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Abstract. The present study highlights a multi-objective optimization problem by applying 

Principal Component Analysis (PCA) coupled with grey based Taguchi method through a case 

study in CNC end milling of 6061-T4 Aluminum. The study aimed at evaluating the best process 

environment which could simultaneously satisfy multiple requirements of surface quality. In 

view of the fact, that traditional Taguchi method cannot solve a multi-objective optimization 

problem; to overcome this limitation, grey relation theory has been coupled with Taguchi 

method. Furthermore, to follow the basic assumption of Taguchi method i.e. quality attributes 

should be uncorrelated or independent; which is not always satisfied in practical situation. To 

overcome this shortcoming the study applied Principal Component analysis to eliminate 

response correlation and to evaluate independent or uncorrelated quality indices called Principal 

Components which were aggregated to compute an overall quality index denoted as overall grey 

relational grade which was optimized (minimized) finally. The study combined PCA and grey 

based Taguchi method for predicting optimal setting. Optimal result was verified through 

confirmatory test.  
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INTRODUCTION AND PRIOR STATE OF ART 

In recent times, computer numerically controlled (CNC) machine tools have been 

implemented to realize full automation in machining. CNC machine tools provide 

greater improvements in productivity, and increase the quality of the machined parts 



and require less operator input. Milling is a common metal removal operation in 

industry because of its ability to remove material faster with a reasonably good surface 

quality. It is widely used in a variety of manufacturing industries including aerospace 

and automotive sectors, where quality is an important factor in the production of slots, 

pockets, precision moulds and dies.  

Literature [Ghani et al. (2004), Yang and Chen (2001), Chang and Lu (2007)) depicts 

that work have been done for optimizing the process parameters and improving the 

performance measures of CNC end milling process. However, all these studies 

whether experimental or analytical mostly concentrate on the centre line average 

roughness Ra value for surface quality. But surface generated by machining is 

composed of a large number of length scales of superimposed roughness, [Sahoo, 

(2005)] that are generally characterized by three different types of parameters, viz., 

amplitude parameters, spacing parameters and hybrid parameters. Thus consideration 

of centre line average roughness alone is not sufficient to describe surface quality. The 

other roughness parameters like root mean square roughness (Rq), kurtosis (Rku) and 

mean line peak spacing (Rsm) need to be addressed. 

Optimization of various production processes highlighted in literature assumed that 

individual quality indices are independent to each other i.e. they are not correlated. 

But in practice the assumption may not be valid always. Therefore, hybrid Taguchi 

based optimization approaches like grey based Taguchi [Datta el al. (2008)], 

desirability function based Taguchi [Datta el al. (2006)], utility concept [Walia et al. 

(2006)] based Taguchi methods those do not account response correlation may lead to 

erroneous results.  

To overcome this limitation the study proposes application of Principal Component 

Analysis (PCA) to eliminate response correlation and to convert correlated responses 

into uncorrelated quality indices called principal components. These principal 

components have been aggregated further to calculate the Multi-response performance 

index (MPI) called overall grey relational grade [Datta et al. (2010)]. This serves as 

the single objective function for optimization with the aim to maximize it. Thus, the 

multi-objective optimization problem has been converted into an equivalent single 

objective optimization situation which has been solved by Taguchi method by 

analyzing dispersion statistics of the response data.  

 

EXPERIMENTATION  

 
In the present study; depth of cut, spindle speed and feed rate have been considered 

as machining parameters while the following four roughness parameters have been 

selected as the response variables: centre line average roughness (Ra); root mean 

square roughness (Rq); and mean line peak spacing (Rsm). The work piece material was 

6061-T4 aluminum. Commercially available CVD coated carbide tools have been used 

in this investigation. Apart from depth of cut (d, mm), spindle speed (N, rpm) and feed 

rate (f, mm/min) have been selected as design factors while other parameters have 

been assumed to be constant over the experimental domain (Table 1). L25 Orthogonal 

Array (OA) has been considered for experimentation. Interaction effect of process 

parameters has been assumed negligible. The machine used for the milling tests is a 

‘DYNA V4.5’ CNC end milling machine having the control system SINUMERIK 802 



D with a vertical milling head. The surface roughness parameters have been measured 

using the stylus-type profilometer, Talysurf (Taylor Hobson, Surtronic 3+). The 

measured roughness parameters along with design matrix have been shown in Table 2.  

