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Abstract─ The Discrete Tchebichef Transform (DTT) based on 

orthogonal Tchebichef polynomials can be an alternative to 
Discrete Cosine Transform (DCT) for JPEG image compression 
standard. The properties of DTT are not only very similar to 
DCT; it has also higher energy compactness and lower 
computational advantage using a set of recurrence relation. 
Through extensive simulation, image reconstruction accuracy 
(Peak Signal to Noise Ratio) and the number of bits required to 
encode the coefficients for both DCT and DTT is verified. It has 
been demonstrated that, DTT requires lesser number of bits to 
encode the coefficients than DCT for a given compression ratio.  

 
Keywords─ DCT, DTT, Image compression, Peak signal to noise 

ratio (PSNR). 

I. INTRODUCTION 

Image Transform methods using orthogonal kernel functions 
are commonly used in image compression. One of the most 
widely known image transform method is Discrete Cosine 
Transform (DCT), used in JPEG compression standard [1].The 
computing devices such as Personal digital assistants (PDAs), 
digital cameras and mobile phones require a lot of image 
transmission and processing. Therefore, it is essential to have 
efficient image compression techniques, which could be 
scalable and applicable to these smaller portable devices.  

A new class of transform called Discrete Tchebichef 
Transform (DTT), which is derived from a discrete class of 
popular Tchebichef polynomials, is a novel orthonormal 
version of orthogonal transform. It has found applications on 
image analysis and compression [2-9]. The Tchebichef 
moment compression that is proposed in this paper is meant for 
smaller computing devices owing to its low computational 
complexity [3]. R.Mukundan [4] has proposed  orthonormal 
version of Tchebichef moments and analysed some of their 
computational aspects. Mukundan has also shown details of 
various computational aspects of Tchebichef moments and 
their feature representation capability using methods of image 
reconstruction [5]. A block wise moment computation scheme 
which avoids numerical instabilities to yield a perfect 
reconstruction has been introduced in the literature [6]. 
Mukundan and Hunt [7] have shown that, for natural images, 
DTT and DCT exhibit similar energy compactness 
performance. It was very difficult to determine which of the 
two is better. Lang et al. [8] made a comparison between 4×4 
Tchebichef moment transform and DCT. They have shown 

that, there is a significant advantage for 4×4 Tchebichef 
moments in terms of error reconstruction and average length of 
Huffman codes.   For computation of Tchebichef moments, a 
number of fast algorithms have been proposed [4], [9-10]. 
Ishwar et al. [9], have shown that DTT has lower complexity 
since it requires the evaluation of only algebraic (only add and 
shift operations, no multiplications) expressions whereas; 
implementation of DCT requires integer approximation or 
intermediate scaling, like Integer cosine transform (ICT) [11]. 
Some important characteristics of DTT are summarized as 
follows: 

a. A discrete domain of definition which matches 
exactly    with image coordinates space. 

b. Absence of numerical approximation terms allows  a   
more accurate representation of image features than 
others which is not possible using conventional 
transforms. 

In this paper a 2-dimensional (2-D) 8×8 forward discrete 
Tchebichef transform algorithm is implemented in place of 
8×8, 2-D DCT algorithm on a standard baseline JPEG encoder. 
The compression performance, in terms of number of encoded 
bits and peak signal to noise ratio (PSNR) of the proposed 
system is compared with that of DCT based system.     

The organization of the paper is as follows:  Section II 
presents the introduction about Discrete Image Transform. 
Section III describes the mathematical definition of Tchebichef 
Transform Algorithm. Similarities between DTT and DCT are 
compared in section IV. Implementation of Forward Discrete 
Tchebichef Transform (FDTT) algorithm on 8×8 blocks of 
image data is presented in section V. Section VI discusses the 
simulation result and finally in section VII conclusion and 
future work is given.   

