the per-
formance is degrading with comparision to linear system
but in comparision the proposed technique is showing good
performance with faster convergence than the other two. Fig
5-6 are for nonlinear system-III. In this case the performance
is degrading but in comparision the proposed technique is
showing good performance with faster convergence than the
other two techniques. Fig 7-8 is for nonlinear system-IV. In
this case the performance is degrading but in comparision the
proposed technique is showing less performance with faster
convergence than the other two technique. Fig 9-10 is for
nonlinear system-V. In this case the performance is degrading
more but in comparision the proposed technique is showing
less performance with faster convergence.
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Fig. 1. 10% impulse noise is added in desired having magnitude a random
value between (-30,30)
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Fig. 2. 40% impulse noise is added in desired having magnitude a random
value between (-30,30)
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Fig. 3. 10% impulse noise is added in desired having magnitude a random
value between (-30,30)

V. CONCLUSION

From simulation results we can conclude that the conver-
gence speed of proposed techniques Sign-regressor Wilcoxon
and sign-sign Wilcoxon are robust against the impulse noise
present in desired data and convergence speed are faster than
the sign Wilcoxon and Wilcoxon. The performance of the
proposed techniques are dependent on the system we are using.
In this paper only simulation results are shown but there are
large work to be done like convergence analysis, stability and
breakdown point of the algorithms with respect to impulse
noise present in the desired data. It can consider as the future
work of the algorithms. Since the convergence speed of the
proposed techniques are very fast it can apply to the fast
varying system.
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Fig. 4. 40% impulse noise is added in desired having magnitude a random
value between (-30,30)
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Fig. 5. 10% impulse noise is added in desired having magnitude a random
value between (-30,30)
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Fig. 6. 40% impulse noise is added in desired having magnitude a random
value between (-30,30)
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Fig. 7. 10% impulse noise is added in desired having magnitude a random
value between (-30,30)
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Fig. 8. 40% impulse noise is added in desired having magnitude a random
value between (-30,30)

0 200 400 600 800 1000
�25

�20

�15

�10

�5

0

Iteration

N
or

m
al

iz
ed

 M
S

D
 in

 d
B

Adaptive system identification for nonlinear system V

Sign sign Wilcoxon
Wilcoxon
Sign Wilcoxon
Sign regressor Wilcoxon

Fig. 9. 10% impulse noise is added in desired having magnitude a random
value between (-30,30)
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Fig. 10. 40% impulse noise is added in desired having magnitude a random
value between (-30,30)
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