 
Table 1. Process parameters and domain of experiments 

Levels Aluminum 

d (mm) N (rpm) f
(mm/min)

 

-1 0.10 4500 900 

-0.5 0.15 4750 950 

0 0.20 5000 1000 

+0.5 0.25 5250 1050 

+1 0.30 5500 1100 

 
Table 2. Experimental results along with design matrix 

Sl. No. L25 Orthogonal Array Response parameters 

d N f Ra µm Rq µm Rsm mm 

1 -1.0 -1.0 -1.0 0.611 0.727 0.117 

2 -1.0 -0.5 -0.5 0.634 0.769 0.159 

3 -1.0 0.0 0.0 0.853 0.987 0.150 

4 -1.0 0.5 0.5 0.656 0.807 0.146 

5 -1.0 1.0 1.0 0.713 0.847 0.124 

6 -0.5 -1.0 -0.5 0.668 0.872 0.111 

7 -0.5 -0.5 0.0 0.580 0.700 0.146 

8 -0.5 0.0 0.5 0.548 0.673 0.135 

9 -0.5 0.5 1.0 0.754 0.910 0.131 

10 -0.5 1.0 -1.0 0.514 0.633 0.105 

11 0.0 -1.0 0.0 0.678 0.898 0.097 

12 0.0 -0.5 0.5 0.678 0.812 0.095 

13 0.0 0.0 1.0 0.512 0.641 0.157 

14 0.0 0.5 -1.0 0.296 0.379 0.160 

15 0.0 1.0 -0.5 0.597 0.745 0.102 

16 0.5 -1.0 0.5 0.562 0.719 0.159 

17 0.5 -0.5 1.0 0.743 0.888 0.121 

18 0.5 0.0 -1.0 0.536 0.664 0.115 

19 0.5 0.5 -0.5 0.552 0.676 0.125 

20 0.5 1.0 0.0 0.589 0.726 0.127 

21 1.0 -1.0 1.0 0.546 0.659 0.091 

22 1.0 -0.5 -1.0 0.569 0.708 0.130 

23 1.0 0.0 -0.5 0.531 0.639 0.118 

24 1.0 0.5 0.0 0.624 0.752 0.126 

25 1.0 1.0 0.5 0.669 0.853 0.153 

 

EVALUATION OF OPTIMAL RESULT 

 

Detailed methodology for optimization has been described in the paper by Datta et al. 

(2010). In this investigation, experimental data have been normalized using (Lower-

the-Better) LB criteria. A check has been made to verify whether the responses are 

correlated or not. It has been observed that, all responses are correlated to each other 

(Table 3). In order to eliminate response correlations, Principal Component Analysis 

(PCA) has been applied to derive three independent quality indexes called principal 

components Z1, Z2 and Z3 (Table 4). The analysis of correlation matrix has been 



made to calculate the values of three independent principal components in all 

experimental runs (Table 5). Quality loss of three individual components (compared to 

the ideal) has been converted into individual grey relational coefficients; which have 

been aggregated further to compute the overall grey relational grade (Table 6). Thus, 

the multi-criteria optimization problem has been transformed into a single objective 

optimization problem using the combination of Taguchi approach and grey relational 

analyses. Higher is the value of grey relational grade, the corresponding factor 

combination is said to be close to the optimal. The S/N ratio plot for the overall grey 

relational grade is represented graphically in Figure 1. The S/N ratio for overall grey 

relational grade has been calculated using HB (Higher-the-Better) criterion. With the 

help of the Figure 1, optimal parametric combination has been determined. The 

optimal factor setting becomes d(0) N(-1) f(-1). [Number indicates level of factors] 

which been verified by the satisfactory result of confirmatory experiment.  

CONCLUSIONS 

1. Application of PCA has been recommended to eliminate response correlation 

by converting correlated responses into uncorrelated quality indices called 

principal components which have been as treated as independent response 

variables for optimization. 

2. Grey relation theory can combine individual principal components into a single 

multi-response performance index MPI (overall grey relational grade) to be 

taken under consideration for optimization. This is really helpful in situations 

where large number of responses have to be optimized simultaneously. 

3. The said approach can be recommended for continuous quality improvement 

and off-line quality control of a process/product. 