II.    DISCRETE IMAGE TRANSFORM 
From the point wise definition, the transform of an N X N 

pixel image is given by  
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Equation (1) defines the image transform τ  where u  and v  
represents the frequencies in the transform domain, f is the 
image being transformed, 'f  is the inverse transform and 

),,,( vuyxg  is the basis function used by the transform. 
Equation (2) defines the inverse transform of ),,,( vuyxh , 
where ),,,( vuyxh  represents the inverse of the basis   
function ),,,( vuyxg . The transform used in this study define- 
their kernel (basis) function to be a product of two-dimensional 
function ),(' jig  such that, ).,('),('),,,( vyguxgvuyxg =   

III.     DISCRETE TCHEBICHEF TRANSFORM 
The Discrete Tchebichef Transform (DTT) is relatively a 

new transform that uses the Tchebichef moments to provide a 
basis matrix. As with DCT, the DTT is derived from the 
orthonormal Tchebichef polynomials [5]. For image of size N 
× N, the forward Discrete Tchebichef Transform of order u+v 
is defined as:  
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The inverse transformation of DTT is defined by: 
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Equation (4) can also be expressed using a series 

representation involving matrices as follows: 
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where, uvG is an 8x8 matrix (called basis images) and is 
defined as: 

 
 

The basis function of the DTT is defined as follows: 

                                   ).(),(' xtuxg u=                                (6) 
 
where, )(xtu is the thu order of the Tchebichef moments. 
These can be defined using the following function over the 
discrete range [0, N). 
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Due to the large dynamic range of the intermediate values 

generated by (7), it is not feasible to calculate the values of 
DTT on a point wise basis. Instead, we calculate the function 
using the following recurrence relation: 
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where, ),..2[ Nu ∈ Coefficients 2,1 AA and 3A are as follows: 
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As noted by [4], the recurrence relation causes minor 

numerical errors to propagate through calculation. This error 
eventually manifests itself in the collapse of the basis function 
[7].  This problem is only apparent in this image as we are 
performing the transform over the entire image, rather than on 
a block-by-block basis. 

IV.     SIMILARITY IN PROPERTIES OF DTT AND DCT 

A.  Separability 
The definition of DTT can be written in separable form as 
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Therefore, it can be evaluated using two dimensional 
transforms as follows: 
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The transform equation of DCT can be expressed as follows: 
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From (13) and (14) it is clear that 2-D DTT and 2-D DCT are 
just one dimensional DTT and DCT applied twice by 
successive 1-D operations, once in x-direction, and the once in 
y-direction.  

B.  Even Symmetry 
From [4], it can be shown that Tchebichef polynomials 

satisfy the property 
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For DCT: 
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The above two properties are commonly used in transform 
coding methods to get substantial reduction in the number of 
arithmetic operations. 

C.  Orthogonality 
DTT and DCT basis functions are orthogonal. Therefore, 

this property renders some reduction in the pre-computation 
complexity.  Fig. 1 (a) and (b) shows the 2-D basis images for 
the DTT and DCT.  

In the basis images, it has been observed that the low 
frequencies reside in the upper left corner of the spectrum, 
while the high frequencies are in the lower right. The basis 
functions for rows are increasing frequencies in horizontal 
directions while the basis functions for columns are increasing 
frequencies in vertical directions.  

  

         
                    

                            (a)                                                            (b) 
 

      Fig. 1. Two dimensional Basis Image for (a) DTT, (b) DCT . 

 
D.  Energy Compaction 

Efficiency of a transformation scheme can be gauged by its 
ability to pack input energy into as few coefficients as possible. 
Further,  the quantizer discard coefficients with relatively small 
amplitudes without introducing visual distortion in the 
reconstructed image. DTT and DCT exhibit excellent energy 
compaction properties for highly correlated images. The 
energy of the image is packed into low frequency region (i.e. 
top left region). 

    V.   JPEG BASELINE CODING VERSUS TCHEBICHEF  
TRANSFORM COMPRESSION 

JPEG is an international compression standard which is 
designed to support a wide variety of applications for 
continuous-tone images. JPEG baseline which is based on DCT 
is a lossy technique commonly used today and is sufficient for 
a large number of applications [1]. 

Using the JPEG Compression platform, 8×8 forward DTT 
has been used inplace of  DCT. Fig. 2 shows how the FDTT is 
performed on the 8×8 blocks of image data in order to achieve 
good compression performance. 
 

 
              
 

Input 8×8 image blocks 
 
 

 
 
 

 
 

Fig. 2. Implementation of FDTT on the 8×8 blocks of image data. 

 
To apply FDTT, the image is divided into 8×8 blocks of 

pixels. The 8×8 blocks are processed from left-to-right and 
from top-to-bottom. After transformation, two issues namely; 
quantization process and entropy coding are discussed below. 

A.  Quantization 
Quantization is a process which removes the high 

frequencies present in the original image. This is due to the fact 
that the eye is much more sensitivity to lower frequencies than 
to higher frequencies. This is done by dividing values of high 
indexes in the vector (the amplitude of higher frequencies) with 
larger values. Values of low indexes are divided with 
amplitudes of lower frequencies. We have used the standard 
JPEG luminance quantization table in [1]. 

B.  Entropy Huffman Coding 
After the transformation and quantization over an 8×8 image 

sub-blocks, the new 8×8 sub-block shall be reordered in zigzag 
scan into a linear array. The first coefficient is the DC 
coefficient and the other 63 coefficients are AC coefficients. 
Because the DC coefficient contains a lot of energy, it has 
usually much larger value than AC coefficients. Since there is a 

Forward 
DTT 

Zig zag 
Ordering 

Quantizati-
on Process 

Entropy 
Encoding 

Compressed 
output data 
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very close relation between the DC coefficients of adjacent 
blocks, the DC coefficients are differentially encoded. This 
process further reduces entropy. In our experiment we use 
basic entropy coding process.  

The entropy coding process consists of Huffman coding 
tables as recommended in JPEG standard [1]. These tables are 
stored as header information during the compression process so 
that, it is possible to uniquely decode the coefficients during 
decompression process.  

VI.    SIMULATION RESULTS AND ANALYSIS 
The superiority of the proposed technique is demonstrated 

through computer simulation running on Microsoft Window 
XP, Intel Core2 Duo CPU, 3 GHz Platform. The PSNR is a 
metric used for comparison. PSNR is expresses as: 
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Symbols ijX and ijX ' are original and reconstructed pixel -
values at the location ),( ji respectively. NM ×  is the size of 
the image. 

The experimental inputs for the proposed method are Lena 
and Slope images as shown in Fig. 3 (a) and (b) respectively. 
All the image dimensions are of 256×256. Fig. 4(a) and (b) 
shows the comparison plot (PSNR Vs Compression Ratios) of 
Lena and Slope images respectively. Comparison is made 
between proposed 8×8 DTT algorithm and JPEG, which uses 
8×8 DCT algorithm. From Fig. 4(a), it is clear that the PSNR 
of DTT and DCT differ by almost less than 0.2 dB, for any 
compression ratio. Fig. 4(b) shows that the PSNR of DTT 
reconstructed Slope image is better that DCT at any 
compression ratio.  

In Table 1(a) and (b), a quantitative comparison is made 
between compression ratios (CR), Number of AC plus DC 
coefficients, PSNR and MSE between DTT and DCT 
reconstructed Lena and Slope images respectively. The 
‘Scaling factor’ values indicated in the first column of Table 1, 
is the multiplication factor to scale the quantization matrix as 
described by [1]. For Lena image, it can be seen from Table 1 
that, at a CR of 9.0 DCT needs around 300 less coefficients 
than DTT. But for higher CR DTT always needs lesser number 
coefficients than DCT. It can be also note that, from Table 1, 
DTT shows higher compression performance than DCT in 
most of the cases for Lena image. Furthermore, in case of 
Slope image, DTT shows always better compression 
performance than DCT, except at a CR of 35 to 37 as shown in 
Fig 4(b). This fact is also clearly evident form the second line 
of Table 1 in case of Slope image. For the same image case, the 
AC plus DC coefficients at a CR of 35 to 37, are around 200 
bits more in DTT than DCT. But other CR DTT needs fewer 
coefficients than DCT.   