 
Table 3. Check for correlation 

Sl. No. Correlation between  
Pearson’s  

correlation coefficient 

Comment 

1 aR and
qR  0.996 Both are correlated  

3 aR and smR  0.114 Both are correlated  

5 q
R and smR  0.112 Both are correlated  

 

 

Table 4. (Analysis of correlation matrix) 

Eigenvalues, eigenvectors, accountability proportion (AP) and cumulative accountability proportion 

(CAP) computed for the three individual principal components   

 

 Z1 Z2 Z3 
Eigenvalues 2.0209 0.9749 0.0042 

Eigenvector 

155.0

669.0

669.0

−

−

−

 

988.0

110.0

109.0

+

−

−

 

001.0

707.0

707.0

−

−

+

 

AP 0.674 0.325 0.001 

CAP 0.674 0.999 1.000 



Table 5. Individual Principal Components 

Sl. No. Individual Principal Components 

Z1 Z2 Z3 

Ideal Situation -1.5530 0.7690 -0.0010 

1 -0.8236 0.6583 -0.0268 

2 -0.7595 0.4603 -0.0189 

3 -0.6050 0.5194 -0.0268 

4 -0.7403 0.5150 -0.0136 

5 -0.7167 0.6306 -0.0236 

6 -0.7406 0.7139 0.0052 

7 -0.8317 0.5006 -0.0226 

8 -0.8757 0.5452 -0.0170 

9 -0.6732 0.5978 -0.0176 

10 -0.9554 0.7277 -0.0170 

11 -0.7456 0.8328 0.0094 

12 -0.7799 0.8475     -0.0222 

13 -0.9072 0.4446 -0.0099 

14 -1.4862 0.3430 -0.0006 

15 -0.8404 0.7715 -0.0100 

16 -0.8253 0.4500 -0.0009 

17 -0.6934 0.6527 -0.0208 

18 -0.9076 0.6588 -0.0139 

19 -0.8796 0.5991 -0.0180 

20 -0.8272 0.5957 -0.0145 

21 -0.9359 0.8657 -0.0243 

22 -0.8463 0.5760 -0.0114 

23 -0.9237 0.6359 -0.0260 

24 -0.7988 0.6064 -0.0216 

25 -0.7121 0.4906 -0.0019 

 
Table 6. Calculation of individual grey relational coefficients  

Sl. No. 0 (1 )i st PC∆  
0 (2 )i nd PC∆  

0 (3 )i rd PC∆  0,iΓ  

1 0.4494 0.6657 0.3359 0.4837 

2 0.4267 0.4131 0.4221 0.4206 

3 0.3803 0.4658 0.3359 0.3940 

4 0.4203 0.4615 0.5098 0.4639 

5 0.4127 0.6133 0.3662 0.4641 

6 0.4204 0.8038 0.6806 0.6349 

7 0.4524 0.4477 0.3768 0.4256 

8 0.4697 0.4934 0.4498 0.4710 

9 0.3995 0.5609 0.4407 0.4670 

10 0.5047 0.8474 0.4498 0.6006 

11 0.4220 0.7785 0.5579 0.5862 

12 0.4336 0.7393 0.3812 0.5181 

13 0.4829 0.4010 0.5963 0.4934 

14 1.0000 0.3372 0.9774 0.7716 

15 0.4558 1.0000 0.5936 0.6831 

16 0.4500 0.4051 1.0000 0.6184 

17 0.4055 0.6544 0.3976 0.4858 

18 0.4831 0.6668 0.5039 0.5513 

19 0.4713 0.5628 0.4348 0.4896 

20 0.4507 0.5579 0.4924 0.5003 

21 0.4956 0.6958 0.3591 0.5169 

22 0.4580 0.5308 0.5579 0.5156 



Table 6 (continued) 

Sl. No. 0 (1 )i st PC∆  0 (2 )i nd PC∆  0 (3 )i rd PC∆  0,iΓ  

23 0.4902 0.6227 0.3430 0.4853 

24 0.4403 0.5737 0.3881 0.4674 

25 0.4113 0.4385 0.9420 0.5973 

i0∆ = Quality of principal component (w. r. t the ideal) in i
th

 experimental run  

 i,0Γ =Overall grey relational grade in i
th

 experimental run  

 

 

 
FIGURE 1.  Evaluation of optimal setting  
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