In order to evaluate the compression performance between 
DTT and DCT, around 20 various kinds of images have been 
tested. We have observed that, for images having high intensity 
variations, DTT always performs better than DCT in terms of 
PSNR, MSE and number of AC and DC coefficients. 

     
 
 

Fig. 3.  Test images use for Experiment (a) Lena, (b) Slope. 
 

(a) 

(b) 
 

           Fig. 4.  PSNR-Compression Ratios curve between DTT and DCT of 
           (a)Lena, (b) Slope image. 

(a) (b) 

15 20 25 30 35 40 45 50 55 60
25

30

35

40

Compression Ratio

P
S

N
R

(d
B

)

 

 

dtt

dct

5 10 15 20 25 30 35 40 45 50
23

24

25

26

27

28

29

30

31

32

33

Compression Ratio

P
S

N
R

(d
B

)

 

 

dtt

dct

107107



 
 

TABLE I 
COMPARISON OF COMPRESSON RATIO (CR), NUMBER OF DC AND AC COEFFICIENTS, PSNR (dB) AND MSE BETWEEN DTT AND DCT 

 
1. Lena Image: 

 
 

2. Slope Image: 

 

VII.    CONCLUSIONS 
In this paper, an 8×8 DTT algorithm is implemented in the 

JPEG in place of 8×8 DCT algorithm. By using various test 
images, it has been observed that DTT has energy 
compaction property competitive with that of DCT and 
thereby provides compression performance relatively close 
with DCT. Therefore, it can be a suitable candidate for 
applications such as PDAs, mobile phones and digital 
cameras where efficient image compression techniques are 
required. The proposed work is implementation of 8×8 DTT 
algorithm using Matlab.  Future research work in this field is 
to develop a DTT fast algorithm for input block of size 8×8. 
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CR No. of bits  
to encode  
DC 
coefficients 

No. of bits  
to encode  
AC 
coefficients 

Total 
DC & AC 
Coefficients 
(in bits) 

PSNR MSE CR No. of bits 
to encode  
DC 
coefficients 

No. of bits 
 to encode  
AC 
coefficients 

Total 
DC & AC 
Coefficients 
(in bits) 
 

PSNR MSE 

1 9.0 5790 51854 57944 32 37 9.0 5789 51854 57643 33 34 
5 24.63 4087 17196 21283 27 119 24.49 4088 17318 21406 28 112 
10 37.72 3704 10194 13898 25 209 37.57 3705 10252 13957 25 203 
15 46.92 3538 7635 11173 23 306 46.89 3540 7640 11180 23 300 

Scaling 
 factor 

 

 
DTT(Proposed) 

 
DCT(Used in JPEG) 

 CR No. of bits 
to encode 
DC 
coefficients  

No. of bits 
to encode 
AC  
coefficients 

Total 
DC & AC 
Coefficients 
(in bits) 

 

PSNR MSE CR No. of bits 
to encode  
DC  
coefficients 

No. of bits 
to encode 
AC 
coefficients 

Total 
DC & AC 
Coefficients 
(in bits) 

PSNR MSE 

       1 19.52 5568 21286 26854 39.2 7.83 19.32 5567 21571 27138 38.9 8.36 
5 36.28 4342 10110 14452 31.36 47.60 36.86 4342 9879 14221 31 51.3 

10 50.06 3754 6721 10475 27.64 112.1 49.82 3754 6771 10525 27.3 122 
15 54.86 3550 6006 9556 25.69 175.7 55.04 3550 5976 9526 25.67 176 
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